
IA169 System Verification and Assurance

Course Intro &
Fundaments of Testing

http://www.testingeducation.org/BBST/

http://www.testingeducation.org/BBST/

Section

Course Organization

IA169 System Verification and Assurance – 01 str. 2/50

Course Coverage

Topics to be covered ...

Introduction to Formal Verification and Testing

Symbolic Execution

Deductive Verification

LTL (Linear Temporal Logic) Model Checking

CTL (Computation Tree Logic) Model Checking

Bounded Model Checking

CEGAR and Abstract Interpretation

Verification of Real-Time and Hybrid Systems

Verification of Probabilistic Systems

Assurance, Threat Models, Relevant Security Standards

IA169 System Verification and Assurance – 01 str. 3/50

Prerequisites and Follow-Up

Prerequisites

Formally none, but we expect ...

... capability of basic math reasoning and abstractions.

... some experience with coding.

... you can handle Unix as a user.

Mutual Exclusion with

IV113 and IV101

Possible Follow-Up

IA159 Formal Verification Methods

IA169 System Verification and Assurance – 01 str. 4/50

Course Structure and Marking

Structure

2/2/2 credits

Lecture, Seminar, Homework

Marking

Final exam 70% (written test)

Assignments 30% (five evaluated tasks)

50% for E or Colloquy or Credit

60% for D

70% for C

80% for B

90% for A

Seminar schedule

https://is.muni.cz/auth/el/1433/jaro2017/IA169/

op/IA169_2017_semestr_schedule.html

IA169 System Verification and Assurance – 01 str. 5/50

https://is.muni.cz/auth/el/1433/jaro2017/IA169/op/IA169_2017_semestr_schedule.html
https://is.muni.cz/auth/el/1433/jaro2017/IA169/op/IA169_2017_semestr_schedule.html

Section

Fundaments of Testing

IA169 System Verification and Assurance – 01 str. 6/50

Testing

Testing is an empirical technical investigation conducted to
provide stakeholders with information about the quality of
the product or service under test.

Empirical Technical

Conduct experimental measurements.

Logic and math.

Modelling.

Employs SW tools.

Investigation

Organised and thorough.

Self-reflecting.

Challenging.

IA169 System Verification and Assurance – 01 str. 7/50

Testing

Product or Service

Software.

Hardware.

Data.

Documentation and specification.

... other parts that are delivered.

Information

Not know before.

Has some value.

Stakeholders

Who has interest in the success of testing effort.

Who has interest in the success of the product.

IA169 System Verification and Assurance – 01 str. 8/50

Fundamental Questions of Testing

Mission

Why do we test? What we want to achieve?

Strategy

How to proceed to fulfil the mission efficiently?

Oracle

How to recognise success of the test.

Incompletness

Do we realise that testing cannot prove absence of error?

Measure

How much of of our testing plan has been completed?

How far we are to complete the mission?

IA169 System Verification and Assurance – 01 str. 9/50

Mission of Testing

Most Typical Mission

Bug hunting.

Identification of factors that reduce quality.

Other Missions

Collect data to support manager decisions, such as: Is the
product good enough to be released?

How much different is the product from product available on
market?

Is the product complete with respect to specification?

Are individual components logically and ergonomically
connected.

. . .

IA169 System Verification and Assurance – 01 str. 10/50

Other Missions

Other Missions – continued

Support manager decision with empirical results.

Evaluate the cost of support after release.

To check compatibility with other products.

Confirm accordance with the specification.

Find safe scenarios of product usage.

To acquire certification.

Minimise consequences of low quality.

Evaluate the product for third party.

. . .

IA169 System Verification and Assurance – 01 str. 11/50

Section

Strategy

IA169 System Verification and Assurance – 01 str. 12/50

Strategy

Strategy is a plan, how to fulfil the mission in the given
context.

Example: Consider spreadsheet computation in four different
contexts.

a) Computer game.

b) Early stage of development of database product.

c) Late stage of development of database product.

d) Driver for medical X-ray scanning device.

Question:

Will you proceed with the same strategy?

IA169 System Verification and Assurance – 01 str. 13/50

Example – continued

What factors influence strategy selection

What is the mission?

How aggressively we need to detect bugs.

What bugs are less important than others?

How thoroughly testing will be documented?

Discussion

Assume that a program has an enter field that is expecting
numerical values. Is is meaningful to test the product for
situation when we enter non-numeric value? (Not mentioned
in specification at all.)

IA169 System Verification and Assurance – 01 str. 14/50

Section

Oracle

IA169 System Verification and Assurance – 01 str. 15/50

Definition of Oracle

Oracle (in the context of testing) is a detection mechanism
or principle to learn that the product passed or failed a test.

Facts

If tester claims that the program passed a test, it does not
mean the program is correct with respect to the tested
property. It depends on the oracle used.

Basically, any test may fail or pass with a suitable oracle.

Example

Does font sizes work properly in OpenOffice, WordPad, and
MS Word text editors?

IA169 System Verification and Assurance – 01 str. 16/50

Example – OpenOffice 1.0

IA169 System Verification and Assurance – 01 str. 17/50

Example – WordPad

IA169 System Verification and Assurance – 01 str. 18/50

Example – WordPad versus MS Word

IA169 System Verification and Assurance – 01 str. 19/50

Example – WordPad versus MS Word (highlighted)

IA169 System Verification and Assurance – 01 str. 20/50

Example – Decisions

Questions

Is the observed difference in font sizes a bug in WordPad?

Is the observed difference in font sizes a bug in MS Word?

Is the observed difference in font sizes a bug at all?

Possible Conclusions

We do not know if sizes are correct, but we have tendency to
believe MS Word rather than to WordPad.

For WordPad it is not necessary to stick precisely to
typographic standards.

For WordPad it is possibly a bug, but definitely it is not a
problem.

IA169 System Verification and Assurance – 01 str. 21/50

Example – Risk-Based Testing

Possible (Pragmatic) Position

It is/isn’t a bug? =⇒ It is/isn’t a problem?

It is necessary to know the context, to guess the metrics that
the final consumer will use to judge the issue.

With some risk we can achieve simplification of the decision.

Simplification in Testing Process

Avoid tests that obviously does not reveal any problems.

Avoid tests that obviously reveal only uninteresting problems.

IA169 System Verification and Assurance – 01 str. 22/50

Example – Judge Criteria

How much do we actually know about typography?

Point definition is unclear.
(http://www.oberonplace.com/dtp/fonts/point.htm)

Absolute sizes are difficult to measure.
(http://www.oberonplace.com/dtp/fonts/fontsize.htm)

From Uncertainty to Heuristics

How precisely must the sizes agree in order to declare that the
sizes are correct?

Obtaining complete information and evaluation of all the facts
is too complicated and costly.

Heuristics are used instead.

IA169 System Verification and Assurance – 01 str. 23/50

http://www.oberonplace.com/dtp/fonts/point.htm
http://www.oberonplace.com/dtp/fonts/fontsize.htm

Oracle Problem – Heuristics

Decision Heuristics

Allows for simplification of decision problem.

Advice, recommendation, or procedure to be used within the
given context.

Should not build on any hidden knowledge.

Does not guarantee a good decision.

Various heuristics may lead to contradictory decisions.

Disadvantages

Heuristics might be subjective.

If misused, may cause more harm than good.

IA169 System Verification and Assurance – 01 str. 24/50

Consistency as Heuristics

Consistency

Good heuristics for decision making.

Consistency with ...

other functions of the product, similar products, history,
producer image, specifications, standards, user expectations,
the purpose of the product, etc.

Advantages

Consistency is objective enough.

Easily described in bug report.

IA169 System Verification and Assurance – 01 str. 25/50

Imperfection in Decision Making

Unintentional Blindness

Human tester does not consider any test outputs that he/she
does not pay attention to.

Similarly, mechanical tester does not consider test outputs
that it is not told to include into decision.

Uncertainty Principle

The presence of observer may affect what is observed.

Consequence

It is impossible to observe all possible outputs from a single
test.

IA169 System Verification and Assurance – 01 str. 26/50

Oracle and Automation Process

Motivation

Automation process eliminates human errors.

Automation leads to repeatable procedures.

Automation allows faster test evaluation.

Problems of Automation

It is necessary to automate the decision making (oracle)
principle.

Can we do it? Only partially.

Standard Way of Oracle Automation

A file of expected outputs, which is required to match
precisely with the outputs of a test being executed.

Example: MS Word could be used to define a the file of
expected outputs for testing WordPad.

IA169 System Verification and Assurance – 01 str. 27/50

Problems of Automated Oracle

Amount of Agreement

Assume MS Word to serve as the file of expected outputs for
testing WordPad.

How exactly is the expected output stored?

Is 99% agreement still agreement?

How is the percentage of agreement defined?

False Alarms

Using outdated expected output.

Consequence of simplification of decision making.

Undiscovered Errors

Expected file exhibits the same error as test output.

Unintentional Blindness.

IA169 System Verification and Assurance – 01 str. 28/50

Section

Measure Methods in Testing

IA169 System Verification and Assurance – 01 str. 29/50

Coverage as a Measure

Coverage

A set of source code entities that has been checked with at
least one test.

Source-code entities: lines of code, conditions, function calls,
branches, etc.

Used to identify parts that have not been tested yet.

Coverage as a Measure

Possible test plan is to achieve a given percentage of coverage.

The percentage than expresses how much of the final product
has been tested.

Numeric expression for managers to see how much of the
product remains to be tested.

IA169 System Verification and Assurance – 01 str. 30/50

Coverage as a Measure – Disadvantages

Problems

Could avoid testing of interesting input data.

Does not properly test parts of the product that rely on
external services.

Using Coverage as a Measure

The mission is to test all entities of the product, is that OK?

Complete coverage does not guarantee quality of the product.

Stimulates to prefer quantity rather than quality.

Misleading satisfaction (shouldn’t feel safe).

IA169 System Verification and Assurance – 01 str. 31/50

Coverage as a Measure – Disadvantages

Example

Input A // program accepts any

Input B // integer into A and B

Print A/B

Observation

Complete coverage is easy achievable.

For example:
input: 2,1
output: 2

There is of course a hidden bug in the program!

IA169 System Verification and Assurance – 01 str. 32/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

There are various criteria for control-flow graph coverage.

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Statement coverage

Every statement (assignment, input, output, condition) is
executed in at least one test.

Set of tests to achieve full coverage:
(x = 2, y = 1, z = 4, w = 3)

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Edge coverage

Every edge of CFG is executed in at least one test.

Set of tests to achieve full coverage:
(x = 2, y = 1, z = 4, w = 3), (x = 3, y = 3, z = 5, w = 7)

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Condition coverage

Every condition is a Boolean combination of elementary
conditions, for example x < y or even(x).

If it is possible, every elementary condition is evaluated in at
least one test to TRUE and in at least one test to FALSE.

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Condition coverage

Set of tests to achieve full coverage:
(x = 3, y = 2, z = 5, w = 7), (x = 3, y = 3, z = 7, w = 5)

In both cases, only the FALSE branch of IF statement is taken.

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Edge/Condition coverage

Edge and Condition coverage at the same time.

Set of tests to achieve full coverage:
(x = 2, y = 1, z = 4, w = 3), (x = 3, y = 2, z = 5, w = 7),
(x = 3, y = 3, z = 7, w = 5)

Is the set the smallest possible one?

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Multiple condition coverage

Every Boolean combination of TRUE/FALSE values that may
appear in some decision condition must occur in at least one
test.

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Multiple condition coverage

Set of tests to achieve full coverage:
(x = 2, y = 1, z = 4, w = 3), (x = 3, y = 2, z = 5, w = 7),
(x = 3, y = 3, z = 7, w = 5), (x = 3, y = 3, z = 5, w = 6)

Exponential grow in the number of tests.

IA169 System Verification and Assurance – 01 str. 33/50

Coverage Criteria for Control-Flow Graphs

y:=y+1

x=y and z>w

x:=x−1

true false

Path coverage

Every executable path is executed in at least one test.

The number of paths is big, even infinite in case there is an
unbounded cycle in the control-flow graph.

IA169 System Verification and Assurance – 01 str. 33/50

Hierarchy of Coverage Criteria

Criterion A includes criterion B, denoted with A → B, if after
full coverage of type A we guarantee full coverage of type B.

IA169 System Verification and Assurance – 01 str. 34/50

Hierarchy of Coverage Criteria

Criterion A includes criterion B, denoted with A → B, if after
full coverage of type A we guarantee full coverage of type B.

path
coverage

��

multiple condition
coverage

��

edge/condition
coverage

uu
��

edge
coverage

��

condition
coverage

statement
coverage

IA169 System Verification and Assurance – 01 str. 34/50

Cycle Coverage

Coverage and Number of Cycle Iterations

All criteria except the path criterion does not reflect the
number of iterations over a cycle body.

In case of nested cycles, systematic testing of all possible
executable paths become complicated.

Ad hoc Strategy for Testing Cycles

Check the case when the cycle is completely skipped.

Check the case when the cycle is executed exactly once.

Check the case when the cycle is executed the expected
number of times.

If a boundary n is known for the number of cycle executions,
try to design tests where the cycle is executed n − 1, n, and
n + 1 times.

IA169 System Verification and Assurance – 01 str. 35/50

Coverage for Data-Flow Graphs

Motivation

Detect usage of undefined variables.

On some paths, a variable may be set for a specific purpose
and later on its value misused for other purpose.

Control Flow criteria do not guarantee inclusion of tests for
above mentioned or likewise situations.

Data Flow Coverage

Cover paths through control flow graph that go through a
location where a variable is used but it is not defined along all
incoming paths through control-flow graph.

IA169 System Verification and Assurance – 01 str. 36/50

Support for Code Coverage

C/C++, Linux

Tools gcov and lcov.

Example: lcov

gcc -fprofile-arcs -ftest-coverage foo.c -o foo
lcov -d . -z
lcov -c -i -d . -o base.info
./foo
lcov -c -d . -o collect.info
lcov -d . -a base.info -a collect.info -o result.info
genhtml result.info

IA169 System Verification and Assurance – 01 str. 37/50

Statistics on Found/Fixed Bugs per Time Unit

Week statistics

The number of newly discovered errors.

The number of fixed errors.

The ratio of found versus fixed errors.

Visualisation

IA169 System Verification and Assurance – 01 str. 38/50

Weibull Distribution

Observation

The number of discovered errors per time unit exhibits
Weibull Distribution.

Can be used as a measure for the remaining amount of testing.

Software Engineering Method to set the release date.

Using Weibull Distribution

At the moment the curve reaches the peak, the remaining
part of the curve may be predicted, hence, a moment in time
may be set, when expected number of errors discovered per
week drops below a given threshold.

Parameters of Weibull distribution influence the “width” and
“height/slope” of the peak.

F (x) = 1 − e−ax
−b

for x > 0

IA169 System Verification and Assurance – 01 str. 39/50

Weibull Distribution – Imperfections

Vague Precision

Testing does not follow the typical usage of the product.

The probability of error discovery is different for different
errors.

Fix may cause other new errors.

Bugs are dependent.

The number of errors in the product changes over time.

Error insertion exhibits Weibull distribution itself.

Testing epochs (various testing procedures) are independent.

...

Conclusions

Weibull Distribution is not very reliable.

Can be used only with large projects for very rough estimation.

IA169 System Verification and Assurance – 01 str. 40/50

Impact of following Weibull Distribution

Assumption

Software developers are aware of being measured.

Phase one

Reach the peak as quickly as possible.

Double reporting of errors.

Avoid fixing known errors.

...

Phase two

Stick to expected shape of the curve.

Delay reporting of errors.

Reporting outside bug-tracking system.

...

IA169 System Verification and Assurance – 01 str. 41/50

Section

Incompleteness of Testing

IA169 System Verification and Assurance – 01 str. 42/50

Definition

Observation

The amount of tests to be run is extremely large.

Resources for testing are always limited.

What Is Not Complete Testing

Complete Coverage

Every line of code.
Every branching point.
...

When testers do not find more errors.

Testing plan is finished.

What Is Complete Testing

There are no hidden or unknown errors in the product.

If new issue is reported, testing could not be complete.

IA169 System Verification and Assurance – 01 str. 43/50

Reasons for Incompletness of Testing

The number of tests is too large (infinitely many).

To perform all tests means:

To test all possible input values of every input variable.

To test all combinations of input variables.

To test every possible run of a system.

To test every combination of HW and SW, including future
technology.

To test every way a user may use the product.

IA169 System Verification and Assurance – 01 str. 44/50

Impossibility to Test All Possible Inputs

Data Bus-Width

The number of tests grows exponentially with respect to bit
used for data representation.

n-bits requires 2n tests.

Other Reasons

Timing of actions.

Invalid or unexpected inputs (buffer overflow).

Edited inputs

Easter egg [http://j-walk.com/ss/excel/eastereg.htm]

Common Argumentation

“This is not what the customer would do with our product.”

IA169 System Verification and Assurance – 01 str. 45/50

http://j-walk.com/ss/excel/eastereg.htm

Incapability to Test All Runs

Assume the following system

Questions

How many different ways it is possible to reach EXIT ?

How many different ways it is possible to reach EXIT , if 〈A〉
can be visited at most n-times?

IA169 System Verification and Assurance – 01 str. 46/50

Incapability to Test All Runs

Example

In [F] is a memory leak, in [B] garbage collector.

System will reach an invalid state, if [B] is avoided long
enough.

Observation

Simplified testing of paths may not discover the error.

The error manifests in circumstances that cannot be achieved
with a simple test.

IA169 System Verification and Assurance – 01 str. 47/50

Summary for Measure and Incompleteness

Incompleteness

Testing cannot prove absence of error.

It is impossible to test all valid inputs.

Existence of testing plan inhibits testing creativity.

Measure

There are methods to measure progress in testing phase.

These are unreliable.

Focusing strongly on a selected measure may influence the
effectiveness of testing.

IA169 System Verification and Assurance – 01 str. 48/50

Section

Homework

IA169 System Verification and Assurance – 01 str. 49/50

Homework

Reading on MC/DC:
http://www.faa.gov/aircraft/air_cert/design_approvals/air_

software/cast/cast_papers/media/cast-10.pdf

List, and briefly describe as many black-box testing
approaches as you can find or are aware of.
http://www.testingeducation.org/BBST/

Optional: Learn about CMAKE and CTEST systems.

IA169 System Verification and Assurance – 01 str. 50/50

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://www.testingeducation.org/BBST/

IA169 System Verification and Assurance

Symbolic Execution

Jiří Barnat

Section

Testing Strategies

IA169 System Verification and Assurance – 03 str. 2/38

Black-box Testing

Black-box

A product under test is viewed as a black box.

It is analysed through the input-output behaviour.

Inner details (such as source code) are hidden or not
taken into account.

IA169 System Verification and Assurance – 03 str. 3/38

White-box, Gray-box Testing

White-box Testing (Glass-box)

Inner details are taken into account.

Tests are selected and executed with respect to the inner
details of the product, e.g. code coverage.

Error insertion, modification of the product for the
purpose of testing.

Basically only extends any Black-box approach.

Gray-box Testing

In between of Black-box and White-box.

Sometimes the same as White-box, inconsistent
terminology.

IA169 System Verification and Assurance – 03 str. 4/38

Testing Techniques

Primary Black-box Strategies

Domain Testing

Combinatory Testing

Scenario Testing

Risk-based Testing

Functional Testing

Fuzz Testing (Mutation Testing)

Primary White-box Extensions

Model-based Testing

Unit Testing

Support for Developers

Regression Testing

IA169 System Verification and Assurance – 03 str. 5/38

Section

Symbolic Execution

IA169 System Verification and Assurance – 03 str. 6/38

Motivation

Problem

To detect errors that systematically exhibit only for
specific input values is difficult.

Relates to incompleteness of testing.

Still we would like to ...

test the program on inputs that make program execute
differently from what has already been tested.

test the program for all inputs.

IA169 System Verification and Assurance – 03 str. 7/38

Symbolic Execution

Idea

Execute a program so that values of input variables are
referred to as to symbols instead of concrete values.

Demo

Program Selected concrete Symbolic
values representation

read(A)

A = 3 A = α

A = A * 2

A = 6 A = α ∗ 2
A = A + 1

A = 7 A = (α ∗ 2) + 1
output(A)

IA169 System Verification and Assurance – 03 str. 8/38

Branching and Path Condition

Observation

Branching in the code put some restrictions on the data
depending on the condition of a branching point.

Example

1 if (A == 2) A = (α ∗ 2) + 1

2 then ... (α ∗ 2) + 1 = 2

3 else ... (α ∗ 2) + 1 6= 2

Path Condition

Formula over symbols referring to input values.

Encodes history of computation, i.e. cumulative
restrictions implied from all the branching points
walked-through up to the curent point of execution.

Initially set to true.

IA169 System Verification and Assurance – 03 str. 9/38

Unfeasible Paths

Observation

The path condition may become unsatisfiable.

If it is so, it means there are no input values that would
make the program execute this way.

Example 1
1 if (A == B) A = α, B = β

2 then α = β

3 if (A == B)

4 then ... α = β ∧ α = β

5 else ... α = β ∧ α 6= β is UNSAT

6 else ... α 6= β

Example 2 % – operation modulo

1 A=A%2 A = α%2

2 if (A == 3) then ... α%2 = 3 is UNSAT

3 else ... α%2 6= 3
IA169 System Verification and Assurance – 03 str. 10/38

Tree of Symbolic Execution

Observation

All possible executions of program may be represented by
a tree structure – Symbolic Execution Tree.

The tree is obtained by unfolding/unwinding the control
flow graph of the program.

Symbolic Execution Tree

Node of the tree encodes program location, symbolic
representation of variables, and a concrete path condition.

location symbolic valuation path condition
#12 A = α + 2, B = α + β − 2 α = 2 ∗ β − 1

An edge in the tree corresponds to a symbolic execution
of a program instruction on a given location.

Branching point is reflected as branching in the tree and
causes updates of path conditions in individual branches.

IA169 System Verification and Assurance – 03 str. 11/38

Example of Symbolic Execution Tree

Program

1 input A,B

2 if (B<0) then

3 return 0

4 else

5 while (B > 0)

6 { B=B-1

7 A=A+B

8 }

9 return A

Draw Yourself.

IA169 System Verification and Assurance – 03 str. 12/38

Path Explosion

Properties of Symbolic Tree Execution

No nodes are merged, even if they are the same (the
structure is a tree).

A single program location may be contained in (infinitely)
many nodes of the tree.

Tree may contain infinite paths.

Path Explosion Problem

The number of branches in the symbolic execution tree
may be large for non-trivial programs.

The number of paths may grow exponentially with the
number of branching points visited.

IA169 System Verification and Assurance – 03 str. 13/38

Employing Symbolic Execution Tree for Verification

Analysis of the Tree

Breadth-first strategy, the tree may be infinite.

Deduced Program Properties

Identification of feasible and unfeasible paths.

Proof of reachability of a given program location.

Error detection (division by zero, out-of-array access,
assertion violation, etc.).

Synthesis of Test Input Data

If the formula encoded as a path condition is satisfiable
for a symbolic run, the model of the formula gives
concrete input values that make the program to follow the
symbolic run.

Excellent for synthesis of tests that increase code
coverage.

IA169 System Verification and Assurance – 03 str. 14/38

Automated Test Generation

Principle

1 Generate random input values (encode some random
path).

2 Perform a walk through the Symbolic Execution Tree with
the random input values and record the path condition.

3 Generate a new path condition from the recorded one by
negating one of the restrictions related to a single
branching point.

4 Find input values satisfying the new path condition.

5 Repeat from number 2 until desired coverage is reached.

Practical Notes

Heuristics for selection of branching point to be negated.

Augmentation of the code to enable path condition
recording.

IA169 System Verification and Assurance – 03 str. 15/38

Limits of Symbolic Execution

Undecidability

Using complex arithmetic operations on unbounded
domains implies general undecidability of the formula
satisfaction problem.

Symbolic Execution Tree is infinite (due to unwinding of
cycles with unbound number of repetition).

Computational Complexity

Path explosion problem.

Efficiency of algorithms for formula satisfiability on finite
domains.

Known Limits

Symbolic operations on non-numerical variables.

Not clear how to deal with dynamic data structures.

Symbolic evaluation of calls to external functions.
IA169 System Verification and Assurance – 03 str. 16/38

Section

Tools for SAT Solving

IA169 System Verification and Assurance – 03 str. 17/38

SAT Problem

Satisfiability Problem – SAT

Is to decide if there exists a valuation of Boolean variables
of propositional logic formula that makes the formula hold
true (be valid).

SAT Problem Properties

Famous NP-complete problem.

Polynomial algorithm is unlikely to exist.

Still there are existing SAT solvers that are very efficient
and due to a plethora of heuristics can solve surprisingly
large instances of the problem.

IA169 System Verification and Assurance – 03 str. 18/38

Tool Z3

ZZZ aka Z3

Developed by Microsoft Research.

SAT and SMT Solver.

WWW interface — http://www.rise4fun.com/Z3

Standardised binary API for use within other verification
tools.

Decide using Z3

Is formula (a ∨ ¬b) ∧ (¬a ∨ b) satisfiable?

IA169 System Verification and Assurance – 03 str. 19/38

http://www.rise4fun.com/Z3

Usage of Z3 – SAT

Reformulate into language of Z3 (a ∨ ¬b) ∧ (¬a ∨ b)

(declare-const a Bool)

(declare-const b Bool)

(assert (and (or a (not b)) (or (not a) b)))

(check-sat)

(get-model)

Answer of Z3

sat

(model

(define-fun b () Bool

false)

(define-fun a () Bool

false)

)

IA169 System Verification and Assurance – 03 str. 20/38

Satisfiability Modulo Theory – SMT

Satisfiability Modulo Theory – SMT

Is to decide satisfiability of first order logic with predicates
and function symbols that encode one or more selected
theories.
Typically used theories

Arithmetic of integral and floating point numbers.
Theories of data structures (lists, arrays, bit-vectors, . . .).

Other view (Wikipedia)

SMT can be thought of as a form of the constraint
satisfaction problem and thus a certain formalised
approach to constraint programming.

IA169 System Verification and Assurance – 03 str. 21/38

Examples of SMT in Z3

Solve using Z3 http://rise4fun.com/Z3/tutorial/guide

Are there two integral non-zero numbers x and y such
that y=x*(x-y)?

(declare-const y Int)

(declare-const x Int)

(assert (= y (* x (- x y))))

(assert (not (= y 0)))

(check-sat)

(get-model)

Are there two integral non-zero numbers x and y such
that y=x*(x-(y*y))?

(declare-const y Int)

(declare-const x Int)

(assert (= y (* x (- x (* y y)))))

(assert (not (= x 0)))

(check-sat)

IA169 System Verification and Assurance – 03 str. 22/38

http://rise4fun.com/Z3/tutorial/guide

Satisfiability and Validity

Observation

A formula is valid if and only if its negation is not
satisfiable.

Consequence

SAT and SMT solvers can be used as theorem provers to
show validity of some theorems.

Model Synthesis

SAT solvers not only decide satisfiability of formulae but
in positive case also give concrete valuation of variables
for which the formula is valid.

Unlike general theorem provers they provide a
counterexample in case the theorem to be proved is
invalid (negation is satisfiable).

IA169 System Verification and Assurance – 03 str. 23/38

Section

Concolic Testing

IA169 System Verification and Assurance – 03 str. 24/38

Motivation

Problem

Efficient undecidability of path feasibility.

In practice, unknown result often means unsatisfiability
(no witness found).

However, skipping paths that we only think are unfeasible,
may result in undetected errors.

On the other hand, executing unfeasible path may report
unreal errors.

Partial Solution

Let us use concrete and symbolic values at the same time
in order to support decisions that are practically
undecidable by a SAT or SMT solver.

Heuristics.

An interesting case (correct): UNKNOWN =⇒ SAT

Concrete and Symbolic Testing = Concolic Testing
IA169 System Verification and Assurance – 03 str. 25/38

Hypothetical demo of concolic testing

Program

1 input A,B

2 if (A==(B*B)%30) then

3 ERROR

4 else

5 return A

Concolic Testing

1 A=22, B=7 (random values), test executed, no errors found.

2 (22==(7*7)%30) is False, path condition: α 6= (β ∗ β)%30

3 Synthesis of input data from negation of path condition:
α = (β ∗ β)%30 – UNKNOWN

4 Employ concrete values: α = (7 ∗ 7)%30 – SAT, α = 19

5 A=19, B=7

6 Test detected error location on program line 3.

IA169 System Verification and Assurance – 03 str. 26/38

Section

SAGE Tool

IA169 System Verification and Assurance – 03 str. 27/38

Story of SAGE

Systematic Testing for Security:

Whitebox Fuzzing

Patrice Godefroid
Michael Y. Levin and David Molnar

http://research.microsoft.com/projects/atg/

Microsoft Research

IA169 System Verification and Assurance – 03 str. 28/38

Story of SAGE

Whitebox Fuzzing (SAGE tool)

 Start with a well-formed input (not random)

 Combine with a generational search (not DFS)

 Negate 1-by-1 each constraint in a path constraint

 Generate many children for each parent run

 Challenge all the layers of the application sooner

 Leverage expensive symbolic execution

 Search spaces are huge, the search is partial…
yet effective at finding bugs !

Gen 1
parent

IA169 System Verification and Assurance – 03 str. 29/38

Story of SAGE

Example: Dynamic Test Generation

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

input = “good”

IA169 System Verification and Assurance – 03 str. 30/38

Story of SAGE

Dynamic Test Generation

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

input = “good”

I
0
!= „b‟

I
1
!= „a‟

I
2
!= „d‟

I
3
!= „!‟

Negate a condition in path constraint

Solve new constraint new input

Path constraint:

IA169 System Verification and Assurance – 03 str. 31/38

Story of SAGE

Depth-First Search

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

I
0
!= „b‟

I
1
!= „a‟

I
2
!= „d‟

I
3
!= „!‟

good

input = “good”

IA169 System Verification and Assurance – 03 str. 32/38

Story of SAGE

Depth-First Search

goo!good

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

I
0
!= „b‟

I
1
!= „a‟

I
2
!= „d‟

I
3
== „!‟

IA169 System Verification and Assurance – 03 str. 33/38

Story of SAGE

Generational Search

goo!

godd

gaod

bood

Fou Ge e atio
test cases !

good

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

I
0
== „b‟

I
1
== „a‟

I
2
== „d‟

I
3
== „!‟

IA169 System Verification and Assurance – 03 str. 34/38

Story of SAGE

The Search Space
void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 3) crash();

}

IA169 System Verification and Assurance – 03 str. 35/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 0 – seed file

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 00 00 00 ; RIFF............

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 1

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF....***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 2

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 3

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 00 00 00 00 ;strh........

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 4

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 5

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 00 00 00 00 ;strf........

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 6

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 7

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 C9 9D E4 4E ;É�äN

00000060h: 00 00 00 00 ;

Generation 8

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 9

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

Zero to Crash in 10 Generations

 Sta ti g ith ze o tes …
 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 00 00 00 ;strf²uv:(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 10 – crash bucket 1212954973!

IA169 System Verification and Assurance – 03 str. 36/38

Story of SAGE

 Since 1st i te al elease i Ap il : te s of e se u it ugs fou d

 Apps: i age p o esso s, edia pla e s, file de ode s,… Confidential !

 Bugs: W ite A/Vs, Read A/Vs, C ashes,… Confidential !

 Ma ugs fou d t iaged as se u it iti al, se e it , p io it

Initial Experiences with SAGE

IA169 System Verification and Assurance – 03 str. 37/38

Homework

Homework

Follow Klee tutorials 1 and 2
(http://klee.github.io/klee/Tutorials.html)

Solve The wolf, goat and cabbage problem with Klee

Solve http://pex4fun.com/

IA169 System Verification and Assurance – 03 str. 38/38

http://klee.github.io/klee/Tutorials.html
http://pex4fun.com/

IA169 System Verification and Assurance

Deductive Verification

Jiří Barnat

Verification of Algorithms

Validation and Verification

A general goal of V&V is to prove correct behaviour of
algorithms.

Reminder

Testing is incomplete.

Testing can detect errors but cannot prove correctness.

Conclusion

Need for another different way of verification.

IA169 System Verification and Assurance – 04 str. 2/30

Formal Verification

Goal of formal verification

The goal is to show that system behaves correctly with the
same level of confidence as it is given with a mathematical
proof.

Requirements

Formally precise semantics of system behaviour.

Formally precise definition of system properties to be shown.

Methods of formal verification

Deductive verification

Model checking

Abstract interpretation

IA169 System Verification and Assurance – 04 str. 3/30

Section

Deductive verification

IA169 System Verification and Assurance – 04 str. 4/30

Notion of Correctness

Program is correct if

it terminates for a valid input and returns correct output.

There is a need to show two parts – partial correctness and
termination.

Partial correctness (Correctness, Soundness)

If the computation terminates for valid input values (i.e.
values for which the program is defined) the resulting values
are correct.

Termination (Completness, Convergence)

If executed on valid input values, the computation always
terminates.

IA169 System Verification and Assurance – 04 str. 5/30

Verification of Serial Programs

Serial programs (sequential)

Input-output-closed and finite programs.

All input values are known prior program execution.
All output values are stored in output variables.

Examples: Quick sort, Greatest Common Divider, . . .

General Principle

Program instructions are viewed as state transformers.

The goal is to show that the mutual relation of input and
output values is as expected or given by the specification.

I.e. to verify the correctness of procedure of transformation of
input values to output values.

IA169 System Verification and Assurance – 04 str. 6/30

Expressing Program Properties

State of Computation

State of computation of a program is given by the value of
program counter and values of all variables.

Atomic predicates

Basic statements about individual states of the computation.

The validity is deduced purely from the values of variables
given by the state of computation.

Examples of atomic propositions: (x == 0), (x1 >= y3).

Beware of the scope of variables.

Set of States

Can be described with a Boolean combination of atomic
predicates.

Example: (x == m) ∧ (y > 0)

IA169 System Verification and Assurance – 04 str. 7/30

Expressing Program Properties – Assertions

Assertion

For a given program location defines a Boolean expression
that should be satisfied with the current values of program
variables in the given location during program execution.

Invariant of a program location.

Assertions – Proving Correctness

Assigning properties to individual locations of Control Flow
Graph.

Robert Floyd: Assigning Meanings to Programs (1967)

IA169 System Verification and Assurance – 04 str. 8/30

Error Detection — Assertion Violation

Testing

Assertion violation serves as a test oracle.

Run-Time Checking

Checking location invariants during run-time.

Improved error localisation as the assertion violated relates to
a particular program line.

Undetected Errors

If an error does not manifest itself for the given input data.

If the program behaves non-deterministically (parallelism).

IA169 System Verification and Assurance – 04 str. 9/30

Section

Hoare Proof System

IA169 System Verification and Assurance – 04 str. 10/30

Hoare Proof System

Principle

Programs = State Transformers.

Specification = Relation between input and output state of
computation.

Hoare logic

Designed for showing partial correctness of programs.

Let P and Q be predicates and S be a program, then

{P} S {Q}

is the so called Hoare triple.

Intended meaning of {P} S {Q}

S is a program that transforms any state satisfying
pre-condition P to a state satisfying post-condition Q.

IA169 System Verification and Assurance – 04 str. 11/30

Pre- and Post- Conditions

Example

{z = 5} x = z ∗ 2 {x > 0}

Valid triple, though post-condition could be more precise
(stronger).

Example of a stronger post-condition: {x > 5 ∧ x < 20}.

Obviously, {x > 5 ∧ x < 20} =⇒ {x > 0}.

The Weakest Pre-Condition

P is the weakest pre-condition, if and only if

{P}S{Q} is a valid triple and

∀P ′ such that {P ′}S{Q} is valid, P ′ =⇒ P.

Edsger W. Dijkstra (1975)

IA169 System Verification and Assurance – 04 str. 12/30

Proving in Hoare System

How to prove {P} S {Q}

Pick suitable conditions P’ a Q’

Decomposition into three sub-problems:

{P’} S {Q’} P =⇒ P’ Q’ =⇒ Q

Use axioms and rules of Hoare system to prove {P’} S {Q’}.

P =⇒ P’ and Q’ =⇒ Q are called proof obligations.

Proof obligations are proven in the standard way.

IA169 System Verification and Assurance – 04 str. 13/30

Hoare System – Axiom for Assignment

Axiom

Assignment axiom: {φ[x replaced with k]} x := k {φ}

Meaning

Triple {P}x := y{Q} is an axiom in Hoare system, if it holds
that P is equal to Q in which all occurrences of x has been
replaced with y .

Examples

{y+7>42} x:=y+7 {x>42} is an axiom

{r=2} r:=r+1 {r=3} is not an axiom

{r+1=3} r:=r+1 {r=3} is an axiom

IA169 System Verification and Assurance – 04 str. 14/30

Hoare Logic – Example 1

Example

Prove that the following program returns value greater than
zero if executed for value of 5.

Program: out := in ∗ 2

Proof

1) We built a Hoare triple:
{in = 5} out := in ∗ 2 {out > 0}

2) We deduce/guess a suitable pre-condition:
{in ∗ 2 > 0}

3) We prove Hoare triple:
{in ∗ 2 > 0} out := in ∗ 2 {out > 0} (axiom)

4) We prove auxiliary statement:
(in = 5) =⇒ (in ∗ 2 > 0)

IA169 System Verification and Assurance – 04 str. 15/30

Hoare System – Example of a Rule

Rule

Sequential composition: {φ}S1{χ}∧{χ}S2{ψ}
{φ}S1;S2{ψ}

Meaning

If S1 transforms a state satisfying φ to a state satisfying χ
and S2 transforms a state satisfying χ to a state satisfying ψ
then the sequence S1; S2 transforms a state satisfying φ to a
state satisfying ψ.

In the proof

Should {φ}S1; S2{ψ} be used in the proof, an intermediate
condition χ has to be found, and {φ}S1{χ} and {χ}S2{ψ}
have to be proven.

IA169 System Verification and Assurance – 04 str. 16/30

Hoare System – Partial Correctness

Axiom for skip: {φ} skip {φ}

Axiom for :=: {φ[x := k]}x :=k{φ}

Composition rule: {φ}S1{χ}∧{χ}S2{ψ}
{φ}S1;S2{ψ}

Conditional rule: {φ∧B}S1{ψ}∧{φ∧¬B}S2{ψ}
{φ}if B then S1 else S2 fi{ψ}

While rule: {φ∧B}S{φ}
{φ}while B do S od {φ∧¬B}

Consequence rule: φ =⇒ φ′,{φ′}S{ψ′},ψ′ =⇒ ψ

{φ}S{ψ}

IA169 System Verification and Assurance – 04 str. 17/30

Hoare Logic – Example 2

Prove that for n ≥ 0 the following code computes n!.
{
r = 1;

while (n6= 0) {
r = r * n;

n = n - 1;
} {

Notes:

IA169 System Verification and Assurance – 04 str. 18/30

Hoare Logic – Example 2

Prove that for n ≥ 0 the following code computes n!.
{ n ≥ 0 ∧ t=n } {P}
r = 1;

while (n 6= 0) {
r = r * n;

n = n - 1;
}
{ r=t! } {Q}

Notes:

Reformulation in terms of Hoare logic.

Note the use of auxiliary variable t.

IA169 System Verification and Assurance – 04 str. 18/30

Hoare Logic – Example 2

Prove that for n ≥ 0 the following code computes n!.
{ n ≥ 0 ∧ t=n } {P}
r = 1;
{ n ≥ 0 ∧ t=n ∧ r = 1 } {I1}
while (n 6= 0) {

r = r * n;

n = n - 1;
}
{ r=t! } {Q}

Notes:

{n ≥ 0 ∧ t=n ∧ 1=1} r=1 { n ≥ 0 ∧ t=n ∧ r=1 }

(n ≥ 0 ∧ t=n) =⇒ (n ≥ 0 ∧ t=n ∧ 1=1)

IA169 System Verification and Assurance – 04 str. 18/30

Hoare Logic – Example 2

Prove that for n ≥ 0 the following code computes n!.
{ n ≥ 0 ∧ t=n } {P}
r = 1;
{ n ≥ 0 ∧ t=n ∧ r = 1 } {I1}
while (n 6= 0) { r=t!/n! ∧ t ≥ n ≥ 0 } { {I2}

r = r * n;

n = n - 1;
}
{ r=t! } {Q}

Notes:

Invariant of a cycle: {I2} ≡ { r=t!/n! ∧ t ≥ n ≥ 0 }

I1 =⇒ I2 (I2 ∧ ¬(n6=0)) =⇒ Q

IA169 System Verification and Assurance – 04 str. 18/30

Hoare Logic – Example 2

Prove that for n ≥ 0 the following code computes n!.
{ n ≥ 0 ∧ t=n } {P}
r = 1;
{ n ≥ 0 ∧ t=n ∧ r = 1 } {I1}
while (n 6= 0) { r=t!/n! ∧ t ≥ n ≥ 0 } { {I2}

r = r * n;
{ r=t!/(n-1)! ∧ t ≥ n > 0 } {I3}
n = n - 1;

}
{ r=t! } {Q}

Notes:

{ r*n = t!/(n-1)! ∧ t ≥ n > 0 } r=r*n {I3}

I2 ∧ (n6=0) =⇒ (r*n = t!/(n-1)! ∧ t ≥ n > 0)

IA169 System Verification and Assurance – 04 str. 18/30

Hoare Logic – Example 2

Prove that for n ≥ 0 the following code computes n!.
{ n ≥ 0 ∧ t=n } {P}
r = 1;
{ n ≥ 0 ∧ t=n ∧ r = 1 } {I1}
while (n 6= 0) { r=t!/n! ∧ t ≥ n ≥ 0 } { {I2}

r = r * n;
{ r=t!/(n-1)! ∧ t ≥ n > 0 } {I3}
n = n - 1;

}
{ r=t! } {Q}

Notes:

{ r = t!/(n-1)! ∧ t ≥ (n-1) ≥ 0 } n=n-1 {I2}

I3 =⇒ (r = t!/(n-1)! ∧ t ≥ (n-1) ≥ 0)

IA169 System Verification and Assurance – 04 str. 18/30

Hoare Logic and Completness

Observation

Hoare logic allowed us to reduce the problem of proving
program correctness to a problem of proving a set of
mathematical statements with arithmetic operations.

Notice about correctness’s and (in)completeness

Hoare logic is correct, i.e. if it is possible to deduce {P}S{Q}
then executing program S from a state satisfying P may
terminate only in a state satisfying Q.

If a proof system is strong enough to express integral
arithmetics, it is necessarily incomplete, i.e. there exists claims
that cannot be proven or dis-proven using the system.

Hoare system for proving correctness of programs is
incomplete due to the proof obligations generated with the
consequence rule.

IA169 System Verification and Assurance – 04 str. 19/30

Hoare Logic and Proving Correctness in Practice

Troubles with Proof Construction

Often pre- and post- condition must be suitable reformulated
for the purpose of the proof.

It is very difficult to identify loop invariants.

Partial Correctness in Practice

Often reduced to formulation of all the loop invariants, and
demonstration that they actually are the loop invariants.

The proof of being an invariant is often achieved with math
induction.

IA169 System Verification and Assurance – 04 str. 20/30

Proving Termination

Well-Founded Domain

Partially ordered set that does not contain infinitely
decreasing sequence of members.

Examples: (N,<), (PowerSet(N),⊆)

Proving Termination

For every loop in the program a suitable well-founded domain
and an expression over the domain is chosen.

It is shown that the value associated with a location cannot
grow along any instruction that is part of the loop.

It is shown that there exists at least one instruction in the
loop that decreases the value of the expression.

IA169 System Verification and Assurance – 04 str. 21/30

Section

Automating Deductive Verification

IA169 System Verification and Assurance – 04 str. 22/30

Principles of Automation of Deductive Verification

Pre-processing

Transformation of program to a suitable intermediate
language.

Examples of IL: Boogie (Microsoft Research), Why3 (INRIA)

Structural Analysis and Construction of the Proof Skeleton

Identification of Hoare triples, loop invariants and suitable
pre- and post-conditions (some of that might be given with
the program to be verified).

Generation of auxiliary proof obligations.

Solving proof obligations

Using tools for automated proving.

May be human-assisted.

IA169 System Verification and Assurance – 04 str. 23/30

Solving Proof Obligations

Tools for Automated Proving

User guides a tool to construct a proof.

HOL, ACL2, Isabelle, PVS, Coq, ...

Reduced to the satisfiability problem

Employ SAT and SMT solvers.

Z3, ...

IA169 System Verification and Assurance – 04 str. 24/30

Automated Proving

Proof

A finite sequence of steps that using axioms and rules of a
given proof system that transforms assumptions ψ into the
conclusion ϕ.

Observation

For systems with finitely many axioms and rules, proofs may
be systematically generated. Hence, for all provable claims the
proof can be found in finite time.

All reasonable proving systems has infinitely many axioms.
Consider, e.g. an axiom x = x . This is virtually a shortcut
(template) for axioms 1 = 1, 2 = 2, 3 = 3, etc.

Semi-decidable with dove-tailing approach.

IA169 System Verification and Assurance – 04 str. 25/30

Automated Proofing

Searching for a Proof of Valid Statement

The number of possible finite sequences of steps of rules and
axiom applications is too many (infinitely many).

In general there is no algorithm to find a proof in a given
proof system even for a valid statement.

Without some clever strategy, it cannot be expected that a
tool for automated proof generation will succeed in a
reasonable short time.

The strategy is typically given by an experienced user of the
automated proving tool. The user typically has to have
appropriate mathematical feeling and education.

At the end, the tool is used as a mechanical checker for a
human constructed proof.

IA169 System Verification and Assurance – 04 str. 26/30

Verification with Tools for Automated Proofing

Theorem Provery

The goal is find the proof within a given proof system.

the proof is searched for in two modes:
Algorithmic mode – Application of rules and axioms

Guided by the user of the tool.
Application of the general proving techniques, such as
deduction, resolution, unification,

Search mode – Looking for new valid statements

Employs brute-force approach and various heuristics.

Existing Tools

The description of system (axioms, rules) as well as the claim
to be proven is given in the language of the tool.

IA169 System Verification and Assurance – 04 str. 27/30

Results of Proof Searching

Possible Outputs

a) Proof has been found and checked.

b) Proof has not been found.

The statement is valid, can be proven, but the proof has not
yet been found.
The statement is valid, but it cannot be proven in the system.
The statement is invalid.

Observation

In the case that no proof has been found, there is no
indication of why it is so.

IA169 System Verification and Assurance – 04 str. 28/30

Dafny

http://rise4fun.com/dafny

IA169 System Verification and Assurance – 04 str. 29/30

http://rise4fun.com/dafny

Homework

Homework

Prove correctness of the following program using Dafny
method Count(N: nat, M: int, P: int) returns (R: int) {

var a := M;
var b := P;
var i := 1;
while (i <= N) {

a := a+3;
b := 2*a+b+1;
i := i+1;

}
R := b;

}

Read and repeat:

Jaco van de Pol: Automated verification of Nested DFS

http://dx.doi.org/10.1007/978-3-319-19458-5_12

IA169 System Verification and Assurance – 04 str. 30/30

http://dx.doi.org/10.1007/978-3-319-19458-5_12

IA169 System Verification and Assurance

LTL Model Checking

Jiří Barnat

Motivation

Checking Quality

Testing is incomplete, gives no guarantees of correctness.

Deductive verification is expensive.

Typical reasons for system failure after deployment

Interaction with environment (unexpected input values).

Interaction with other system components.

Parallelism (difficult to test).

Model Checking

Automated verification process for ...

... parallel and distributed systems.

IA169 System Verification and Assurance – 05 str. 2/36

Section

Verification of Parallel and Reactive Programs

IA169 System Verification and Assurance – 05 str. 3/36

Parallel Programs

Parallel Composition

Components concurrently contribute to the transformation of
a computation state.

The meaning comes from interleaving of actions
(transformation steps) of individual components.

Meaning Functions Do Not Compose

Meaning function of a composition cannot be obtain as
composition of meaning functions of participating
components.

The result depends on particular interleaving.

IA169 System Verification and Assurance – 05 str. 4/36

Example of Incomposability

Parallel System

System: (y=x; y++; x=y) ‖ (y=x; y++; x=y)

Input-output variable x

Meaning function of both processes is λx->x+1.

The composition is: (λx->x+1)·(λx->x+1).

(λx->x+1)·(λx->x+1) 0 = 2

Two Different System Runs

State = (x , y1, y2)

(0,-,-)
y1=x
−→ (0,0,-)

y2=x
−→ (0,0,0)

y1++
−→

x=y1
−→ (1,1,0)

y2++
−→

x=y2
−→ (1,1,1)

(0,-,-)
y1=x
−→ (0,0,-)

y1++
−→

x=y1
−→ (1,1,-)

y2=x
−→ (1,1,1)

y2++
−→

x=y2
−→ (2,1,2)

IA169 System Verification and Assurance – 05 str. 5/36

Properties of Parallel Programs

Observation

Specific timing of events related to interaction of components
is a form of (part of) input.

Asynchronous parallel system can be viewed as reactive as
there are unknown inputs at the time of execution.

Consequence

For reactive (hence parallel) systems, the intended
behaviour cannot be specified using Hoare triples.

IA169 System Verification and Assurance – 05 str. 6/36

Properties of Parallel/Reactive Programs

Examples of Specification

Events A and B happens before event C.

User is not allowed to enter a new value until the system
processes the previous one.

Procedure X cannot be executed simultaneously by processes
P and Q (mutual exclusion).

Every action A is immediately followed by a sequence of
actions B,C and D.

Turning into Formal Language

Use of Modal and Temporal Logics.

Amir Pnueli, 1977

IA169 System Verification and Assurance – 05 str. 7/36

Deductive Verification for Modal and Temporal Logic

Assumption

System properties are decsribed formally using formulae of
some temporal logic.

Deductive Verification

Approaches similar to the Hoare system exist for temporal
logic formulae, however, they have never been widely used.

Incomposability of meaning functions is difficult to bypass.

Model checking

Alternative way of formal verification of systems.

Based on the state-space exploration.

Allows for specification to be given with formulae of some
temporal logic.

IA169 System Verification and Assurance – 05 str. 8/36

Section

Model Checking

IA169 System Verification and Assurance – 05 str. 9/36

Model Checking

Model Checking – Overview

Build a formal model M of the system under verification.

Express specification as a formula ϕ of selected temporal logic.

Decide, if M |= ϕ. That is, if M is a model of formula ϕ.
(Hence the name.)

Optionally

As a side effect of the decision a counterexample may be
produced.

The counterexample is a sequence of states witnessing
violation (in the case the system is erroneous) of the formula.

Model checking (the decision process) can be fully
automated for all finite (and some infinite) models of
systems.

IA169 System Verification and Assurance – 05 str. 10/36

Model Checking – Schema

Requirements

Specification

Property

Formalization

System

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

ErrorModelling

IA169 System Verification and Assurance – 05 str. 11/36

Automated Tools for Model Checking

Model Checkers

Software tools that can decide validity of a formula over a
model of system under verification.

SPIN, UppAal, SMV, Prism, DIVINE . . .

Modelling Languages

Processes described as extended finite state machines.

Extension allows to use shared or local variables and guard
execution of a transition with a Boolean expression.

Optionally, some transitions may be synchronised with
transitions of other finite state machines/processes.

IA169 System Verification and Assurance – 05 str. 12/36

Section

Modelling and Formalisation of Verified Systems

IA169 System Verification and Assurance – 05 str. 13/36

Atomic Proposition

Reminder

System can be viewed as a set of states that are walked along
by executing instructions of the program.

State = valuation of modelled variables.

Atomic Propositions

Basic statements describing qualities of individual states, for
example: max(x , y) ≥ 3.

Validity of atomic proposition for a given state must be
decidable with information merely encoded by the state.

Amount of observable events and facts depends on amount of
abstraction used during the system modelling.

IA169 System Verification and Assurance – 05 str. 14/36

Kripke Structure

Kripke Structure

Let AP be a set of atomic propositions.

Kripke structure is a quadruple (S,T , I, s0), where

S is a (finite) set of states,
T ⊆ S × S is a transition relation,
I : S → 2AP is an interpretation of AP.
s0 ∈ S is an initial state.

Kripke Transition System

Let Act be a set of instructions executable by the program.

Kripke structure can be extended with transition labelling to
form a Kripke Transitions System.

Kripke Transition System is a five-tuple (S,T , I, s0,L), where

(S,T , I, s0) is Kripke Structure,
L : T → Act is labelling function.

IA169 System Verification and Assurance – 05 str. 15/36

Kripke Structure – Example

Kripke Structure

P

P,S,B

P,S,C

Beer

Coke

Payment Choice

AP={P – Paid, S – Served, C – Coke, B – Beer}

IA169 System Verification and Assurance – 05 str. 16/36

Kripke Structure – Example

Kripke Transition System

P

P,S,B

P,S,C

Takes Beer

Takes Coke

Chooses Coke

Chooses BeerGives Coin

Beer

Coke

Payment Choice

AP={P – Paid, S – Served, C – Coke, B – Beer}

IA169 System Verification and Assurance – 05 str. 16/36

System Run

Run

Maximal path (such that it cannot be extended) in the graph
induced by Kripke Structure starting at the initial state.

Let M = (S,T , I, s0) be a Kripke structure. Run is a sequence
of states π = s0, s1, s2, . . . such that ∀i ∈ N0.(si , si+1) ∈ T .

Finite Paths and Runs

Some finite path π = s0, s1, s2, . . . , sk cannot be extended if
∄sk+1 ∈ S.(sk , sk+1) ∈ T .

Technically, we will turn maximal finite path into infinite by
repeating the very last state.

Maximal path s0, . . . , sk will be understood as infinite run
s0, . . . , sk , sk , sk ,

IA169 System Verification and Assurance – 05 str. 17/36

Implicit and Explicit System Description

Observation

Usually, Kripke structure that captures system behaviour is not
given by full enumeration of states and transitions (explicitly),
but it is given by the program source code (implicitly).

Implicit description tends to be exponentially more succinct.

State-Space Generation

Computation of explicit representation from the implicit one.

Interpretation of implicit representation must be formally
precise.

Practise

Programming languages do not have precise formal semantics.

Model checkers often build on top of modelling languages.

IA169 System Verification and Assurance – 05 str. 18/36

An Example of Modelling Language – DVE

Finite Automaton

States (Locations)
Initial state
Transitions
(Accepting states)

Transitions Extended with

Guards
Synchronisation and
Value Passing
Effect (Assignment)

Local Variables

integer, byte

channel

p1

p4

p2

p3
x=

=
b

b=
0,

 x
=

0

sync c?x

b=b+1

b=
b+

1
Process B

byte b,x;

IA169 System Verification and Assurance – 05 str. 19/36

Example of System Described in DVE Language

channel {byte} c[0];

process A {
byte a;
state q1,q2,q3;
init q1;
trans
q1→q2 { effect a=a+1; },
q2→q3 { effect a=a+1; },
q3→q1 { sync c!a; effect a=0; };
}

process B {
byte b,x;
state p1,p2,p3,p4;
init p1;
trans
p1→p2 { effect b=b+1; },
p2→p3 { effect b=b+1; },
p3→p4 { sync c?x; },
p4→p1 { guard x==b; effect b=0, x=0; };
}

system async;

IA169 System Verification and Assurance – 05 str. 20/36

Semantics Shown By Interpretation

State: []; A:[q1, a:0]; B:[p1, b:0, x:0]
0 〈0.0〉: q1 → q2 { effect a = a+1; }
1 〈1.0〉: p1 → p2 { effect b = b+1; }
Command:1
—————————————————————
State: []; A:[q1, a:0]; B:[p2, b:1, x:0]
0 〈0.0〉: q1 → q2 { effect a = a+1; }
1 〈1.1〉: p2 → p3 { effect b = b+1; }
Command:1
—————————————————————
State: []; A:[q1, a:0]; B:[p3, b:2, x:0]
0 〈0.0〉: q1 → q2 { effect a = a+1; }
Command:0
—————————————————————
State: []; A:[q2, a:1]; B:[p3, b:2, x:0]
0 〈0.1〉: q2 → q3 { effect a = a+1; }
Command:0
—————————————————————
State: []; A:[q3, a:2]; B:[p3, b:2, x:0]
0 〈0.2&1.2〉: q3 → q1 { sync c!a; effect a = 0; }

p3 → p4 { sync c?x; }
Command:0
—————————————————————
State: []; A:[q1, a:0]; B:[p4, b:2, x:2]

IA169 System Verification and Assurance – 05 str. 21/36

Section

Formalising System Properties

IA169 System Verification and Assurance – 05 str. 22/36

Specification as Languages of Infinite Words

Problem

How to formally describe properties of a single run?

How to mechanically check for their satisfaction?

Solution

Employ finite automaton as a mechanical observer of run.

Runs are infinite.

Finite automata for infinite words (ω-regular languages).

Büchi acceptance condition – automaton accepts a word if it
passes through an accepting state infinitely many often.

IA169 System Verification and Assurance – 05 str. 23/36

Automata over infinite words

Büchi automata

Büchi automaton is a tuple A = (Σ,S, s, δ,F), where

Σ is a finite set of symbols,
S is a finite set f states,
s ∈ S is an initial state,
δ : S × Σ → 2S is transition relation, and
F ⊆ S is a set of accepting states.

Language accepted by a Büchi automaton

Run ρ of automaton A over infinite word w = a1a2 . . . is a
sequence of states ρ = s0, s1, . . . such that s0 ≡ s and
∀i : si ∈ δ(si−1, ai).

inf (ρ) – Set of states that appear infinitely many time in ρ.

Run ρ is accepting if and only if inf (ρ) ∩ F 6= ∅.

Language accepted with an automaton A is a set of all words
for which an accepting run exists. Denoted as L(A).

IA169 System Verification and Assurance – 05 str. 24/36

Shortcuts in Transition Guards

Observation

Let AP={X,Y,Z}.

Transition labelled with {X} denotes that X must hold true
upon execution of the transition, while Y and Z are false.

If we want to express that X is true, Z is false, and for Y we
do not care, we have to create two transitions labelled with
{X} and {X ,Y }.

APs as Boolean Formulae

Transitions between the two same states may be combined
and labelled with a Boolean formula over atomic propositions.

Example

Transitions {X}, {Y}, {X,Y}, {X,Z}, {Y,Z} a {X,Y,Z} can be
combined into a single one labelled with X ∨ Y .

If there are no restrictions upon execution of the transition, it
may be labelled with true ≡ X ∨ ¬X .

IA169 System Verification and Assurance – 05 str. 25/36

Task: Express with a Büchi automaton

System

Vending machine as seen before.

Σ = 2{P,S,C ,B},

Paid = {A ∈ Σ | P ∈ A}, Served = {A ∈ Σ | S ∈ A}, . . .

Express the following properties

Vending machine serves at least one drink.

Vending machine serves at least one coke.

Vending machine serves infinitely many drinks.

Vending machine serves infinitely many beers.

Vending machine does not serve a drink without being paid.

After being paid, vending machine always serve a drink.

IA169 System Verification and Assurance – 05 str. 26/36

Section

Linear Temporal Logic

IA169 System Verification and Assurance – 05 str. 27/36

Linear Temporal Logic (LTL) Informally

Formula ϕ

Is evaluated on top of a single run of Kripke structure.

Express validity of APs in the states along the given run.

Temporal Operators of LTL

F ϕ — ϕ holds true eventually (Future).

G ϕ — ϕ holds true all the time (Globally).

ϕU ψ — ϕ holds true until eventually ψ holds true (Until).

X ϕ — ϕ is valid after execution of one transition (Next).

ϕR ψ — ψ holds true until ϕ ∧ ψ holds true (Release).

ϕW ψ — until, but ψ may never become true (Weak Until).

IA169 System Verification and Assurance – 05 str. 28/36

Graphical Representation of LTL Temporal Operators

X ϕ : •−→
ϕ
•−→•−→•−→•−→• · · ·

ϕU ψ :
ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ψ
•−→• · · ·

F ϕ : •−→•−→•−→•−→
ϕ
•−→• · · ·

G ϕ :
ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
• · · ·

ϕR ψ :
ψ
•−→

ψ
•−→

ψ
•−→

ψ
•−→

ϕ∧ψ
• −→• · · · or

ψ
•−→

ψ
•−→

ψ
•−→

ψ
•−→

ψ
•−→

ψ
• · · ·

ϕW ψ :
ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ψ
•−→• · · · or

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
• · · ·

IA169 System Verification and Assurance – 05 str. 29/36

Syntax of LTL

Let AP be a set of atomic propositions.

If p ∈ AP, then p is an LTL formula.

If ϕ is an LTL formula, then ¬ϕ is an LTL formula.

If ϕ and ψ are LTL formulae, then ϕ ∨ ψ is an LTL formula.

If ϕ is an LTL formula, then X ϕ is an LTL formula.

If ϕ and ψ are LTL formulae, then ϕU ψ is an LTL formula.

Alternatively

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕU ϕ

IA169 System Verification and Assurance – 05 str. 30/36

Syntactic shortcuts

Propositional Logic

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ

ϕ ⇔ ψ ≡ (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)

Temporal operators

F ϕ ≡ true U ϕ

G ϕ ≡ ¬F ¬ϕ

ϕR ψ ≡ ¬(¬ϕU ¬ψ)

ϕW ψ ≡ ϕU ψ ∨ G ϕ

Alternative syntax

Fϕ ≡ ⋄ϕ

Gϕ ≡ �ϕ

Xϕ ≡ ◦ϕ
IA169 System Verification and Assurance – 05 str. 31/36

Models of LTL Formulae

Model of an LTL formula

Let AP be a set of atomic propositions.

Model of an LTL formula is a run π of Kripke structure.

Notation

Let π = s0, s1, s2,

Suffix of run π starting at sk is denoted as
πk = sk , sk+1, sk+2,

K-th state of the run, is referred to as π(k) = sk .

IA169 System Verification and Assurance – 05 str. 32/36

Semantics of LTL

Assumptions

Let AP be a set of atomic propositions.

Let π be a run of Kripke structure M = (S,T , I, s0).

Let ϕ, ψ be syntactically correct LTL formulae.

Let p ∈ AP denote atomic proposition.

Semantics

π |= p iff p ∈ I(π(0))

π |= ¬ϕ iff π 6|= ϕ

π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ

π |= X ϕ iff π1 |= ϕ

π |= ϕU ψ iff ∃k.0 ≤ k, πk |= ψ and

∀i .0 ≤ i < k, πi |= ϕ

IA169 System Verification and Assurance – 05 str. 33/36

Semantics of Other Temporal Operators

π |= F ϕ iff ∃k.k ≥ 0, πk |= ϕ

π |= G ϕ iff ∀k.k ≥ 0, πk |= ϕ

π |= ϕR ψ iff (∃k.0 ≤ k, πk |= ϕ ∧ ψ and

∀i .0 ≤ i < k, πi |= ψ)

or (∀k.k ≥ 0, πk |= ψ)

π |= ϕW ψ iff (∃k.0 ≤ k, πk |= ψ and

∀i .0 ≤ i < k, πi |= ϕ)

or (∀k.k ≥ 0, πk |= ϕ)

IA169 System Verification and Assurance – 05 str. 34/36

LTL Model Checking

Verification Employing LTL

System is viewed as a set of runs.

System is satisfies LTL formula if and only if all system runs
satisfy the formula.

In other words, any run violating the formula is a witness that
the system does not satisfy the formula.

Lemma

If a finite state system does not satisfy an LTL formula then
this may be witnessed with a lasso-shaped run.

Run π is lasso-shaped if π = π1 · (π2)ω, where

π1 = s0, s1, . . . , sk

π2 = sk+1, sk+2, . . . , sk+n, where sk ≡ sk+n.

Note that πω denotes infinite repetition of π.

IA169 System Verification and Assurance – 05 str. 35/36

Homework

Homework

Model Peterson’s mutual exclusion protocol in ProMeLa.

State expected LTL properties of Peterson’s protocol.

Verify them using SPIN model checker.

IA169 System Verification and Assurance – 05 str. 36/36

IA169 System Verification and Assurance

LTL Model Checking
(continued)

Jiří Barnat

Model Checking – Schema

Requirements

Specification

Property

Formalization

System

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

ErrorModelling

IA169 System Verification and Assurance – 06 str. 2/46

Where are we now?

Property Specification

English text.

Formulae of Linear Temporal Logic.

System Description

Source code in programming language.

Source code in modelling language.

Kripke structure representing the state space.

Problem

Kripke structure M

LTL formula ϕ

M |= ϕ ?

IA169 System Verification and Assurance – 06 str. 3/46

Section

Automata-Based Approach to LTL Model Checking

IA169 System Verification and Assurance – 06 str. 4/46

Languages of infinite words

Observation One

System is a set of (infinite) runs.

Also referred to as formal language of infinite words.

Observation Two

Two different runs are equal with respect to an LTL
formula if they agree in the interpretation of atomic
propositions (need not agree in the states).

Let π = s0, s1, . . ., then I(π)
def

⇐⇒ I(s0), I(s1), I(s2),

Observation Three

Every run either satisfies an LTL formula, or not.

Every LTL formula defines a set of satisfying runs.

IA169 System Verification and Assurance – 06 str. 5/46

Reduction to Language Inclusion

Reformulation as Language Problem

Let Σ = 2AP be an alphabet.

Language Lsys of all runs of system M is defined as
follows.

Lsys = {I(π) | π is a run in M}.

Language Lϕ of runs satisfying ϕ is defined as follows.

Lϕ = {I(π) | π |= ϕ}.

Observation
M |= ϕ ⇐⇒ Lsys ⊆ Lϕ

IA169 System Verification and Assurance – 06 str. 6/46

Lsys and Lϕ expressed by Büchi automaton

Theorem

For every LTL formula ϕ we can construct Büchi
automaton Aϕ such that Lϕ = L(Aϕ).

[Vardi and Wolper, 1986]

Theorem

For every Kripke structure M = (S, T , I , s0) we can
construct Büchi automaton Asys such that Lsys = L(Asys).

Construction of Asys

Let AP be a set of atomic propositions.

Then Asys = (S, 2AP , s0, δ, S), where q ∈ δ(p, a) if and
only if (p, q) ∈ T ∧ I(p) = a.

IA169 System Verification and Assurance – 06 str. 7/46

Where we are now?

Property Specification

English text.

Formulae ϕ of Linear Temporal Logic.

Buchi automaton accepting Lϕ.

System Description

Source code in programming language.

Source code in modelling language.

Kripke structure M representing the state space.

Buchi automaton accepting Lsys .

Problem Reformulation

M |= ϕ ⇐⇒ Lsys ⊆ Lϕ

IA169 System Verification and Assurance – 06 str. 8/46

Reduction to Büchi Emptiness Problem

Notation

co−L denotes complement of L with respect to ΣAP .

Lemma

co−L(Aϕ) = L(A¬ϕ) for every LTL formula ϕ.

Reduction of M |= ϕ to the emptiness of L(Asys × A¬ϕ)

M |= ϕ ⇐⇒ Lsys ⊆ Lϕ

M |= ϕ ⇐⇒ L(Asys) ⊆ L(Aϕ)

M |= ϕ ⇐⇒ L(Asys) ∩ co−L(Aϕ) = ∅

M |= ϕ ⇐⇒ L(Asys) ∩ L(A¬ϕ) = ∅

M |= ϕ ⇐⇒ L(Asys × A¬ϕ) = ∅

IA169 System Verification and Assurance – 06 str. 9/46

Synchronous Product of Büchi Automata

Theorem

Let A = (SA, Σ, sA, δA, FA) and B = (SB, Σ, sB, δB, FB) be
Büchi automata over the same alphabet Σ. Then we can
construct Büchi automaton A × B such that
L(A × B) = L(A) ∩ L(B).

Construction of A × B

A × B =
(SA × SB × {0, 1}, Σ, (sA, sB, 0), δA×B, FA × SB × {0})
(p′, q′, j) ∈ δA×B((p, q, i), a) for all

p′ ∈ δA(p, a)
q′ ∈ δB(q, a)
j = (i + 1) mod 2 if (i = 0 ∧ p ∈ FA) ∨ (i = 1 ∧ q ∈ FB)
j = i otherwise

IA169 System Verification and Assurance – 06 str. 10/46

Synchronous Product of Büchi Automata – Simplification

Observation

For the purpose of LTL model checking, we do not need
general synchronous product of Büchi automata, since
Büchi automaton Asys is constructed in such a way that
FA = SA, i.e. it has all states accepting.

For such a special case the construction of product
automata can be significantly simplified.

Construction of A × B when FA = SA

A × B = (SA × SB, Σ, (sA, sB), δA×B, SA × FB)
(p′, q′) ∈ δA×B((p, q), a) for all

p′ ∈ δA(p, a)
q′ ∈ δB(q, a)

IA169 System Verification and Assurance – 06 str. 11/46

Reduction to Accepting Cycle Detection

Observation

Any finite automaton may visit accepting state infinitely
many times only if it contains a cycle through that
accepting state.

Decision Procedure for M |= ϕ?

Build a product automaton (Asys × A¬ϕ).

Check the automaton for presence of an accepting cycle.

If there is a reachable accepting cycle then M 6|= ϕ.

Otherwise M |= ϕ.

IA169 System Verification and Assurance – 06 str. 12/46

Section

Detection of Accepting Cycles

IA169 System Verification and Assurance – 06 str. 13/46

Detection of Accepting Cycles

Reachability in Directed Graph

Depth-first or breadth-first search algorithm.

O(|V | + |E |).

Algorithmic Solution to Accepting Cycle Detection

Compute the set of accepting states in time O(|V | + |E |).

Detect self-reachability for every accepting state in
O(|F |(|V | + |E |)).

Overall time O(|V | + |E | + |F |(|V | + |E |)).

Can we do better?

Yes, with Nested DFS algorithm in O(|V | + |E |).

IA169 System Verification and Assurance – 06 str. 14/46

Depth-First Search Procedure

proc Reachable(V ,E,v0)

Visited = ∅
DFS(v0)

return (Visited)

end

proc DFS(vertex)

if vertex 6∈ Visited

then /∗ Visits vertex ∗/

Visited := Visited ∪ {vertex}

foreach { v | (vertex,v)∈ E } do

DFS(v)

od

/∗ Backtracks from vertex ∗/
fi

IA169 System Verification and Assurance – 06 str. 15/46

Colour Notation in DFS

Observation

When running DFS on a graph all vertices can be
classified into one of the three following categories
(denoted with colours).

Colour Notation for Vertices

White vertex – Has not been visited yet.

Gray vertex - Visited, but yet not backtracked.

Black vertex - Visited and backtracked.

Recursion Stack

Gray vertices form a path from the initial vertex to the
vertex that is currently processed by the outer procedure.

IA169 System Verification and Assurance – 06 str. 16/46

Properties of DFS, G = (V , E) a v0 ∈ V

Observation
If two distinct vertices v1, v2 satisfy that

(v0, v1) ∈ E∗,
(v1, v1) 6∈ E+,
(v1, v2) ∈ E+.

Then procedure DFS(v0) backtracks from vertex v2 before
it backtracks from vertex v1.

DFS post-order

If (v , v) 6∈ E + and (v0, v) ∈ E ∗, then upon the
termination of sub-procedure DFS(v), called within
procedure DFS(v0), all vertices u such that (v , u) ∈ E +

are visited and backtracked.

IA169 System Verification and Assurance – 06 str. 17/46

Detection of Accepting Cycles in O(|V | + |E |)

Observation

If a sub-graph reachable from a given accepting vertex
does not contain accepting cycle, then no accepting cycle
starting in an accepting state outside the sub-graph can
reach the sub-graph.

The Key Idea

Execute the inner procedures in a bottom-up manner.

The inner procedures are called in the same order in which
the outer procedure backtracks from accepting states, i.e.
the ordering of calls follows a DFS post-order.

IA169 System Verification and Assurance – 06 str. 18/46

Detection of Accepting Cycles in O(|V | + |E |)

proc Detection_of_accepting_cycles

Visited := ∅
DFS(v0)

end

proc DFS(vertex)

if (vertex) 6∈ Visited

then Visited := Visited ∪ {vertex}

foreach {s | (vertex,s) ∈ E} do

DFS(s)

od

if IsAccepting(vertex)

then DetectCycle(vertex)

fi

fi

end

IA169 System Verification and Assurance – 06 str. 19/46

Detection of Accepting Cycles in O(|V | + |E |)

Assumption On Early Termination

The inner procedure reports the accepting cycle and
terminates the whole algorithm if called for an accepting
vertex that lies on an accepting cycle.

Consequences

If the inner procedure called for an accepting vertex v

reports no accepting cycle, then there is no accepting
cycle in the graph reachable from vertex v .

IA169 System Verification and Assurance – 06 str. 20/46

Detection of Accepting Cycles in O(|V | + |E |)

Linear Complexity of Nested DFS Algorithm

Employing DFS post-order it follows that vertices that
have been visited by previous invocation of inner
procedure may be safely skipped in any later invocation of
the inner procedure.

O(|V | + |E |) Algorithm

1) Nested procedures are called in DFS post-order as given
by the outer procedure, and are limited to vertices not yet
visited by inner procedure.

2) All vertices are visited at most twice.

IA169 System Verification and Assurance – 06 str. 21/46

Detecting Cycles in Inner Procedures

Theorem

If the immediate successor to be processed by an inner
procedure is grey (on the stack of the outer procedure),
then the presence of an accepting cycle is guaranteed.

Application

It is enough to reach a vertex on the stack of the outer
procedure in the inner procedure in order to report the
presence of an accepting cycle.

IA169 System Verification and Assurance – 06 str. 22/46

O(|V | + |E |) Algorithm

proc Detection_of_accepting_cycles

Visited := Nested := in_stack := ∅
DFS(v0)

Exit("Not Present")

end

proc DFS(vertex)

if (vertex) 6∈ Visited

then Visited := Visited ∪ {vertex}

in_stack := in_stack ∪ {vertex}

foreach {s | (vertex,s) ∈ E} do

DFS(s)

od

if IsAccepting(vertex)

then DetectCycle(vertex)

fi

in_stack := in_stack \ {vertex}

fi

end

proc DetectCycle (vertex)

if vertex 6∈ Nested

then Nested := Nested ∪ {vertex}

foreach {s | (vertex,s) ∈ E} do

if s ∈ in_stack

then WriteOut(in_stack)

Exit("Present")

else DetectCycle(s)

fi

of

fi

end

IA169 System Verification and Assurance – 06 str. 23/46

Time and Space Complexity

Outer Procedure

Time: O(|V | + |E |)

Space: O(|V |)

Inner Procedures

Time (overall): O(|V | + |E |)

Space: O(|V |)

Complexity

Time: O(|V | + |E | + |V | + |E |) = O(|V | + |E |)

Space: O(|V | + |V |) = O(|V |)

IA169 System Verification and Assurance – 06 str. 24/46

Nested DFS – Example

IA169 System Verification and Assurance – 06 str. 25/46

Section

Classification of Büchi Automata

IA169 System Verification and Assurance – 06 str. 26/46

Sub-Classes of Büchi Automata

Terminal Büchi Automata

All accepting cycles are self-loops on accepting states
labelled with true.

Weak Büchi Automata

Every strongly connected component of the automaton is
composed either of accepting states, or of non-accepting
states.

IA169 System Verification and Assurance – 06 str. 27/46

Impact on Verification Procedure

Automaton A¬ϕ

For a number of LTL formulae ϕ is A¬ϕ terminal or weak.

A¬ϕ is typically quite small.

Type of A¬ϕ can be pre-computed prior verification.
Types of components of A¬ϕ

Non-accepting – Contains no accepting cycles.
Strongly accepting – Every cycle is accepting.
Partially accepting – Some cycles are accepting and some are
not.

Product Automaton

The graph to be analysed is a graph of product
automaton AS × A¬ϕ.

Types of components of AS × A¬ϕ are given by the
corresponding components of A¬ϕ.

IA169 System Verification and Assurance – 06 str. 28/46

Impact on Verification Procedure – Terminal BA

A¬ϕ is terminal Büchi automaton

For the proof of existence of accepting cycle it is enough
to proof reachability of any state that is accepting in A¬ϕ

part.

Verification process is reduced to the reachability problem.

„Safety” Properties

Those properties ϕ for which A¬ϕ is a terminal BA.

Typical phrasing: „Something bad never happens.”

Reachability is enough to proof the property.

IA169 System Verification and Assurance – 06 str. 29/46

Impact on Verification Procedure – Weak BA

A¬ϕ is weak Büchi automaton

Contains no partially accepting components.

For the proof of existence of accepting cycle it is enough
to proof existence of reachable cycle in a strongly
accepting component.

Can be detected with a single DFS procedure.

Time-optimal algorithm exists that does not rely on DFS.

„Weak” LTL Properties

Those properties ϕ for which A¬ϕ is a weak BA.

Typically, responsiveness: G (a =⇒ F (b)).

IA169 System Verification and Assurance – 06 str. 30/46

Classification of LTL Properties

Classification

Every LTL formula belongs to one of the following classes:
Reactivity, Recurrence, Persistance, Obligation, Safety, Guarantee

Interesting Relations

Guarantee class properties can be described with a terminal
Büchi automaton.

Persistance, Obligation, and Safety class properties can be
described with a weak Büchi automaton.

Negation in Verification Process (ϕ 7→ A¬ϕ)

ϕ ∈ Safety ⇐⇒ ¬ϕ ∈ Guarantee.

ϕ ∈ Recurrence ⇐⇒ ¬ϕ ∈ Persistance.

IA169 System Verification and Assurance – 06 str. 31/46

Classification of LTL Properties

Guarantee

Obligation

Safety

PersistenceRecurrence

Reactivity
General BA

Weak BA

Terminal BA

IA169 System Verification and Assurance – 06 str. 32/46

Section

Fighting State Space Explosion

IA169 System Verification and Assurance – 06 str. 33/46

State Space Explosion Problem

What is State Space Explosion

System is usually given as a composition of parallel
processes.

Depending on the order of execution of actions of parallel
processes various intermediate states emerge.

The number of reachable states may be up to
exponentially larger than the number of lines of code.

Consequence

Main memory cannot store all states of the product
automaton as they are too many.

Algorithms for accepting cycle detection suffer for lack of
memory.

IA169 System Verification and Assurance – 06 str. 34/46

Some Methods to Fight State Space Explosion

State Compression

Lossless compression.

Lossy compression – Heuristics.

On-The-Fly Verification

Symbolic Representation of State Space

Reduced Number of States the Product Automaton

Introduction of atomic blocks.

Partial order on execution of process actions.

Avoid exploration of symmetric parts.

Parallel and Distributed Verification

IA169 System Verification and Assurance – 06 str. 35/46

On-The-Fly Verification

Observation
Product automaton graph is defined implicitly with:

|F |_init() — Returns initial state of automaton.
|F |_succs(s) — Gives immediate successors of a given state.
|Accepting |(s) — Gives whether a state is accepting or not.

On-The-Fly Verification

Some algorithms may detect the presence of accepting
cycle without the need of complete exploration of the
graph.

Hence, M |= ϕ can be decided without the full
construction of Asys × A¬ϕ.

This is referred to as to on-the-fly verification.

IA169 System Verification and Assurance – 06 str. 36/46

Partial Order Reduction

Example

Consider a system made of processes A and B.

A can do a single action α, while B is a sequence of
actions β, e.g. β1, . . . , βm.

Unreduced State Space:

βm

α α α

β1 β2

βm

α

β1 β2
s

r

Property to be verifed: Reachability of state r .

IA169 System Verification and Assurance – 06 str. 37/46

Partial Order Reduction

Observation

Runs (αβ1β2 . . . βm), (β1αβ2 . . . βm), . . . , (β1β2 . . . βmα)

are equivalent with respect to the property.

It is enough to consider only a representative from the
equivalence class, say, e.g. (β1β2 . . . βmα).

βm

α α α

β1 β2

βm

α

β1 β2
s

r

The representative is obtained by postponing of action α.

IA169 System Verification and Assurance – 06 str. 38/46

Partial Order Reduction

Reduction Principle

Do not consider all immediate successor during state
space exploration, but pick carefully only some of them.

Some states are never generated, which results in a
smaller state space graph.

Technical Realisation

To pick correct but optimal subset of successors is as
difficult as to generate the whole state space. Hence,
heuristics are used.

The reduced state space must contain an accepting cycle
if and only if the unreduced state space does so.

LTL formula must not use X operator (subclass of LTL).

IA169 System Verification and Assurance – 06 str. 39/46

Distributed and Parallel Verification

Principle

Employ aggregate power of multiple CPUs.

Increased memory and computing power.

Problem of Nested DFS

Typical implementation relies on hashing mechanism,
hence, the main memory is accessed extremely randomly.
Should memory demands exceeds the amount of available
memory, thrashing occurs.

Mimicking serial Nested DFS algorithm in a
distributed-memory setting is extremely slow.
(Token-based approach).

It unknown whether the DFS post-order can be computed
by a time-optimal scale-able parallel algorithm (Still an
open problem.)

IA169 System Verification and Assurance – 06 str. 40/46

Parallel Algorithms for Distributed-Memory Setting

Observation

Instead of DFS other graph procedures are used.

Tasks such as breadth-first search, or value propagation
can be efficiently computed in parallel.

Parallel algorithms do not exhibit optimal complexity.

Complexity Optimal On-The-Fly

Nested DFS O(V+E) Yes Yes

OWCTY

general Büchi automata O(V.(V+E)) No No

weak Büchi automata O(V+E) Yes No

MAP O(V.V.(V+E)) No Partially

OWCTY+MAP

general Büchi automata O(V.(V+E)) No Partially

weak Büchi automata O(V+E) Yes Partially

IA169 System Verification and Assurance – 06 str. 41/46

Section

Model Checking – Summary

IA169 System Verification and Assurance – 06 str. 42/46

Decision Procedure and State Space Explosion

Properties Validity

Property to be verified may be violated by a single
particular (even extremely unlikely) run of the system
under inspection.

The decision procedure relies on exploration of state space
graph of the system.

State Space Explosion

Unless thee are other reasons, all system runs have to be
considered.

The number of states, that system can reach is up to
exponentially larger than the size of the system
description.

Reasons: Data explosion, asynchronous parallelism.

IA169 System Verification and Assurance – 06 str. 43/46

Advantages of Model Checking

General Technique

Applicable to Hardware, Software, Embedded Systems,
Model-Based Development, . . .

Mathematically Rigorous Precision

The decision procedure results with M |= ϕ, if and only
if, it is the case.

Tool for Model Checking – Model Checkers

The so called "Push-Button" Verification.

No human participation in the decision process.

Provides users with witnesses and counterexamples.

IA169 System Verification and Assurance – 06 str. 44/46

Disadvantages of Model Checking

Not Suitable for Everything
Not suitable to show that a program for computing
factorial really computes n! for a given n.
Though it is perfectly fine to check that for a value of 5 it
always returns the value of 120.

Often Relies on Modelling
Need for model construction.
Validity of a formula is guaranteed for the model, not the
modelled system.

Size of the State Space
Applicable mostly to system with finite state space.
Due to state space explosion, practical applicability is
limited.

Verifies Only What Has Been Specified
Issues not covered with formulae need not be discovered.

IA169 System Verification and Assurance – 06 str. 45/46

Practicals and Homework – 06

Homework

Analysis with DIVINE model checker on a more complex
example (some homework from previous course on secure
coding).

IA169 System Verification and Assurance – 06 str. 46/46

IA169 System Verification and Assurance

CTL Model Checking

Jiří Barnat

Liner vs. Branching Time

Pnueli, 1977

System is viewed as a set of state sequences — Runs.

System properties are given as properties of runs,

... and can be described with a linear-time logic.

Clarke & Emerson, 1980

System is viewed as a branching structure of possible
executions from individual system states — Computation
Tree.

System properties are given as properties of the tree,

... and can be described with a branching-time logic.

IA169 System Verification and Assurance – 07 str. 2/34

System and Computation Tree

1 2

1 1 1 1

2 2 2 2

2 2 2 2

IA169 System Verification and Assurance – 07 str. 3/34

Section

Computation Tree Logic (CTL)

IA169 System Verification and Assurance – 07 str. 4/34

CTL Informally

Possible Future Computations

For a given node of a computation tree, the sub-tree rooted in
the given node describes all possible runs the system can still
take.

Every such a run is possible future computation.

CTL Formulae Allow For

Specification of state qualities with atomic propositions.

Quantify over possible future computations.

Restrict the set of possible future computations with
(quantified) LTL operators.

Example

ϕ ≡ EF (a)

It is possible to take a future computation such that a will
hold true in the computation eventually.

IA169 System Verification and Assurance – 07 str. 5/34

Syntax of CTL

Let AP by a set of atomic propositions.

If p ∈ AP, then p is a CTL formula.

If ϕ is a CTL formula, then ¬ϕ is a CTL formula.

If ϕ and ψ are CTL formulae, then ϕ ∨ ψ is a CTL formula.

If ϕ is a CTL formula, then EX ϕ is a CTL formula.

If ϕ and ψ are CTL formulae, then E [ϕU ψ] is a CTL formula.

If ϕ and ψ are CTL formulae, then A[ϕU ψ] is a CTL formula.

Alternatively (Backus-Naur Form)

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX ϕ | E [ϕU ϕ] | A[ϕU ϕ]

IA169 System Verification and Assurance – 07 str. 6/34

Syntactic Shortcuts

Already Known

The standard shortcuts from the propositional logic.

Syntactic shortcuts from LTL

F ϕ ≡ true U ϕ

G ϕ ≡ ¬F ¬ϕ

Deduced CTL Operators

EF ϕ ≡ E [true U ϕ]

AF ϕ ≡ A[true U ϕ]

EG ϕ ≡ ¬AF ¬ϕ

AG ϕ ≡ ¬EF ¬ϕ

AX ϕ ≡ ¬EX ¬ϕ

IA169 System Verification and Assurance – 07 str. 7/34

Models of CTL formulae

Model of a CTL formula

Let AP be a set of atomic propositions.

Model of a CTL formula is a state s ∈ S of Kripke structure
M = (S,T , I, s0).

Reminder

Run of a Kripke structure is maximal path starting at the
initial state of the structure.

Finite maximal paths are viewed as infinite runs due to infinite
repetition of the last state on the path.

Notation

Let s ∈ S be a state of Kripke structure M = (S,T , I, s0).

PM(s) = {π | π is a run initiated at state s}

IA169 System Verification and Assurance – 07 str. 8/34

Semantics of CTL

Assumptions

Let AP be a set of atomic propositions.

Let p ∈ AP be an atomic proposition.

Let s ∈ S be a state of Kripke structure M = (S,T , I, s0).

Let ϕ, ψ denote syntactically correct CTL formulae.

Semantics

s |= p iff p ∈ I(s)

s |= ¬ϕ iff ¬(s |= ϕ)

s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

s |= EX ϕ iff ∃π ∈ PM(s).π(1) |= ϕ

s |= E [ϕU ψ] iff ∃π ∈ PM(s).(∃k ≥ 0.(π(k) |= ψ and

∀0 ≤ i < k.π(i) |= ϕ))

s |= A[ϕU ψ] iff ∀π ∈ PM(s).(∃k ≥ 0.(π(k) |= ψ and

∀0 ≤ i < k.π(i) |= ϕ))

IA169 System Verification and Assurance – 07 str. 9/34

Task

Atomic Propositions

AP={a, b,Req,Ack,Restart}

Express with CTL Formulae

A state where a is true, but b is not, is reachable.

Whenever system receives a request Req, it generates
acknowledgement Ack eventually.

In every run there are infinitely many b’s.

There is always an option to reset the system (reach state
Restart).

IA169 System Verification and Assurance – 07 str. 10/34

Section

Model Checking CTL

IA169 System Verification and Assurance – 07 str. 11/34

Problem Statements

Model Checking CTL

Let M = (S,T , I, s0) be a Kripke structure.

Let ϕ be a CTL formula.

Does initial state of M satisfies ϕ?

Alternatively

Let M = (S,T , I, s0) be a Kripke structure.

Let ϕ be a CTL formula.

Compute a set of states of M satisfying ϕ.

Above mentioned approaches are also referred to as to

Local model checking problem — M, s0 |= ϕ.

Global model checking problem — {s | M, s |= ϕ}.

IA169 System Verification and Assurance – 07 str. 12/34

Algorithm for CTL Model Checking — Idea

Observation

If the validity of formulae ϕ and ψ is known for all states, it is
easy to deduce validity of formulae ¬ϕ, ϕ ∨ ψ, EX ϕ,

CTL Model Checking – Sketch

Let M = (S,T , I) be a Kripke structure and ϕ a CTL
Formula.

A labelling function label : S → 22ϕ

is computed such that it
gives validity of all sub-formulae of ϕ for all states of Kripke
structure M.

Obviously, s0 |= ϕ ⇐⇒ ϕ ∈ label(s0).

Function label is computed gradually for individual
sub-formulae of ϕ, starting with the simplest sub-formula and
proceeding towards more complex sub-formulae, ending with
ϕ itself.

IA169 System Verification and Assurance – 07 str. 13/34

Sub-formulae of a CTL Formula

Sub-formulae of formula ϕ

Let ϕ be a CTL formula.

The set of all sub-formulae of formula ϕ is denoted by 2ϕ.

2ϕ is defined inductively according to the structure of ϕ.

Inductive Definition of 2ϕ

1) ϕ ∈ 2ϕ (ϕ is a sub-formula of ϕ)

2) If η ∈ 2ϕ and

η ≡ ¬ψ, then ψ ∈ 2ϕ

η ≡ ψ1 ∨ ψ2, then ψ1, ψ2 ∈ 2ϕ

η ≡ EX ψ, then ψ ∈ 2ϕ

η ≡ E [ψ1 U ψ2], then ψ1, ψ2 ∈ 2ϕ

η ≡ A[ψ1 U ψ2], then ψ1, ψ2 ∈ 2ϕ

3) Nothing else.

IA169 System Verification and Assurance – 07 str. 14/34

Equivalent Existential Form of CTL

Observation

Is is easier to proof validity of existential quantified modal
operators than validity of universally quantified ones.

For the purpose of verification of CTL-specified properties, it
is possible to express the CTL formula in an equivalently
expressive existential form of CTL.

Equivalent CTL Syntax

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX ϕ | E [ϕU ϕ] | EG ϕ

Task

Express formula EG ϕ in the original syntax of CTL.

Give accordingly modified definition of the set of sub-formulae
of ϕ for the above mentioned equivalent syntax.

IA169 System Verification and Assurance – 07 str. 15/34

Algorithm for CTL Model-Checking

INPUT: Kripke structure M = (S,T , I, s0), CTL formula ϕ.
OUTPUT: True, if s0 |= ϕ; False otherwise.

proc CTLMC(ϕ,M)
label := I

Solved := AP ∩ 2ϕ

while ϕ 6∈ Solved do
foreach (η ∈ {¬ψ1, ψ1 ∨ ψ2,EX ψ1,E [ψ1 U ψ2],EG ψ1 | ψ1, ψ2 ∈ Solved})do

if (η ∈ 2ϕ and η 6∈ Solved)
then label := updateLabel(η, label ,M)

Solved := Solved ∪ {η}
fi

od
od
return (ϕ ∈ label(s0))

end

IA169 System Verification and Assurance – 07 str. 16/34

Algorithm for CTL Model-Checking updateLabel()

proc updateLabel(η, label ,M)
if (η ≡ E [ψ1 U ψ2])

then return checkEU(ψ1, ψ2, label ,M)
fi
if (η ≡ EG ψ)

then return checkEG(ψ, label ,M)
fi
foreach (s ∈ S)do

if (η ≡ ¬ψ and ψ 6∈ label(s)) or
(η ≡ ψ1 ∨ ψ2 and (ψ1 ∈ label(s) ∨ ψ2 ∈ label(s))) or
(η ≡ EX ψ and (∃t ∈ {t | (s, t) ∈ T} such that ψ ∈ label(t)))
then label(s) := label(s) ∪ {η}

fi
od
return label

end

IA169 System Verification and Assurance – 07 str. 17/34

Algorithm for CTL Model-Checking E [ψ1 U ψ2]

INPUT: Kripke structure M = (S,T , I),
Labelling function label : S → 2ϕ, correct w.r.t validity of ψ1 and ψ2

OUTPUT: Labelling function label : S → 2ϕ, correct w.r.t E [ψ1 U ψ2]

proc checkEU(ψ1, ψ2, label ,M)
Q := {s | ψ2 ∈ label(s)}
foreach (s ∈ Q)do

label(s) := label(s) ∪ {E [ψ1 U ψ2]}
od
while (Q 6= ∅) do

choose s ∈ Q
Q := Q r {s}
foreach (t ∈ {t | T (t, s)}) do /* all immediate predecessors */

if (E [ψ1 U ψ2] 6∈ label(t) ∧ ψ1 ∈ label(t))
then label(t) := label(t) ∪ {E [ψ1 U ψ2]}

Q := Q ∪ {t}
fi

od
od
return label

end

IA169 System Verification and Assurance – 07 str. 18/34

Strongly Connected Components

Sub-graph

Let G = (V ,E) be a graph, ie. E ⊆ V × V .

Graph G ′ = (V ′,E ′) is called sub-graph of G if it holds that
V ′ ⊆ V and E ′ = E ∩ V ′ × V ′.

Sub-graph C = (V ′,E ′) of G = (V ,E) is called

Strongly Connected Component, if ∀u, v ∈ V ′ it holds that
(u, v) ∈ E ′∗ and (v , u) ∈ E ′∗.

Maximal Strongly Connected Component (SCC), if C is
strongly connected component and for every v ∈ (V r V ′) it
is the case that (V ′ ∪ {v},E ∩ (V ′ ∪ {v} × V ′ ∪ {v})) is not.

Non-trivial SCC, if C is Strongly Connected Component and
E ′ 6= ∅.

IA169 System Verification and Assurance – 07 str. 19/34

Algorithm for CTL Model-Checking EG ψ

INPUT: Kripke structure M = (S,T , I, s0),
Labelling function label : S → 2ϕ, correct w.r.t. ψ

OUTPUT: Labelling function label : S → 2ϕ, correct w.r.t. EG ψ

proc checkEG(ψ, label ,M)
S’ := {s | ψ ∈ label(s)}
SCC := {C | C is non-trivial SCC G ′ = (S ′,T ∩ S ′ × S ′)}
Q :=

⋃
C∈SCC

{s | s ∈ C}
foreach (s ∈ Q)do

label(s) := label(s) ∪ {EG ψ}
od
while Q 6= ∅ do

choose s ∈ Q
Q := Q r {s}
foreach (t ∈ (S ′ ∩ {t | T (t, s)}))do /* all immediate predecessors in S ′ */

if EG ψ 6∈ label(t)
then label(t) := label(t) ∪ {EG ψ}

Q := Q ∪ {t}
fi

od
od

end
IA169 System Verification and Assurance – 07 str. 20/34

Complexity of Algorithm for CTL Model Checking

Observation

Every CTL formula ϕ is made of at most | ϕ | sub-formulae.

Decomposition of every sub-graph of G = (S,T) into SCCs
can be done in time O(| S | + | T |).

Every call to updateLabel terminates in time O(| S | + | T |).

Overall complexity

Algorithm CTLMC exhibits O(| ϕ || S |) space
and O(| ϕ | (| S | + | T |)) time complexity.

IA169 System Verification and Assurance – 07 str. 21/34

Example: Microwave oven AG(Start =⇒ AF (Heat))

IA169 System Verification and Assurance – 07 str. 22/34

Example: Microwave oven AG(Start =⇒ AF (Heat))

Transformation of formula ϕ ≡ AG(Start =⇒ AF (Heat))

AG(Start =⇒ AF (Heat))

AG(¬(Start ∧ ¬AF (Heat)))

AG(¬(Start ∧ EG(¬Heat)))

¬EF (Start ∧ EG(¬Heat))

¬E [true U (Start ∧ EG(¬Heat))]

Validity of sub-formulae [S(ϕ) = {s | s |= ϕ}]

S(Start) = {2, 5, 6, 7}

S(Heat) = {4, 7}

S(¬Heat) = {1, 2, 3, 5, 6}

S(EG(¬Heat)) = {1, 2, 3, 5}

S(Start ∧ EG(¬Heat)) = {2, 5}

S(E [true U (Start ∧ EG(¬Heat))]) = {1, 2, 3, 4, 5, 6, 7}

S(¬E [true U (Start ∧ EG(¬Heat))]) = ∅
IA169 System Verification and Assurance – 07 str. 23/34

Section

CTL∗

IA169 System Verification and Assurance – 07 str. 24/34

CTL∗ as Extension of CTL

Observation

Every use of temporal operator in a formula of CTL must be
immediately preceded with a quantifier, i.e. use of a modal
operator without quantification is not possible.

Logic CTL∗

Branching time logic.

Similar to CTL.

Unlike CTL, allows for standalone use of modal operators.

Example

A[p ∧ X (¬p)] is CTL∗, but is not CTL formula.

IA169 System Verification and Assurance – 07 str. 25/34

Syntax of CTL∗

Types of CTL∗ formulae

Quantifiers E and A are standalone operators in syntax
construction rules. As a result there are two types of formulae
in CTL: path and state formulae.

Application of E and A operators on a path formula (formula
of which model is a run of Kripke structure) results in a state
formula (formula of which model is a state of Kripke
structure)

Syntax of CTL∗

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E ψ

path formula ψ ::= ϕ | ¬ψ | ψ ∨ ψ | X ψ | ψU ψ

IA169 System Verification and Assurance – 07 str. 26/34

Semantics of CTL∗

Assumption

Let AP be a set of atomic propositions, and p ∈ AP.

Let M = (S,T , I) be a Kripke structure.

Let ϕi denote CTL∗ state formulae, and ψi denote CTL∗ state
formulae.

Semantics
M, s |= p iff p ∈ I(s)

M, s |= ¬ϕ1 iff ¬(M, s |= ϕ1)

M, s |= ϕ1 ∨ ϕ2 iff M, s |= ϕ1 or M, s |= ϕ2

M, s |= E ψ1 iff ∃π ∈ PM(s).π |= ψ1

M, π |= ϕ1 iff M, π(0) |= ϕ1

M, π |= ¬ψ1 iff ¬(M, π |= ψ1)

M, π |= ψ1 ∨ ψ2 iff M, π |= ψ1 or M, π |= ψ2

M, π |= X ψ1 iff M, π
1 |= ψ1

M, π |= ψ1 U ψ2 iff ∃k ≥ 0.(M, π
k |= ψ2 and

∀0 ≤ i < k.M, π
i |= ψ1)

IA169 System Verification and Assurance – 07 str. 27/34

Section

Comparison of Expressive Power of

LTL, CTL and CTL∗

IA169 System Verification and Assurance – 07 str. 28/34

Model Unification

Observation

Every LTL formula is a CTL∗ path formula.

Every CTL formula is a CTL∗ state formula.

Model of a path formula is a run of Kripke structure.

Model of a state formula is a state of Kripke structure.

Not very suitable for comparison.

Model Unification

For the purpose of comparison we define how a CTL∗ path
formula is evaluated in a state of Kripke structure.

Let ψ be CTL∗ path formula, then

M, s |= ψ iff M, s |= Aψ

IA169 System Verification and Assurance – 07 str. 29/34

Motivation

Goals

We intend to find out whether there are properties (formulae)
that can be expressed in one of the logic, but cannot be
expressed in another one.

We intend to find out in which logic more properties can be
expressed.

We intend to identify concrete properties, that cannot be
expressed in some other logic, i.e. to find out a formula of
logic L1, for which an equivalent formula of logic L2 does not
exist.

Formula Equivalence

Formulae ϕ and ψ are equivalent if and only if for any possible
Kripke structure M = (S,T , I, s0) and any state s ∈ S it is
true that

M, s |= ϕ iff M, s |= ψ.

IA169 System Verification and Assurance – 07 str. 30/34

Equivalent Expressive Power

Equivalently Expressive

Temporal logic L1 and L2 have the same expressive power, if
for all Kripke structures M = (S,T , I, s0) and states s ∈ S it
holds that

∀ϕ ∈ L1.(∃ψ ∈ L2.(M, s |= ϕ ⇐⇒ M, s |= ψ)) (1)

∧ ∀ψ ∈ L2.(∃ϕ ∈ L1.(M, s |= ϕ ⇐⇒ M, s |= ψ)). (2)

Less Expressiveness

If only statement (1) is valid, then logic L1 is less expressive
than logic L2, and vice versa.

IA169 System Verification and Assurance – 07 str. 31/34

Comparison of LTL, CTL, and CTL∗

Theorem

LTL and CTL are incomparable in expressive power.

1) AG(EF (q)) is a CTL formula that cannot be expressed in LTL.
2) FG(q) is an LTL formula that cannot be expressed in CTL.

Example – Proof Sketch for 1)

Find two different Kripke structures and identify two states
that can be differentiated with CTL formula AG(EF (q)), but
cannot be differentiated with any LTL formula (they generate
the same set of runs).

Example – Intuition behind 2) [proof is too complex]

Show that CTL formula AF (AG(q)) is not equivalent to LTL
formula FG(q).

IA169 System Verification and Assurance – 07 str. 32/34

Comparison of LTL, CTL, and CTL∗

Consequence

CTL∗ is strictly more expressive than LTL.

Every LTL formula is a CTL∗ formula.
CTL∗ formula AG(EFq) is not expressible in LTL.

Consequence 2

CTL∗ is strictly more expressive than CTL.

Every CTL formula is a CTL∗ formula.
CTL∗ formula FG(q) is not expressible in CTL.

Observation

There are properties expressible on both LTL and CTL.

CTL formula A[p U q] is equivalent to LTL formula p U q.

IA169 System Verification and Assurance – 07 str. 33/34

Homework

Homework

Solve The wolf, goat and cabbage problem with NuSMV

Moshe Vardi: Branching vs. Linear Time: Final Showdown

IA169 System Verification and Assurance – 07 str. 34/34

IA169 System Verification and Assurance

Symbolic Representations

Jiří Barnat

State Space Explosion Problem and Model Checking

Requirements

Specification

Property

System

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

ErrorModelingFormalization

IA169 System Verification and Assurance – 08 str. 2/32

State Space Explosion Problem and Model Checking

Verification Failure

Requirements

Specification

Property

System

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

ErrorModelingFormalization

IA169 System Verification and Assurance – 08 str. 2/32

Motivation

Observation

Computation state is given by valuation of state variables.

Every variable has a finite domain, its value may be stored
using a fixed number of bits.

Computation state represented as a bit vector (a1, . . . , an)
of fixed length n.

Set of States

Algorithms for verification store set of states.

Set of state can be viewed as a set of binary vectors.

Set of binary vectors may be described with a Boolean
function.

IA169 System Verification and Assurance – 08 str. 3/32

Boolean Functions

Boolean Functions

These are formulae in propositional logic over a given set
of Boolean variables.

Task

Let system state be given by valuation of four bit
variables (a1, b1, a2, b2).

A state is erroneous if the values of a1 and b1 and values
of a2 and b2 agree.

Describe a set of erroneous states with Boolean function.

Some Possible Solutions

IA169 System Verification and Assurance – 08 str. 4/32

Boolean Functions

Boolean Functions

These are formulae in propositional logic over a given set
of Boolean variables.

Task

Let system state be given by valuation of four bit
variables (a1, b1, a2, b2).

A state is erroneous if the values of a1 and b1 and values
of a2 and b2 agree.

Describe a set of erroneous states with Boolean function.

Some Possible Solutions

(a1 ∧ b1 ∧ a2 ∧ b2) ∨ (a1 ∧ b1 ∧ ¬a2 ∧ ¬b2)∨
(¬a1 ∧ ¬b1 ∧ ¬a2 ∧ ¬b2) ∨ (¬a1 ∧ ¬b1 ∧ a2 ∧ b2)

a1 ⇔ b1 ∧ a2 ⇔ b2
IA169 System Verification and Assurance – 08 str. 4/32

Representation of Boolean Functions

Binary Decision Trees (BDTs)

Directed tree with a single root state.

Every inner node is denoted with a Boolean variable (v)
and lead to exactly two successors referred to as to
(low(v), high(v)).

Every leaf is assigned a binary value, i.e. 0 or 1.

Coding of Boolean Functions with BDTs

Every combination of values of input variables corresponds
to exactly one path from the root of BDT to a leaf.

Values stored at leaves give the the value of the function
for the corresponding input values.

IA169 System Verification and Assurance – 08 str. 5/32

Binary Decision Tree ψ = (a1 ⇔ b1) ∧ (a2 ⇔ b2)

IA169 System Verification and Assurance – 08 str. 6/32

Representation of Boolean Functions

Disadvantage of BDTs

BDTs are uselessly space demanding (contain redundant
information).

Task

Identify isomorphic sub-trees of the BDT from the
previous slide.

Binary Decision Diagrams (BDD)

Acyclic directed graph, of which vertices have output
degree either zero (leaf) or two (inner vertex).

Vertices of BDD have otherwise the same properties as
BDT nodes.

IA169 System Verification and Assurance – 08 str. 7/32

Computing (minimal) BDD

Initialisation

For a given Boolean function take arbitrary BDD or BDT.

Eliminate unreachable vertices
Eliminate duplicate

1) Remove all but one leaves with the same value.
2) All edges incident with eliminated leaves reconnect to the the

remaining leaf with the same value.

Repeat Until Fixpoint

Eliminate duplicate inner vertices.
If there are two inner vertices u, v with the same label such
that low(v) = low(u) a high(v) = high(u), then remove u and
reconnect edges originally leading to u to v .

Eliminate useless tests
Eliminate inner vertex v if low(v) = high(v). Reconnect edges
originally leading to v to low(v).

IA169 System Verification and Assurance – 08 str. 8/32

BDD pro ψ = (a1 ⇔ b1) ∧ (a2 ⇔ b2)

IA169 System Verification and Assurance – 08 str. 9/32

Coding of Boolean Functions with BDDs

Observation

Every vertex v of BDD encodes some Boolean function
Fv(x1, . . . , xn).

Computing Fv(x1, . . . , xn) for values h1, . . . , hn.
If v is a leaf then

Fv (h1, . . . , hn) = 1, if v is labelled with value 1.
Fv (h1, . . . , hn) = 0, if v is labelled with value 0.

If v is an inner vertex then
Fv (h1, . . . , hn) = Flow(v)(h1, . . . , hn), if hi == 0.
Fv (h1, . . . , hn) = Fhigh(v)(h1, . . . , hn), if hi == 1.

IA169 System Verification and Assurance – 08 str. 10/32

Ordering Variables in BDD — OBDD

Observation

Some intermediate representation computed during
minimisation of a BDD are also valid BDDs.

A given Boolean function may be represented with
multiple different BDDs.

Canonical Form for BDD

Minimal BDD computed from a BDD, or BDT with a
fixed ordering on variables in inner vertices is unique.

BDD with a fixed variable ordering is referred to as to
Ordered BDD (OBDD).

Computing Canonical Form

Apply algorithm for minimal BDD.

If performed in a bottom-up manner, obtained in linear
time w.r.t. the size of initial BDT or BDD.

IA169 System Verification and Assurance – 08 str. 11/32

OBDDs for Different Variable Ordering

IA169 System Verification and Assurance – 08 str. 12/32

Restriction Operator for OBDDs

Observation

Every OBDD represents some Boolean function.

Boolean functions can be combined/composed using
unary and binary logic operators such as
¬,∧,∨, =⇒ ,XOR ,

OBDDs can be composed similarly.

Application of Logic Operators on OBDD

Let O and O′ be OBDDs corresponding to functions
f and f ′, respectively.

We will refer to function Apply(O,O′, ⋆), as to function
that computes OBDD that represents result of application
of logic operator ⋆ to functions f and f ′.

IA169 System Verification and Assurance – 08 str. 13/32

Operation of Restriction

Operation of Restriction

Fxi←b(x1, . . . , xn) = F (x1, . . . , xi−1, b, xi+1, . . . , xn)

Produces Boolean function with all but one free variables.

Realisation for OBDD
If root r is denoted with the restricted variable xi , the
resulting OBDD will have new root

low(r) if b = 0
high(r) if b = 1

Any edge leading to a inner vertex t that is denoted with
the restricted variable xi is reconnected to

low(t) if b = 0
high(t) if b = 1

OBDD is minimised (contains unreachable nodes).

IA169 System Verification and Assurance – 08 str. 14/32

Shannon expansion

Shannon expansion

Any binary logic operator can be applied on OBDDs using
Shannon expansion:

F = (¬x ∧ Fx←0) ∨ (x ∧ Fx←1)

If F = f ⋆ f ′, for any binary logic operation ⋆, then

f ⋆ f ′ = (¬x ∧ (fx←0 ⋆ f ′x←0)) ∨ (x ∧ (fx←1 ⋆ f ′x←1))

IA169 System Verification and Assurance – 08 str. 15/32

Algorithm for Application of Binary Operators on OBDDs

Apply(O,O′, ⋆)

Let v , v ′ be root nodes of O,O′, denoted with x , x ′, respectively.

If v and v ′ are leaves denoted with values h and h′, respectively,
then return a leave denoted with h ⋆ h′.

Otherwise, if

x = x ′ then return a new node w denoted with variable x , where

low(w) = Apply(low(v), low(v ′), ⋆)
high(w) = Apply(high(v), high(v ′), ⋆)

x < x ′ then return a new node w denoted with variable x , where

low(w) = Apply(low(v),O′, ⋆)
high(w) = Apply(high(v),O′, ⋆)

x ′ < x then return a new node w denoted with variable x , where

low(w) = Apply(O, low(v), ⋆)
high(w) = Apply(O, high(v), ⋆)

IA169 System Verification and Assurance – 08 str. 16/32

Negation Operation and Emptiness Check

Observation

Let OBDD X encodes function FX , then OBDD Y

encoding negation function ¬FX is created as a copy of
OBDD X in which values of leaves are switched.

Emptiness Check

OBDDs have canonical form.

Canonical OBDD representing an empty set is made of a
single leaf denoted with 0.

Test for a Presence of Set Member (complicated way)

Create an OBDD describing the tested member.

Apply operation ∧ on tested and newly created OBDDs.

Employ emptiness check on the resulting OBDD.

IA169 System Verification and Assurance – 08 str. 17/32

Section

Symbolic Representation of Kripke Structure

IA169 System Verification and Assurance – 08 str. 18/32

Encoding of Transitions of Kripke Structure

Observation

A state of Kripke structure M = (S,T , I) is given by n

binary variables a1, . . . , an.

Every set of states of Kripke structure can be encoded by
an OBDD with n variables.

Similarly, transition relation T ⊆ S × S can be encoded
by Boolean function with 2n variables.

Simplification of OBDD

Edges leading to zero leaf can be omitted.

Non-existence of an edge indicates an edge to zero leaf.

IA169 System Verification and Assurance – 08 str. 19/32

Task

M = ({00, 01, 11}}, {(11, 00), (11, 01), (01, 00)}, I)

11 01

00

T can be encoded as F (a, b, a′, b′)

F (a, b, a′, b′) =
(a∧b ∧¬a′∧b′)∨(a∧b ∧¬a′∧¬b′)∨(¬a∧b ∧¬a′∧¬b′)

Assume variable ordering a < b < a′ < b′ and draw
OBDD for F .

IA169 System Verification and Assurance – 08 str. 20/32

Successors of States

Observation

Assume M = (S,T , I) and OBDDT (a, b, a′, b′).

Let X be a set of states given with OBDDX (a, b).

Using OBDDT and OBDDX , OBDDX ′(a′, b′) representing
set of successors of states in X can be computed, i.e.

X ′ = {v ∈ S | u ∈ X ∧ (u, v) ∈ T}.

IA169 System Verification and Assurance – 08 str. 21/32

Successors of States – Algorithm Idea

Computing OBDDX ′ (intuitively)

OBDDX ′ = Apply(OBDDT ,OBDDX ,∧)

Modify OBDD′X so that every path of it contains vertex
labelled with a′.

In OBDDX ′ erase all vertices labelled with a and b.

Iterate over all a′ vertices, consider them as root and
compute respective minimal OBDDs.

The computed set of OBDDs combine with operation ∨.

Minimise the resulting OBDD.

Rename primed variables to unprimed.

Task

Compute OBDD representing successors of states
{00, 11}.

IA169 System Verification and Assurance – 08 str. 22/32

Predecessors of States

Computing Predecessors (intuitively).

Modify all vertices of OBDDX to be labelled with primed
variables.

OBDDX ′ = Apply(OBDDT ,OBDDX ,∧)

Modify OBDD′X so that every path contains vertex
labelled with a′.

Those a′ that cannot reach leaf labelled with 1 replace
with a new zero leaf.

Other a′ vertices replace with the other leaf.

Remove all primed nodes and old leaves, and minimise
OBDD.

Task

Compute OBDD representing predecessor of state {00}.

IA169 System Verification and Assurance – 08 str. 23/32

Section

Symbolic Approach to Model Checking CTL

IA169 System Verification and Assurance – 08 str. 24/32

Reminder

Observation

If validity of formulae ϕ and ψ is known for all states of
Kripke structure, validity of formulae ¬ϕ, ϕ ∨ ψ, EX ϕ,
etc., can be easily deduced.

Algorithm Idea for Model Checking CTL

Let M = (S,T , I) be a Kripke structure and ϕ a CTL
formula.

Labelling function label : S → 2ϕ is computed, stating
which sub-formulae of ϕ are valid in which states of M.

Obviously, s0 |= ϕ ⇐⇒ ϕ ∈ label(s0).

Function label is computed gradually for every
sub-formula of ϕ starting with the simplest sub-formulae
(atomic propositions) and terminating after computing
the validity of ϕ.

IA169 System Verification and Assurance – 08 str. 25/32

Symbolic Approach

Idea

Set of states in which particular sub-formulae hold can be
efficiently represented with OBDDs.

Computation of label function for more complex
sub-formulae employs manipulation with respective
OBDDs.

Realisation

Set of states represented with OBDDs.

Boolean functions to evaluate atomic proposition form
initial OBDDs.

According to the structure of the verified formula OBDDs
for more complex sub-formulae are computed.

Test membership of initial state of Kripke structure in the
set of states satisfying verified formula.

IA169 System Verification and Assurance – 08 str. 26/32

Atomic Propositions and Logic Operators

Recall Syntax of CTL

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX ϕ | E [ϕU ϕ] | EG ϕ

Computing Set of States Satisfying CTL Formula
Notation

F (ψ) denotes (a function describing) set of states satisfying ψ.
Succ(X) denotes immediate successors of states in the set X .
Pred(X) denotes immediate predecessors of states in the set
X .

Boolean Functions for Atomic Proposition
Atomic propositions describe properties of state variables.
Atomic Propositions can be encoded as Boolean functions.

Computing Boolean Operators ¬ and ∨
F (¬ψ1) = ¬(Fψ1)
F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ)

IA169 System Verification and Assurance – 08 str. 27/32

Temporal operators EX (ϕ), E [ϕU ψ] and EG(ϕ)

Operator EX (ϕ)

F (EX (ϕ)) = Pred(F (ϕ))

Operator E (ϕU ψ)

F (E (ϕU ψ)) = X ,
where X is the least fix-point of recursive rule

X = F (ψ) ∪ (F (ϕ) ∩ EX (X))

Operator EG (ϕ)

F (EG ϕ) = X ,
where X is the greatest fix-point of recursive rule

X = F (ϕ) ∩ EX (X)

IA169 System Verification and Assurance – 08 str. 28/32

Computing Fix-Points of Function f

The Least Fix-Point

proc LFP(f)
X = ∅
Xold = ∅
do

Xold = X

X := f (X)
while (X 6= Xold)

end

The Greatest Fix-Point

proc GFP(f)
X = S

Xold = S

do
Xold = X

X := f (X)
while (X 6= Xold)

end

IA169 System Verification and Assurance – 08 str. 29/32

Section

Model Checking – Summary

IA169 System Verification and Assurance – 08 str. 30/32

Model Checking – Summary

Enumerative × Symbolic Approach

Enumerative – focused on "control-flow"

Symbolic – focused on "data-flow"

Pros w.r.t. Testing

No source-code necessary (can be applied on models).

Suitable for testing of parallel programs.

Pros w.r.t. Static Analysis

Complete for systems with a finite state space.

Verification of temporal properties.

Cons

State space explosion problem.

IA169 System Verification and Assurance – 08 str. 31/32

Practicals and Homework – 08

Homework

Explore Z3 tutorial (rise4fun.com).

IA169 System Verification and Assurance – 08 str. 32/32

IA169 System Verification and Assurance

Bounded Model Checking

Jiří Barnat

Reminder – SAT and SMT

Satisfiability – SAT

Finding a valuation of Boolean variables that makes a
given formula of propositional logic true.

Satisfiability Modulo Theory – SMT

Deciding satisfiability of a first-order formula with
equality, predicates and function symbols that encode one
or more theories.

Typical SMT Theories

Unbounded integer and real arithmetic.

Bounded integer arithmetic (bit-vectors).

Theory of data structures (lists, arrays, . . .).

IA169 System Verification and Assurance – 09 str. 2/31

Reminder – SAT and SMT Solvers

ZZZ aka Z3

Tool developed by Microsoft Research.

WWW interface — http://www.rise4fun.com/Z3

Binary API for use in other tools and applications.

SMT-LIB

Standardised language for SMT queries.

Freely available library with a SMT implementation.

IA169 System Verification and Assurance – 09 str. 3/31

http://www.rise4fun.com/Z3

Reminder – Satisfiability and Validity

Observation

Formula is valid if and only if its negation is not satisfiable.

Consequence

SAT and SMT solvers can be used as tools for proving
validity of formulated statements.

Model Synthesis

SAT solvers not only decide satisfiability of formulas, but
for satisfiable formulas also give the valuation which
makes the formula true.

Unlike theorem provers, they give a "counterexample" in
case the statement to be proven is false.

IA169 System Verification and Assurance – 09 str. 4/31

Section

Checking Safety Properties via SAT Reduction

IA169 System Verification and Assurance – 09 str. 5/31

Bounded Model Checking (BMC)

Hypothesis

If the system contains an error, it can be reproduced with
only a small number of controlled steps.

Method Idea

If we use model checking for error detection, it is sensible
to check whether an error (a violation of specification)
appears within first k steps of execution.

Literature
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu:
Symbolic Model Checking without BDDs. TACAS 1999: 193-207, LNCS
1579.

Henry A. Kautz, Bart Selman: Planning as Satisfiability.Proceedings of
the 10th European conference on Artificial intelligence (ECAI’92):
359-363, 1992, Kluwer.

IA169 System Verification and Assurance – 09 str. 6/31

Reduction of BMC to SAT

Prerequisites

The set of prefixes of length k of all runs of a Kripke
structure M can be encoded by a Boolean formula [M]k .

Violation of a safety property which can be observed
within k steps of the system can be encoded as [¬ϕ]k .

Reduction to SAT

We check the satisfiability of [M]k ∧ [¬ϕ]k .

Satisfiability indicates the existence of a counterexample
of length k .

Unsatisfiability shows non-existence of a counterexample
of length k .

IA169 System Verification and Assurance – 09 str. 7/31

Kripkeho structure as a Boolean formula

Prerequisites

Let M = (S,T , I) be a Kripke structure with initial state
s0 ∈ S.

Arbitrary state s ∈ S can be represented by a bit vector of
size n, that is state s = 〈a0, a1, . . . , an−1〉.

Encoding M with Boolean Formulae

Init(s) – formula which is satisfiable for the valuation of
variables a1, a2, ..., an that describe the state s0.

Trans(s, s ′) – a formula which is satisfiable for a pair of
state vectors s, s ′, iff the valuations
a1, a2, ..., an, a

′
1, a

′
2, ..., a

′
n describe states between which a

transition (s, s ′) ∈ T exists.

IA169 System Verification and Assurance – 09 str. 8/31

Encoding Finite Runs of M

Description of System Runs of Length k

Run of length k consists of k + 1 states s0, s1, . . . , sk .

The set of all runs of size k of the structure M is
designated [M]k and described by the following formula:

[M]k ≡ Init(s0) ∧
k

∧

i=1

Trans(si−1, si)

Example[M]3 ∧ [¬ϕ]3

Init(s0)∧Trans(s0, s1)∧Trans(s1, s2)∧Trans(s2, s3)∧¬ϕ(s3)

IA169 System Verification and Assurance – 09 str. 9/31

Section

Completeness of BMC

IA169 System Verification and Assurance – 09 str. 10/31

Completeness of BMC for Detecting Safety Violations

Problem – Undetected Violation of a Safety Property

The violation is not reachable using a path of length k .

Paths shorter than k are not encoded in [M]k .

Upper Bound on k

If k ≥ d where d is the graph diameter, all possible error
locations are covered.

The diameter of the graph is bounded by 2n, where n is
the number of bits of the state vector.

Solution

Executing BMC iteratively for each k ∈ [0, d].

IA169 System Verification and Assurance – 09 str. 11/31

Automated Detection of Graph Diameter

Facts

Asking the user is unrealistic.

Safe upper bounds are extremely overstated.

We would like the verification procedure itself to detect
whether k should be increased further.

Skeleton of an Algorithm for Complete BMC

k = 0

while (true) do

if (counterexample of length k exists)

then return "Invalid"

if (all states are reachable within k steps)

then return "Valid"

k = k + 1

od
IA169 System Verification and Assurance – 09 str. 12/31

Notation I

Prerequisites

Kripke structure M = (S,T , I).

States are described by bit vectors of fixed length.

Trans is a SAT representation of a binary relation T .

Path of Length n

path(s[0..n]) ≡
∧

0≤i<n

Trans(si , si+1)

Validity of Statement Q Along the Entire Path

all .Q(s[0..n])

IA169 System Verification and Assurance – 09 str. 13/31

Notation II

A Loop-Free Path

loopFree(s[0..n]) ≡ path(s[0..n]) ∧
∧

0≤i<j≤n

si 6= sj

Existence of a Path of Length n From s0 to sn

pathn(s0, sn) ≡ ∃s1 . . . sn−1.path(s[0..n])

Shortest Path

shortest(s[0..n]) ≡ path(s[0..n]) ∧ ¬
(

∨

0≤i<n

pathi(s0, sn)
)

IA169 System Verification and Assurance – 09 str. 14/31

Equivalent Problem Formulation

Verification

We would like to show that no state that would violate
the specification ϕ is reachable from the initial
configuration, i.e. we want to show that

∀i .∀s0 . . . si .
(

Init(s0) ∧ path(s[0..i]) =⇒ ϕ(si)
)

Alternatively

We want to show that from an error state, the initial state
is not reachable when going backwards

∀i .∀s0 . . . si .
(

Init(s0) ⇐= path(s[0..i]) ∧ ¬ϕ(si)
)

Equivalently

∀i .∀s0 . . . si . ¬
(

Init(s0) ∧ path(s[0..i]) ∧ ¬ϕ(si)
)

IA169 System Verification and Assurance – 09 str. 15/31

Termination of BMC – Acyclic Paths

Termination Condition in the BMC Algorithm Skeleton

No longer acyclic path from the initial state exists, that is,
the following formula is unsatisfiable:

Init(s0) ∧ loopFree(s[0..i+1])

Holds symmetrically for backwards reachability from
error states.

Solution 1

not SAT
(

loopFree(s[0..i+1]) ∧ Init(s0)
)

∨
not SAT

(

loopFree(s[0..i+1]) ∧ ¬ϕ(si+1)
)

IA169 System Verification and Assurance – 09 str. 16/31

Termination of BMC – Acyclic paths II

Higher Efficiency Termination Criterion

When using backward reachability from ¬ϕ states, paths
that visit other ¬ϕ states do not need to be considered.

Symmetrically holds also for forward reachability with
multiple initial states: for completeness detection, paths
that visit other initial states do not need to be considered.

Solution 2

not SAT
(

loopFree(s[0..i+1])∧ Init(s0)∧all .¬Init(s[1..i+1])
)

∨
not SAT

(

loopFree(s[0..i+1]) ∧ ¬ϕ(si+1) ∧ all .ϕ(s[0..i])
)

IA169 System Verification and Assurance – 09 str. 17/31

BMC not starting with k = 0

Observation

For small values of k , SAT queries give neither a
counterexample nor enable termination.

We want to start BMC with k > 0.

Reformulating the Counterexample Test

The original test for counterexample existence for a given
k

SAT
(

Init(s0) ∧ path(s[0..k]) ∧ ¬ϕ(sk)
)

needs to be changed so that we do not miss
counterexamples shorter than the initial value of k .

New test for the existence of a counterexample:

SAT
(

Init(s0) ∧ path(s[0..k]) ∧ ¬all .ϕ(s[0..k])
)

IA169 System Verification and Assurance – 09 str. 18/31

k-induction in BMC

Observation

The tests can be re-formulated so that they resemble the
structure of mathematical induction.

TAUT is a tautology test (unsatisfiability of negation).

Base Case

Test for counterexample existence.

SAT

(

¬
(

Init(so) ∧ path(s[0..i]) =⇒ all .ϕ(s[0..i])
)

)

Inductive Step

Test for completeness.

TAUT
(

¬Init(s0) ⇐= all .¬Init(s[1..(i+1)]) ∧ loopFree(s[0..i+1])
)

∨
TAUT

(

loopFree(s[0..i+1]) ∧ all .ϕ(s[0..i]) =⇒ ϕ(si+1)
)

IA169 System Verification and Assurance – 09 str. 19/31

Acyclic vs Shortest Paths in BMC

Observation

Graph diameter (d) is the length of the longest of the
shortest paths between each pair of vertices in the graph.

An acyclic path can be substantially longer than the graph
diameter.

BMC with Shortest Paths

BMC is correct if loopFree is replaced with shortest.

The shortest predicate, however, needs quantifiers and is
as such not a purely SAT application.

For more details, see ...
Mary Sheeran, Satnam Singh, and Gunnar Stålmarck: Checking Safety
Properties Using Induction and a SAT-Solver, FMCAD 2000, 108-125,
LNCS 1954, Springer.

IA169 System Verification and Assurance – 09 str. 20/31

Section

LTL and BMC

IA169 System Verification and Assurance – 09 str. 21/31

LTL Verification with BMC

Observation 1

LTL is only well-defined for infinite runs.

For evaluating LTL on finite paths, we use three-value
logic (true, false, cannot say).

Validity of some LTL formulas cannot be decided on any
finite path (eg. GF a).

Observation 2

Cycles that consist of only a few states are unrolled by
BMC to acyclic paths of length k .

We allow encoding lasso-shaped paths.

That is, (k , l)-cyclic paths.

IA169 System Verification and Assurance – 09 str. 22/31

(k,l)-cyclic paths

(k,l)-cyclic runs

A run π = s0s1s2 . . . of a Kripke structure
M = (S,T , I , s0) is (k , l)-cyclic if

π = (s0s1s2 . . . sl−1)(sl . . . sk)ω,

where 0 < l ≤ k a sl−1 = sk .

Observation

If π is (k , l)-cyclic, π is also (k + 1, l + 1)-cyclic.

Treating finite paths as (k , k)-cyclic is incorrect (could
create a non-existent run in M).

Every path of length k is either acyclic or (k , l)-cyclic.

IA169 System Verification and Assurance – 09 str. 23/31

Semantics of LTL on Finite Prefixes of Runs

Semantics of LTL for Finite Prefixes

Let π be a run of a Kripke structure M.

k is given.

π = π0

πi |=nl X ϕ iff i < k ∧ πi+1 |=nl ϕ

πi |=nl ϕU ψ iff ∃j .i ≤ j ≤ k , πj |=nl ψ and

∀m.i ≤ m < j , πi |=nl ϕ

Semantics of |=k for LTL in BMC

For (k , l)-cyclic paths, π |=k ϕ ⇐⇒ π |= ϕ holds.

For acyclic paths, π |=k ϕ ⇐⇒ π0 |=nl ϕ holds.

|=k=⇒|=k+1, |=k approximates |=

IA169 System Verification and Assurance – 09 str. 24/31

BMC for LTL

Goal

We construct a Boolean formula [M, ϕ, k] which is
satisfiable iff Kripke structure M has a run π such that
π |=k ϕ.

[M, ϕ, k] ≡ [M]k ∧ [ϕ, k]

Encoding

[M]k encodes all paths of length k

[ϕ, k] ≡ _[ϕ, k]0 ∨
∨k

l=1 l [ϕ, k]0

_[ϕ, k]0 encodes that the path is acyclic and |=nl ϕ

l [ϕ, k]0 encodes that the path is (k , l)-cyclic and |= ϕ

IA169 System Verification and Assurance – 09 str. 25/31

LTL tricks in BMC

Fragment LTL-X

Reduces the number of transitions (smaller SAT instance).

Similar to partial order reduction.

For the Interested
Keijo Heljanko: Bounded Model Checking for Finite-State Systems

http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf

Keijo Heljanko and Tommi Junttila: Advanced Tutorial on Bounded

Model Checking

http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/

lecture1.pdf

IA169 System Verification and Assurance – 09 str. 26/31

http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/lecture1.pdf
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/lecture1.pdf

Section

Conclusions on BMC

IA169 System Verification and Assurance – 09 str. 27/31

Advantages of BMC

General

Reduces to a standard SAT problem, advances in SAT
solving help with BMC.

Often finds counterexamples of minimal length (not
always).

Boolean formulas can be more compact than OBDD
representation.

Verification of HW

Thanks to k-induction, a very successful method.

Verification of SW

Currently, according to Software Verification Competition
(TACAS 2014), BMC in connection with SMT is currently
among the best software verification methods (actually
falsification).

IA169 System Verification and Assurance – 09 str. 28/31

Downsides of BMC

General

Not complete in general.

Large SAT instances are still unsolvable.

Verification of SW

Encoding an entire CFG as a SAT instance is currently
unrealistic.

K-induction cannot be used
(the graph is incomplete, no back edges).

Problems with dynamic data structure analysis.

Loop analysis is hard.

Inefficient for full arithmetic (partially solved by SMT).

IA169 System Verification and Assurance – 09 str. 29/31

Tools and food for thought...

Tools

CBMC – BMC for ANSI-C.

ESBMC – uses SMT, built on top of CBMC.

LLBMC – BMC for LLVM bitcode.

Food for Thought...

What differentiates modern SMT-BMC from symbolic
execution?

Boundaries are not clear.

IA169 System Verification and Assurance – 09 str. 30/31

Homework

Homework

Study structure and results of Software Verification
Competition (TACAS).

IA169 System Verification and Assurance – 09 str. 31/31

IA169 System Verification and Assurance

CEGAR and Abstract Interpretation

Jiří Barnat

Program Analysis

Goals of Program Analysis

Deduce program properties from the program source code
and ...

... employ them for program optimisation.

... employ them for program verification.

Undecidability

Validity of all interesting program properties written in
general programming language is algorithmically
undecidable.

Henry Gordon Rice (1953) – Rice’s Theorems.

Alan Turing (1936) – Halting Problem.

IA169 System Verification and Assurance – 10 str. 2/27

Undecidable – So what now?

Abstraction

To hide details in order to simplify the analysis.

Aims at correct, even if incomplete solution.

Using Abstraction

To build (typically finite state) model of system under
verification. (Followed, e.g., by model checking approach
to verification.)

System execution within the context of abstraction –
Abstract Interpretation.

Recall Other Approaches

Fixed input set of values (Testing).

Limited exploration of the full state space (Bounded MC).

Practical undecidability (Symbolic Execution).
IA169 System Verification and Assurance – 10 str. 3/27

Section

Data and Predicate Abstraction

IA169 System Verification and Assurance – 10 str. 4/27

Data Abstraction

Motivation

State space explosion due to large data domains.

Reduction employing principle of domain testing, i.e.
replacing original data domain with a data domain with
less number of members.

Terminology

Abstraction: mapping concrete states to abstract ones.

Concretisation: mapping abstract states to set of concrete
states.

Example of Data Abstraction

Int -> { Even, Odd }

Concrete state: 〈 PC:12, A:15, B:0 〉

Abstract state: 〈 PC:12, A:Odd, B:Even 〉
IA169 System Verification and Assurance – 10 str. 5/27

Abstract Transition System

Transitions in Concrete and Abstract Semantics

Statement in program code, line 12: A := A+A

In concrete semantics:
〈PC:12, A:15, B:0〉 −→ 〈PC:13, A:30, B:0〉

in abstract semantics:
〈PC:12, A:Odd, B:Even〉 −→ 〈PC:13, A:Even, B:Even〉

Non-Determinism in Abstract Transition System

Abstract state: 〈PC:13, A:Even, B:Even〉

Statement in program code, line 13: A := A div 2

〈PC:13, A:Even, B:Even〉 −→

〈PC:14, A:Even, B:Even〉

〈PC:14, A:Odd, B:Even〉

IA169 System Verification and Assurance – 10 str. 6/27

Relation of Abstract and Concrete Transition Systems

Over-Approximation

Every run of concrete system is present in concretisation
of some abstract run (run of abstracted transition system).

There may exist runs that are present in concretisation of
some abstract run, but are not allowed in concrete
transition system.

Under-Approximation

Every run present in concretisation of any abstract run is
an existing run of concrete transition system.

There may exist runs of concrete transition systems that
are not present in concretisation of any abstract run.

IA169 System Verification and Assurance – 10 str. 7/27

Verification of Approximated Transition Systems

Notation

ATS – Abstract Transition System

CTS – Concrete Transition System

Verification of Over-Approximated Systems

Absence of error in ATS proves absence of error in CTS.

Error in ATS may, but need not indicate error in CTS.

Error in ATS that is not an error in CTS, is referred to as
false positive (spurious error, false alarm).

Verification of Under-Approximated Systems

Error in ATS proves presence of error in CTS.

Absence of error in ATS does not prove absence of error
in CTS.

Error in CTS that is not present in ATS is referred to as
false negative.

IA169 System Verification and Assurance – 10 str. 8/27

Example – Concrete Semantics

Task

Is error state reachable in the following program?

% denotes modulo operation, A in an integral variable

Source-code Value ofA in concrete semantics
after execution of program statement

1 read(A);

2 A = A % 2;
3 A = A + 1;

4 if (A==0)

5 error;

6 else

7 return;

[int]

[0] [1]

[1] [2]

<false> <false>

<ret> <ret>

IA169 System Verification and Assurance – 10 str. 9/27

Example – Data Abstraction

Task

Is error state reachable in the following program?

A is abstracted into parity domain {even,odd}.

Source-code Value of A in abstract semantics
after execution of program statement

1 read(A);

2 A = A % 2;
3 A = A + 1;

4 if (A==0)

5 error;

6 else

7 return;

[even] [odd]

[even] [odd]

[odd] [even]

<false> <true/false>

<error>

<ret> <ret>

IA169 System Verification and Assurance – 10 str. 10/27

Predicate Abstraction

Predicate Abstraction

Predicates – Boolean expressions about variable values.

Example of definition of abstract transition system:

〈Program Counter, Validity of selected predicates〉

Amount of Abstraction

Amount of predicates influences the precision of
abstraction.

Less predicates big ambiguity, smaller state space.

More predicates increased precision, bigger state space.

IA169 System Verification and Assurance – 10 str. 11/27

Task

Task

For the given program code and set of predicates, draw
the abstract transition system formed using predicate
abstraction.

Check if there is path in your ATS that is not a spurious
run and leads to an error state.

1 read(A);

2 A = A % 2;
3 A = A + 1;

4 if (A==0)

5 error;

6 else

7 return;

a) P1 ≡ A = 0

b) P1 ≡ A = 0,
P2 ≡ A ≥ 0

IA169 System Verification and Assurance – 10 str. 12/27

Remarks on Predicate Abstraction

Analysis of Abstract Runs Leading to Error

Decision about validity of the run (Is it a false alarm?)

Deduction of new predicates to make abstraction more
precise.

Size of Abstract Transition System

The size of the state space grows exponentially with the
number of predicates.

Possible Solution

Predicates are bound to particular program locations.

IA169 System Verification and Assurance – 10 str. 13/27

Section

CEGAR Approach

IA169 System Verification and Assurance – 10 str. 14/27

Counter-Example Guided Abstraction Refinement

Principle of CEGAR Approach

Given an initial set of predicates, system is abstracted
with predicate abstraction.

Abstract transition system (over-approximation) is verified
with a model checking procedure.

In the case a reported counterexample is find spurious, it
is analysed in order to deduce new predicates and refine
predicate abstraction.

Procedure repeats until real counterexample is find or
system is successfully verified.

Notes

Deducing new predicates is very difficult.

Often done within model checking procedure (on-the-fly).

Berkeley Lazy Abstraction Software Verification Tool
(BLAST).

IA169 System Verification and Assurance – 10 str. 15/27

Schema of CEGAR Approach

Abstract

Is c−example

spurious?

Abstract

Model

Refined

Model

Counter

Example

Is property

satisfied?

System is valid

No

System is invalidRefine

Model

Yes

System

Property

Yes

No

IA169 System Verification and Assurance – 10 str. 16/27

Section

Basics of Abstract Interpretation and
Static Analysis of Programs

IA169 System Verification and Assurance – 10 str. 17/27

Program Analysis by Abstract Interpretation

Program Representation – Flow Graph

"Special version" of Control-Flow Graph.

Every edge is either guarded with a single guard or defines
a single assignment.

Goal

Compute properties of individual vertices of the
flow-graph.

Goal Examples

Deduce range of values a particular variable may take in a
given program location.

Compute a set of live variables in a given program
location.

. . .

IA169 System Verification and Assurance – 10 str. 18/27

A General View on Abstract Interpretation

Property Decomposition

The property to be verified by general program analysis
procedure can be decomposed into local data values
assigned to individual vertices of the (control-)flow graph.

The result of verification is compound or deduced from
the values local to the flow-graph vertices.

Value Improvement

It is defined how an edge of the (control-)flow graph
improves (locally updates) the decomposed value of the
property to be verified.

Application of local update functions gradually
(monotonously) improve (approximate) the overall
solution.

IA169 System Verification and Assurance – 10 str. 19/27

General Algorithm for Computing Abstract Interpretation

Initialisation

Initially, a suitable value is assigned to every vertex.

Every edge of the graph is marked as unprocessed.

Computation

Pick an unprocessed edge of the graph and perform the
local update relevant to the edge and associated vertices.
If the update improved the solution, mark the edge as
unprocessed again.

Repeat until there are unprocessed edges, i.e. until overall
fix-point is reached.

IA169 System Verification and Assurance – 10 str. 20/27

Example – Computing Live Variables

Setup

Initial value associated with graph vertices is ∅.

Every edge from vertex u to vertex v updates value
associated with the vertex u as follows:

V (u) = V (u) ∪
(

V (v) \ assigned(u, v) ∪ used(u, v)
)

,

where V (x) denotes value associated with vertex x ,
assigned(u, v) and used(u, v) denote variables redefined
and used along the edge (u, v), respectively.

Observation

In every moment of computation there is some
(approximating) solution to the verified property.

Reaching a fix-point indicate, no more information can be
deduced by program analysis in the current setup.

IA169 System Verification and Assurance – 10 str. 21/27

Abstract Interpretation

Observation

The procedure presented on previous slides is quite
general. Choosing proper setup may result in verification
(computation) of many interesting program properties.

Often this is combined with some data abstraction for
variables.

May be performed on partially unwinded graphs.

Generally referred to as to abstract interpretation.

Parameters

What abstract domain is used.

Direction of update function (forward, backward, both).

What does update function do.

How are the values merged over multiple incoming edges.

Order of processing of unprocessed edges.

Termination detection.
IA169 System Verification and Assurance – 10 str. 22/27

Relevant Questions of Abstract Interpretation

Is there a fix-point?

Often the composition of domains of values associated to
vertices forms a complete lattice.

Knaster-Tarski theorem says that every monotonous
function over such a domain has a fix point.

Does computation terminates?

If there is no infinitely ascending sequence of possible
solutions in the composition of local domains, then yes.

Otherwise, need not terminate.

IA169 System Verification and Assurance – 10 str. 23/27

Abstract Interpretation and Widening

Widening

Auxiliary transformation of intermediate results such that
it preserves correctness, and at the same times prevents
existence of long (possibly infinite) ascending sequence of
values in the corresponding domain.

Example of widening

Let be given boundaries of precision in which we want to
know the range of possible values of some variable.

Beyond the precision boundaries values will be extended
to infinity, i.e. +∞ or −∞.

Sequence

[0,1] ⊂ [0,2] ⊂ [0,3] ⊂ [0,4] ⊂ [0,5] ⊂ [0,6] ...

will for precision bound [0,3] turn into:

[0,1] ⊂ [0,2] ⊂ [0,3] ⊂ [0,+∞]
IA169 System Verification and Assurance – 10 str. 24/27

Abstract Interpretation and Narrowing

Narrowing

Using widening may lead to very imprecise results.

Widening can be used to accelerate analysis of cycles.

After widening-based analysis of cycle, the values are
made more precised with narrowing (similar but dual
technique).

Example

Interval [0,+∞] will after narrowing shrink to [0,n].

Commentary

Precise usage of widening and narrowing is beyond the
scope of this lecture.

IA169 System Verification and Assurance – 10 str. 25/27

Other Notes Related to Abstract Interpretation

Other Corners of Program Analysis

Inter-procedural analysis.

Analysis of parallel programs.

Generation of invariants.

Pointer analysis and analysis of dynamic memory
structures.

...

CPA checker

The Configurable Software-Verification Platform

http://cpachecker.sosy-lab.org/

Very successful competitor in Software Verification
Competition.

IA169 System Verification and Assurance – 10 str. 26/27

http://cpachecker.sosy-lab.org/

Homework

Wanna Chalenge?

Get acquainted with CPAchecker (https:

//github.com/dbeyer/cpachecker/blob/trunk/README.txt)

Comment counterexample report (http://cpachecker.

sosy-lab.org/counterexample-report/ErrorPath.0.html)

Homework

Install and try BLAST verification tool.

IA169 System Verification and Assurance – 10 str. 27/27

https://github.com/dbeyer/cpachecker/blob/trunk/README.txt
https://github.com/dbeyer/cpachecker/blob/trunk/README.txt
http://cpachecker.sosy-lab.org/counterexample-report/ErrorPath.0.html
http://cpachecker.sosy-lab.org/counterexample-report/ErrorPath.0.html

IA169 System Verification and Assurance

Verification of Real-Time and Hybrid systems

Jiří Barnat

Verification in Model-Based Development

Software Engineering Experience

Employing V&V techniques too late in the development
process significantly increases the cost of poor quality.

The sooner a bug is detected the cheaper is the fix.

Model-Based Development

Model-Based Verification

Model-Based Development

Consider models of the target system in order to ,e.g.,
simulate its behaviour in the design phase prior
implementation.

Behavioural models can be used for verification.

IA169 System Verification and Assurance – 11 str. 2/48

Hybrid Systems

Hybrid Systems

Systems that combine multiple kinds of dynamics.

Continuous systems driven by discrete events.

Areas of existence

Mechanical systems

Continuous movement and contact with physical obstacle.

Electrical systems

Continuous nature of electric charge in circuit driven by
discrete switches.

Embedded systems

Computer-driven systems in analogue environment.

IA169 System Verification and Assurance – 11 str. 3/48

Example – Bouncing Ball

System Description

A ball released at height h bounces on a hard surface. The
ball is under continuous influence of the gravity (9.8m/s).
When bounces some energy is consumed by friction and
elasticity and turns into heat.

Physics

Acceleration = First derivative of speed with respect to time.

Speed = First derivative of height with respect to time.

Abstraction and simplification

Modelled with a mass point.

Instant (time-less) bounce.

IA169 System Verification and Assurance – 11 str. 4/48

Bouncing Mass Point – Hybrid Automaton

Automaton Description

x1 — height

x2 — vertical speed (+ means up, − means down)

c ∈ [0, 1] — loss of energy (elasticity and heat)

Schema

IA169 System Verification and Assurance – 11 str. 5/48

Analyses and Control of Hybrid Systems

Questions

What time elapses between the fourth and fifth bounce?

If given horizontal speed, will the ball jump over an obstacle?

. . .

Searching for Answers

Need for precise formal description of hybrid system.

Algorithmic analysis of properties of hybrid systems and
controller synthesis.

IA169 System Verification and Assurance – 11 str. 6/48

Section

Hybrid Automata

IA169 System Verification and Assurance – 11 str. 7/48

Hybrid Automata

Hybrid Automaton is a tuple

Q = {q1, q2, . . .} — Set of discrete states.

X = Rn — Set of continuous states.

f : Q × X → Rn — System dynamics.

Init ⊆ Q × X — Set of initial states.

Dom : Q → PowerSet(X) — State invariants.

E ⊆ Q × Q — Set of discrete transitions

G : E → PowerSet(X) — Map of transition guards.

R : E × X → PowerSet(X) — Map of transition resets.

IA169 System Verification and Assurance – 11 str. 8/48

State of Hybrid Automaton

State of Hybrid Automaton

Given by the discrete state and the current value of
continuous variables: (q,

−→x) ∈ Q × X .

Initial State

Set of initial states in both the discrete and continuous part.

(q0,
−→x0) ∈ I

IA169 System Verification and Assurance – 11 str. 9/48

Transitions of Hybrid Automaton

Transition by Time Passing

Let (q,
−→x) be origin state.

Continuous part for every variable x follows the system
dynamics

dx(t)

dt
= f (q, x), where x(0) = x

Discrete part does not change:

q(t) = q

Time may pass only if the state invariant is valid:

x(t) ∈ Dom(q)

IA169 System Verification and Assurance – 11 str. 10/48

Transitions of Hybrid Automaton

Discrete Transition

Let (q,
−→x) be origin state.

It is possible (but not necessary) to perform a transition

(q, q′) ∈ E ,

if transition guard is valid, i.e.

−→x ∈ G(q, q′).

If the transition is taken, the continuous part of the state is
updated accordingly:

−→
x ′ := R((q, q′), −→x)

The target state after a discrete transition is (q′,
−→
x ′).

IA169 System Verification and Assurance – 11 str. 11/48

Reasonable restrictions of Hybrid Automata

Restrictions in Continuous Part

f (q,
−→x) is Lipschitz continuous for ∀q ∈ Q,

(solution of differential equations is well defined)

∀e ∈ E we assume non-empty G(e)

∀e ∈ E and ∀x ∈ Q we assume non-empty R(e, x)

Restrictions in Discrete Part

The set of discrete state is finite.

IA169 System Verification and Assurance – 11 str. 12/48

Example 2 – Water Tank

System Description

Two water tanks, volume of water denoted with x1 and x2.

There is a constant speed leak from both tanks, v1 and v2.

A hose can fill one of the tanks with speed w .

The hose is always in exactly one of the tanks.
IA169 System Verification and Assurance – 11 str. 13/48

Example 2 – Water Tank

Goal

Keep water level above the necessary minimum r1 and r2.

Initially, there is enough water in both tanks.

The hose is switched to a tank at the moment the water level
in the tank drops to the required minimum.

IA169 System Verification and Assurance – 11 str. 13/48

Water Tanks — Formal Definition of the System

Q = {q1, q2}

X = R × R

f (q1, x) =

[
w − v1

−v2

]
f (q2, x) =

[
−v1

w − v2

]

IA169 System Verification and Assurance – 11 str. 14/48

Water Tanks — Formal Definition of the System

Init = {q1, q2} × {x ∈ R × R | x1 ≥ r1 ∧ x2 ≥ r2}

Dom(q1) = {x ∈ R × R | x2 ≥ r2}
Dom(q2) = {x ∈ R × R | x1 ≥ r1}

IA169 System Verification and Assurance – 11 str. 14/48

Water Tanks — Formal Definition of the System

E = {(q1, q2), (q2, q1)}

G(q1, q2) = {x ∈ R × R | x2 ≤ r2}
G(q2, q1) = {x ∈ R × R | x1 ≤ r1}

R(q1, q2, x) = R(q2, q1, x) = {x}

IA169 System Verification and Assurance – 11 str. 14/48

Hybrid Time Sequence (HTS)

Informally

A run of hybrid automaton proceeds in a sequence of
continuous time intervals. Discrete transitions happen on the
boundaries of the intervals in instant time.

The time characteristic of a run of hybrid automaton is
formalised with the usage of the so called Hybrid Time

Sequence.

Definitions

Hybrid Time Sequence is a (finite or infinite) sequence of
intervals τ = {I0, I1, . . . , IN} = {Ii}

N
i=0 such that:

Ii = [τi , τ ′

i] for all i < N

If N < ∞ then either IN = [τN , τ ′

N] or IN = [τN , τ ′

N)

τi ≤ τ ′

i = τi+1 for all 0 ≤ i < N.

IA169 System Verification and Assurance – 11 str. 15/48

Graphical Representation of Hybrid Time Sequence

IA169 System Verification and Assurance – 11 str. 16/48

Ordering of Time Moments

Observation

If every time moment is related with an interval of HTS ...

... then time moments can be linearly ordered.

Ordering ≺

t1 ∈ Ii , t2 ∈ Ij

t1 ≺ t2
def
= (t1 < t2) ∨ (t1 = t2 ∧ i < j)

Generalisation

Every hybrid time sequence is linearly ordered with ≺ relation.

IA169 System Verification and Assurance – 11 str. 17/48

Ordering of Hybrid Time Sequence

Prefix Of Hybrid Time Sequence

τ = {Ii}
N
i=0

τ̂ = {Îi}
M
i=0

We say that τ is a prefix of τ̂ (denoted with τ ⊑ τ̂), if

τ = τ̂ , or

N is finite ∧ IN ⊆ ÎN ∧ ∀i ∈ [0, N) : Ii = Îi

Proper Prefix

τ ⊏ τ̂ ≡ τ ⊑ τ̂ ∧ τ 6= τ̂

Relation ⊑ is a Partial Ordering

There exist τ and τ̂ such that τ 6⊑ τ̂ and τ̂ 6⊑ τ .

IA169 System Verification and Assurance – 11 str. 18/48

Task

Task – Find τ, τ̃ and τ̂ such that

τ ⊑ τ̃

τ ⊑ τ̂

τ̃ 6⊑ τ̂ ∧ τ̂ 6⊑ τ̃

Solution

IA169 System Verification and Assurance – 11 str. 19/48

Hybrid Trajectories

Definition

Hybrid trajectory is a triple (τ, q, x), where τ is hybrid time
sequence τ = {I}N

0 and q, x are two sequences of functions
q = {qi}

N
0 and x = {xi}

N
0 such that qi : Ii → Q and

xi : Ii → Rn, respectively.

Intuition

Continuous part flows within individual time intervals of
hybrid time sequence.

Discrete state within a single interval does not change.

Discrete transitions realise transitions from the end of one
interval to the beginning of the succeeding interval.

IA169 System Verification and Assurance – 11 str. 20/48

Run of Hybrid Automaton

Run of Hybrid Automaton

Let H = (Q, X , f , Init, Dom, E , G , R) be hybrid automaton.

Let (τ, q, x) be hybrid trajectory.

Trajectory (τ, q, x) is a run of automaton H, if it is compliant
with H in: initial condition, discrete behaviour and continuous
behaviour.

Initial Condition

(q0(0), x0(0)) ∈ Init

Discrete Behaviour – For all i < N it holds that

(qi(τ
′

i), qi+1(τi+1)) ∈ E

xi(τ
′) ∈ G(qi(τ

′

i), qi+1(τi+1))

xi+1(τi+1) ∈ R(qi(τ
′

i), qi+1(τi+1), xi(τ
′

i))

IA169 System Verification and Assurance – 11 str. 21/48

Run of Hybrid Automaton

Run of Hybrid Automaton

Let H = (Q, X , f , Init, Dom, E , G , R) be hybrid automaton.

Let (τ, q, x) be hybrid trajectory.

Trajectory (τ, q, x) is a run of automaton H, if it is compliant
with H in: initial condition, discrete behaviour and continuous
behaviour.

Continuous Behaviour – For all i ≤ N it holds that

qi : Ii → Q is constant over t ∈ Ii ,

xi : Ii → X is a solution to differential equation

dxi(t)

dt
= f (qi(t), xi(t))

over Ii beginning in xi(τi),

For all t ∈ [τi , τ ′

i) it holds that xi(t) ∈ Dom(qi(t)).

IA169 System Verification and Assurance – 11 str. 21/48

Water Tanks – Example

Specification

τ = {[0, 2], [2, 3], [3, 3.5]}

Constants r1 = r2 = 0, v1 = v2 = 0.5, w = 0.75

Initial state q = q1, x1 = 0, x2 = 1.

IA169 System Verification and Assurance – 11 str. 22/48

Water Tanks – Trajectories

IA169 System Verification and Assurance – 11 str. 23/48

Classification of Runs (τ, q, x)

Finite

If τ is finite and the last interval of τ is closed.

Infinite

If τ is infinite sequence, or the sum of time intervals in τ is
infinite, i.e.

ΣN
i=0(τ ′

i − τi) = ∞.

Zeno

If τ is infinite, but

ΣN
i=0(τ ′

i − τi) < ∞.

Maximal

If τ is no proper suffix of any other run τ ′ of H.

IA169 System Verification and Assurance – 11 str. 24/48

Classification of Runs

τA finite; τC and τD infinite; τE and τF Zeno.
What class is run τB?

IA169 System Verification and Assurance – 11 str. 25/48

Examples of ZENO Runs

IA169 System Verification and Assurance – 11 str. 26/48

Examples of ZENO Runs

Let

Then

the following hybrid system has infinitely many intersections
with x axis in the interval (−ǫ, 0].

IA169 System Verification and Assurance – 11 str. 27/48

Modelling Hybrid Systems

Observation

Hybrid automata are meant to describe real hybrid systems.

Due to abstraction and simplification, it is possible to specify
unrealistic situation.

Risk of Modelling

Can create system that have no solutions.

Can create system that have only unrealistic solutions.

Can create system that have non-deterministic solutions.

Terminology

System that has no solution (no run exist) is called blocking

system.

IA169 System Verification and Assurance – 11 str. 28/48

Unrealistic Runs

Observation

Non-blocking system does not guarantee that some runs are
realistic.

Non-blocking system does not guarantee that some runs are
time divergent.

Unrealistic Runs

Runs that perform infinitely many discrete transitions in finite
time are called ZENO runs.

Created by abstraction and simplification in modelling.

Discussion

Why the ball does not bounce forever?

It is important to see which simplification lead to ZENO runs.

IA169 System Verification and Assurance – 11 str. 29/48

Non-determinism

Non-determinism

In general can be described as absence of unique solutions, i.e.
that a hybrid automaton accepts multiple different runs
emanating from the same initial conditions.

When limited to Lipschitz continuous functions with unique
solution, reason for non-determinism comes from discrete
transitions.

Non-deterministic on Purpose

Can be used to model uncertainty.

Modeller should make difference between non-determinism
due to simplification, and non-determinism used on purpose.

Observation

Non-determinism is a real cause of troubles in both analysis
and controller synthesis of hybrid systems.

IA169 System Verification and Assurance – 11 str. 30/48

Problems of Simulations and Analysis of Hybrid Systems

Existence of Solution

How to detect existence of non-blocking run?

How to detect ZENO behaviour?

Uniqueness

How to perform simulation of non-deterministic system?
Discrete transition vs. continuous time evolution.
Discrete transition vs. discrete transition.

As-soon-as semantics.

Discontinuity

How to detect satisfiability of transition guards?

What if state invariant ends with open interval [a, b) and the
succeeding transition is allowed to execute at time [b]?

Composition

How to compose hybrid automata?
IA169 System Verification and Assurance – 11 str. 31/48

Non-blocking and Deterministic Hybrid Automaton

Non-blocking Hybrid Automaton

Hybrid automaton H is called non-blocking if for all initial
states (q̂, x̂) ∈ Init there exist an infinite run emanating
from (q̂, x̂).

Deterministic Hybrid Automaton

Hybrid automaton H is called deterministic, if for all initial
states (q̂, x̂) ∈ Init there exist at most one maximal run
emanating from (q̂, x̂).

IA169 System Verification and Assurance – 11 str. 32/48

Section

Using Hybrid Automata

IA169 System Verification and Assurance – 11 str. 33/48

Analysis and Synthesis Hybrid Systems (HS)

Motivation for Modelling

The goal of modelling of HS is to deduce properties of, or
synthesise controllers for real HS from properties of, or
controllers for modelled HS.

Verification

Does hybrid system exhibits declared behaviour (does it
satisfy specification)?

Synthesis

There are number of choices to build a HS, using models it is
possible to decide which choices are good and which are bad
prior the construction of the real HS.

IA169 System Verification and Assurance – 11 str. 34/48

Validation

Validation

Check that the design described as a hybrid automaton and
the real product produced behave accordingly.

Some system modelled with hybrid automata may be
unrealistic (and cannot be built) due to simplifications and
abstractions used during modelling phase.

Usual Work-flow

Synthesis (of model)

Verification (of model)

Validation (equivalence of model and real product)

IA169 System Verification and Assurance – 11 str. 35/48

Specification

Stability

Typical property of purely continuous systems.

To request stability for hybrid systems requires to specify what
does the stability means with respect to the discrete part of
the system.

Specification by Set of States

Specification of safety and forbidden areas.

Specification by Set of Trajectories

Properties of hybrid systems that can be expressed as
properties of runs.

Set of allowed runs of a hybrid automaton.

Formally described using modal and temporal logic, such as
(CTL, LTL, CTL∗).

IA169 System Verification and Assurance – 11 str. 36/48

Methods of Analysis of HS

Deductive Methods

Using math reasoning, such as math induction, to deduce
properties of hybrid systems.

Model Checking

Algorithmic procedure for deciding formally specified
properties of hybrid systems.

Decidable only for limited sub-classes of hybrid automata.

Simulations

Used to estimate the set of reachable states.

The precision of estimation is difficult to say.

IA169 System Verification and Assurance – 11 str. 37/48

Deductive Methods – Invariant Set

Typical Goal

Typical goal for deductive methods is to set boundaries of the
reach set using the so called Invariant Set.

Invariant set is a set of states for which it holds that if a run
of hybrid system is initiated at the state of the set it only
visits states that are in the set (i.e. never leaves invariant set).

Formal Definition of Invariant Set

Set of state M ⊆ Q × X of hybrid automaton H is called
invariant if for all (q̂, x̂) ∈ M, all solutions (τ, q, x) starting
from (q̂, x̂), all Ii ∈ τ and all t ∈ Ii it holds that
(qi(t), xi(t)) ∈ M.

IA169 System Verification and Assurance – 11 str. 38/48

Deductive Methods – Properties of Invariant Set

Observation

Union and Intersection of Invariant Sets of hybrid automaton
H is also an invariant set for H.

If M is an invariant set and Init ⊆ M, then Reach ⊆ M.

Consequence

To approximate the Reach set it is possible to deduce a
number of invariant sets that contain initial state and are at
the same time below the set of all states of hybrid automaton
(here denoted by F)

Init ⊆ M ⊆ F

and intersect them.

IA169 System Verification and Assurance – 11 str. 39/48

Model Checking

Simplification

For hybrid automata we restrict ourselves in the course to
algorithmic test of reachability of a given state.

Considered Sub-classes of Hybrid Automata

Timed Automata (TA).

Rectangular Hybrid Automata (RHA).

Linear Hybrid Automata (LHA).

Software Tools

UPPAAL – Timed Automata

PHaVer – RHA, partially LHA (HyTech)

IA169 System Verification and Assurance – 11 str. 40/48

Timed Automata

Restriction

All derivations to drive continuous evolution of the automaton
has the form of:

dxi(t)

dt
= 1

Resets R of discrete transitions are allowed either to keep the
value of the continuous variable, or to reset it to 0.

Dom and G are defined only using relations ≤ and ≥ with
respect to integral values.

Intuition

Finite automaton with a set of continuous
variables to measure elapsed time.

Measured time values may be reset to 0
using discrete transition.

IA169 System Verification and Assurance – 11 str. 41/48

Example of Timed Automaton

Example of Timed Automaton

Exercise

In two-dimensional graph with axes x1 and x2 show how the
values of continuous variables change.

IA169 System Verification and Assurance – 11 str. 42/48

Region Abstraction

Key Observation

With respect to the restriction that comparisons are made
only against integral values, two floating point values that
have the same integral part cannot be differentiated.

Equivalence Classes on the Continuous Domain

If c is the greatest integral number used in a guard of timed
automaton then the continuous domain can be represented
with a finite set of intervals as follows:

[0], (0, 1), [1], (1, 2), [2], . . . [c − 1], (c − 1, c), [c], (c , ∞)

Abstracted domain is finite for every continuous variable.

It is possible to construct finite-state automaton that
faithfully simulates behaviour of the timed automaton.

This can be used for verification purposes.

IA169 System Verification and Assurance – 11 str. 43/48

Region Abstraction

IA169 System Verification and Assurance – 11 str. 44/48

Rectangular Hybrid Automata (RHA)

Restriction

All derivations to drive continuous evolution of the automaton
has the form of:

a ≤
dxi(t)

dt
≤ b,

where a and b are rational constants.

When specifying RHA no derivation equations are given, just
the boundary constants a and b.

Exercise

Consider a RHA with two continuous variables x1 and x2.

On two-dimensional graph with axes x1 and x2 show the
evolution of values of the continuous variables.

Guess the origin of the name of this particular sub-class of
hybrid automata.

IA169 System Verification and Assurance – 11 str. 45/48

Reachability is Decidable for RHA

Reachability

Reachability problem for RHA is decidable if there are only
finitely many values to which a continuous variable may be
reset by a discrete transition.

The most general sub-class of hybrid automata for which
reachability is still decidable.

Going Beyond Means Undecidability

Relaxation from restriction of resets is known to result in
sub-class of hybrid automata for which the reachability
problem is undecidable.

IA169 System Verification and Assurance – 11 str. 46/48

Linear Hybrid Automata (LHA)

Definition

Let k0, . . . , km be numeric constants and x1, . . . , xm variables.
An expression in the form of k0 + k1x1 + k2x2 + · · · + kmxm is
called a linear expression.

Let t1, t2 be linear expressions. An expression of the form
t1 ≤ t2 is called linear inequality.

Hybrid automaton H is called linear hybrid automaton

(LHA), if Init, Dom, G and f are defined as Boolean
combinations of linear inequalities.

Undecidability

The reachability problem for LHA is undecidable.

Algorithms implemented for the LHA sub-class are incomplete
(HyTech).

IA169 System Verification and Assurance – 11 str. 47/48

Homework

Homework

Will Lake Mead go dry? (SPACEex tool).
http://spaceex.imag.fr/documentation/tutorials

IA169 System Verification and Assurance – 11 str. 48/48

http://spaceex.imag.fr/documentation/tutorials

IA169 System Verification and Assurance

Verification of Systems with Probabilities

Vojtěch Řehák

Motivation example

Fail-repair system

idle working done

repair error

start end

bug

service

ok

reset

What are the properties of the model?

G(working =⇒ F done)

G(working =⇒ F error)

FG(working ∨ error ∨ repair)

IA169 System Verification and Assurance – 12 2/31

Motivation example

Fail-repair system

idle working done

repair error

start end

bug

service

ok

reset

What are the properties of the model?

G(working =⇒ F done) NO

G(working =⇒ F error)

FG(working ∨ error ∨ repair)

IA169 System Verification and Assurance – 12 2/31

Motivation example

Fail-repair system

idle working done

repair error

start end

bug

service

ok

reset

What are the properties of the model?

G(working =⇒ F done) NO

G(working =⇒ F error) NO

FG(working ∨ error ∨ repair)

IA169 System Verification and Assurance – 12 2/31

Motivation example

Fail-repair system

idle working done

repair error

start end

bug

service

ok

reset

What are the properties of the model?

G(working =⇒ F done) NO

G(working =⇒ F error) NO

FG(working ∨ error ∨ repair) NO

IA169 System Verification and Assurance – 12 2/31

Motivation example

Fail-repair system

idle working done

repair error

start

0.95

end

bug
0.05

service

ok

reset

IA169 System Verification and Assurance – 12 3/31

Motivation example

Fail-repair system

idle working done

repair error

start

0.95

end

bug
0.05

service

ok

reset

What is the probability of reaching “done” from “working” with no
visit of “error”?

What is the probability of reaching “done” from “working” with at
most one visit of “error”?

What is the probability of reaching “done” from “working”?

IA169 System Verification and Assurance – 12 3/31

Section

Discrete-time Markov Chains (DTMC)

IA169 System Verification and Assurance – 12 4/31

Probabilistic models

Discrete-time Markov Chains (DTMC)

Standard model for probabilistic systems.

State-based model with probabilities on branching.

Based on the current state, the succeeding state is given by a
discrete probability distribution.

Markov property (“memorylessness”) — only the current state
determines the successors (the past states are irrelevant).

Probabilities on outgoing edges sums to 1 for each state.

Hence, each state has at least one outgoing edge (“no deadlock”).

IA169 System Verification and Assurance – 12 5/31

DTMC examples

Model of a queue

0 1 2 3 4

1/3 1/3 1/3 1/3

2/32/32/32/3

2/3 1/3

Queue for at most 4 items. In every time tick, a new item comes with
probability 1/3 and an item is consumed with probability 2/3.

IA169 System Verification and Assurance – 12 6/31

DTMC examples

Model of a queue

0 1 2 3 4

1/3 1/3 1/3 1/3

2/32/32/32/3

2/3 1/3

Queue for at most 4 items. In every time tick, a new item comes with
probability 1/3 and an item is consumed with probability 2/3.

What if a new items comes with probability p = 1/2 and an item is
consumed with probability q = 2/3?

IA169 System Verification and Assurance – 12 6/31

DTMC examples

Model of the new queue

0 1 2 3 4

p p(1 − q) p(1 − q) p(1 − q)

qq(1 − p)q(1 − p)q(1 − p)

1 − p 1 − q

(1−p)(1−q)
+ pq

(1−p)(1−q)
+ pq

(1−p)(1−q)
+ pq

IA169 System Verification and Assurance – 12 7/31

DTMC - formal definition

Discrete-time Markov Chain is given by

a set of states S,

an initial state s0 of S,

a probability matrix P : S × S → [0, 1], and

an interpretation of atomic propositions I : S → AP.

IA169 System Verification and Assurance – 12 8/31

DTMC - formal definition

Discrete-time Markov Chain is given by

a set of states S,

an initial state s0 of S,

a probability matrix P : S × S → [0, 1], and

an interpretation of atomic propositions I : S → AP.

1 2 5

4 3

1 0.95

0.05

1

1 1
P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

IA169 System Verification and Assurance – 12 8/31

Back to our questions

Fail-Repair System

idle working done

repair error

1 0.95
0.05

1

1

1

What is the probability of reaching “done” from “working”
with no visit of “error”?

What is the probability of reaching “done” from “working”
with at most one visit of “error”?

What is the probability of reaching “done” from “working”?

IA169 System Verification and Assurance – 12 9/31

Markov chain analysis

Transient analysis

distribution after k-steps

reaching/hitting probability

hitting time

Long run analysis

probability of infinite hitting

stationary (invariant) distribution

mean inter visit time

long run limit distribution

IA169 System Verification and Assurance – 12 10/31

Section

Property Specification

IA169 System Verification and Assurance – 12 11/31

Property specification languages

Recall some non-probabilistic specification languages:

LTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕU ϕ

CTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX ϕ | E [ϕU ϕ] | EG ϕ

Syntax of CTL∗

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E ψ

path formula ψ ::= ϕ | ¬ψ | ψ ∨ ψ | X ψ | ψU ψ

IA169 System Verification and Assurance – 12 12/31

Property specification languages

We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | P⊲⊳bψ

path formula ψ ::= X ϕ | ϕU ϕ | ϕU≤k ϕ

where
b ∈ [0, 1] is a probability bound,
⊲⊳∈ {≤, <,≥, >}, and
k ∈ N is a bound on the number of steps.

IA169 System Verification and Assurance – 12 13/31

Property specification languages

We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | P⊲⊳bψ

path formula ψ ::= X ϕ | ϕU ϕ | ϕU≤k ϕ

where
b ∈ [0, 1] is a probability bound,
⊲⊳∈ {≤, <,≥, >}, and
k ∈ N is a bound on the number of steps.

A PCTL formula is always a state formula.

αU≤k β is a bounded until saying that α holds until β within k steps.
For k = 3 it is equivalent to β ∨ (α ∧ X β) ∨ (α ∧ X (β ∨ α ∧ X β)).

Some tools also supports P=?ψ asking for the probability that the
specified behaviour will occur.

IA169 System Verification and Assurance – 12 13/31

PCTL examples

We can also use derived operators like G , F , ∧, ⇒, etc.

idle working done

repair error

1 0.95
0.05

1

1

1

Probabilistic reachability P≥1(F done)

probability of reaching the state done is equal to 1

Probabilistic bounded reachability P>0.99(F ≤6 done)

probability of reaching the state done in at most 6 steps is > 0.99

Probabilistic until P<0.96((¬error) U (done))

probability of reaching done with no visit of error is less than 0.96
IA169 System Verification and Assurance – 12 14/31

Qualitative vs. quantitative properties

Qualitative PCTL properties
P⊲⊳b ψ where b is either 0 or 1

Quantitative PCTL properties
P⊲⊳b ψ where b is in (0, 1)

IA169 System Verification and Assurance – 12 15/31

Qualitative vs. quantitative properties

Qualitative PCTL properties
P⊲⊳b ψ where b is either 0 or 1

Quantitative PCTL properties
P⊲⊳b ψ where b is in (0, 1)

In DTMC where zero probability edges are erased, it holds that

P>0(X ϕ) is equivalent to EX ϕ
there is a next state satisfying ϕ

P≥1(X ϕ) is equivalent to AX ϕ
the next states satisfy ϕ

P>0(F ϕ) is equivalent to EF ϕ
there exists a finite path to a state satisfying ϕ

but

P≥1(F ϕ) is not equivalent to AF ϕ

IA169 System Verification and Assurance – 12 15/31

Qualitative vs. quantitative properties

Qualitative PCTL properties
P⊲⊳b ψ where b is either 0 or 1

Quantitative PCTL properties
P⊲⊳b ψ where b is in (0, 1)

In DTMC where zero probability edges are erased, it holds that

P>0(X ϕ) is equivalent to EX ϕ
there is a next state satisfying ϕ

P≥1(X ϕ) is equivalent to AX ϕ
the next states satisfy ϕ

P>0(F ϕ) is equivalent to EF ϕ
there exists a finite path to a state satisfying ϕ

but

P≥1(F ϕ) is not equivalent to AF ϕ

There is no CTL formula equivalent to P≥1(F ϕ),
and no PCTL formula equivalent to AF ϕ.

IA169 System Verification and Assurance – 12 15/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability in the k-th state when starting in 1

IA169 System Verification and Assurance – 12 16/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability in the k-th state when starting in 1

[

1 0 0 0 0
]

× P =
[

0 1 0 0 0
]

IA169 System Verification and Assurance – 12 16/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability in the k-th state when starting in 1

[

1 0 0 0 0
]

× P =
[

0 1 0 0 0
]

[

1 0 0 0 0
]

× P2 =
[

0 0 0.05 0 0.95
]

IA169 System Verification and Assurance – 12 16/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability in the k-th state when starting in 1

[

1 0 0 0 0
]

× P =
[

0 1 0 0 0
]

[

1 0 0 0 0
]

× P2 =
[

0 0 0.05 0 0.95
]

[

1 0 0 0 0
]

× P3 =
[

0 0 0 0.05 0.95
]

IA169 System Verification and Assurance – 12 16/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability in the k-th state when starting in 1

[

1 0 0 0 0
]

× P =
[

0 1 0 0 0
]

[

1 0 0 0 0
]

× P2 =
[

0 0 0.05 0 0.95
]

[

1 0 0 0 0
]

× P3 =
[

0 0 0 0.05 0.95
]

[

1 0 0 0 0
]

× P4 =
[

0 0.05 0 0 0.95
]

IA169 System Verification and Assurance – 12 16/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability in the k-th state when starting in 1

[

1 0 0 0 0
]

× P =
[

0 1 0 0 0
]

[

1 0 0 0 0
]

× P2 =
[

0 0 0.05 0 0.95
]

[

1 0 0 0 0
]

× P3 =
[

0 0 0 0.05 0.95
]

[

1 0 0 0 0
]

× P4 =
[

0 0.05 0 0 0.95
]

[

1 0 0 0 0
]

× P5 =
[

0 0 0.0025 0 0.9975
]

IA169 System Verification and Assurance – 12 16/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability of being in 5 or 2 in the k-th state

IA169 System Verification and Assurance – 12 17/31

How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =

0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

Probability of being in 5 or 2 in the k-th state

P ×
[

0 1 0 0 1
]T

=
[

1 0.95 0 1 1
]T

P2 ×
[

0 1 0 0 1
]T

=
[

0.95 0.95 1 0.95 1
]T

P3 ×
[

0 1 0 0 1
]T

=
[

0.95 1 0.95 0.95 1
]T

P4 ×
[

0 1 0 0 1
]T

=
[

1 0.9975 0.95 1 1
]T

P5 ×
[

0 1 0 0 1
]T

=
[

0.9975 0.9975 1 0.9975 1
]T

IA169 System Verification and Assurance – 12 17/31

Unbounded reachability - optional slide

Unbounded reachability
Let p(s,A) be the probability of reaching a state in A from s.

It holds that:

p(s,A) = 1 for s ∈ A

p(s,A) =
∑

s′∈succ(s) P(s, s ′) ∗ p(s ′,A) for s 6∈ A

where succ(s) is a set of successors of s and P(s, s ′) is the
probability on the edge from s to s ′.

Theorem

The minimal non-negative solution of the above equations
equals to the probability of unbounded reachability.

IA169 System Verification and Assurance – 12 18/31

Section

Long Run Analysis

IA169 System Verification and Assurance – 12 19/31

Long run analysis

1 2 5

4 3

1 0.95

0.05

1
1 1

Recall that we reach the state 5(done) with probability 1.

IA169 System Verification and Assurance – 12 20/31

Long run analysis

1 2 5

4 3

1 0.95

0.05

1
1 1

Recall that we reach the state 5(done) with probability 1.

1 2 5

4 3

1 0.95

0.05

1
1

0.5

0.5

What are the states visited infinitely often with probability 1?
IA169 System Verification and Assurance – 12 20/31

Transient and recurrent states

Definitions

A state of DMTC is called transient iff there is a positive
probability that the system will not return back to this state.

A state s of DMTC is called recurrent iff, starting from s, the
system eventually returns back to the s with probability 1.

Theorem

Every transient state is visited finitely many times with
probability 1.

Each recurrent state is with probability 1 either not visited or
visited infinitely many times.1

1This holds only in DTMC models with finitely many states.
IA169 System Verification and Assurance – 12 21/31

Transient vs. recurrent states

Which states are transient? Which states are recurrent?

1This holds only in DTMC models with finitely many states.
IA169 System Verification and Assurance – 12 22/31

Transient vs. recurrent states

Which states are transient? Which states are recurrent?

Decompose the graph
representation onto
strongly connected
components.

1This holds only in DTMC models with finitely many states.
IA169 System Verification and Assurance – 12 22/31

Transient vs. recurrent states

Which states are transient? Which states are recurrent?

Decompose the graph
representation onto
strongly connected
components.

Theorem 1

A state is recurrent if and only if it is in a bottom strongly
connected component. All other states are transient.

1This holds only in DTMC models with finitely many states.
IA169 System Verification and Assurance – 12 22/31

Irreducible Markov Chain

For the sake of infinite behaviour, we will concentrate on bottom

strongly connected components only.

Definition

A Markov chain is said to be irreducible if every state can be
reached from every other state in a finite number of steps.

Theorem

A Markov chain is irreducible if and only if its graph
representation is a single strongly connected component.

Corollary

All states of a finite irreducible Markov chain are recurrent.

IA169 System Verification and Assurance – 12 23/31

Stationary (Invariant) Distribution

Definition

Let P be the transition matrix of a DTMC and ~λ be a
probability distribution on its states. If

~λP = ~λ,

then ~λ is a stationary (or steady-state or invariant or
equilibrium) distribution of the DTMC.

Question:
How many stationary distributions can a Markov chain have?
Can it be more than one?
Can it be none?

IA169 System Verification and Assurance – 12 24/31

Stationary Distributions

Answer: It can be more that one. For example, in the Drunkard’s
walk

1 2 3 4
1/2 1/2

1 1

1/2

1/2

both (1, 0, 0, 0) and (0, 0, 0, 1) are stationary distributions.

IA169 System Verification and Assurance – 12 25/31

Stationary Distributions

Answer: It can be more that one. For example, in the Drunkard’s
walk

1 2 3 4
1/2 1/2

1 1

1/2

1/2

both (1, 0, 0, 0) and (0, 0, 0, 1) are stationary distributions.

But, this is not an irreducible Markov chain.

IA169 System Verification and Assurance – 12 25/31

Stationary Distributions

Theorem

In every finite irreducible DTMC there is a unique invariant
distribution.

IA169 System Verification and Assurance – 12 26/31

Stationary Distributions

Theorem

In every finite irreducible DTMC there is a unique invariant
distribution.

Q: Can it be none?

IA169 System Verification and Assurance – 12 26/31

Stationary Distributions

Theorem

In every finite irreducible DTMC there is a unique invariant
distribution.

Q: Can it be none?
Theorem

For each finite DTMC, there is an invariant distribution.

IA169 System Verification and Assurance – 12 26/31

Stationary Distributions

Theorem

In every finite irreducible DTMC there is a unique invariant
distribution.

Q: Can it be none?
Theorem

For each finite DTMC, there is an invariant distribution.

Q: How can we compute the invariant distribution of a finite
irreducible Markov chain?

IA169 System Verification and Assurance – 12 26/31

Stationary Distribution & Cut-sets

Again, we can construct a set of equations that express the result.

Theorem

Let P be a transition matrix of a finite irreducible DTMC and
~π = (π1, π2, . . . , πn) be a stationary distribution corresponding
to P. For any state i of the DTMC, we have

∑

j 6=i

πjPj,i =
∑

j 6=i

πiPi ,j .

IA169 System Verification and Assurance – 12 27/31

Mean Portion of Visited States and Inter Visit Time

Theorem

Let us have a finite irreducible DTMC and the unique
stationary distribution ~π. It holds that

πi = limn→∞E (# of visits of state i during the first n steps)/n.

Let us have a finite irreducible DTMC and the unique
stationary distribution ~π. It holds that

πi = 1/mi

where mi is the mean inter visit time of state i .

IA169 System Verification and Assurance – 12 28/31

Aperiodic Markov Chains

For example:

aperiodic periodic

Definition

A state s is periodic if there exists an integer ∆ > 1 such
that length of every path from s to s is divisible by ∆.

A Markov chain is periodic if any state in the chain is
periodic.

A state or chain that is not periodic is aperiodic.
IA169 System Verification and Assurance – 12 29/31

Aperiodic Markov Chains

Theorem

Let us have a finite aperiodic irreducible DTMC and the
unique stationary distribution ~π. It holds that

~π = limn→∞
~λPn

where ~λ is an arbitrary distribution on states.

Q: What this is good for?

IA169 System Verification and Assurance – 12 30/31

DTMC Extensions - Communication and Nondeterminism

Last remark on some DTMC extensions.

Modules and synchronisation

modules

actions

rewards

Decision extension

Markov Decision Processes (MDP)

Pmin and Pmax properties

IA169 System Verification and Assurance – 12 31/31

Information technology security
evaluation – standards,
assurance

IA169 – System verification and assurance

Ji í Barnat, Vojtěch ehák, Vashek Matyáš

Course coverage

• assurance, threat models, relevant security standards,

• testing, simulations, advance testing, symbolic execution,

• abstract interpretation, static analysis, theorem proving,

• automated formal verification & introduction to model-based

verification

• concrete software verification tools for analysis of

sequential and concurrent systems, real-time systems, and

systems with probabilities.

2 IA169

Position within other courses

• PA193 – Secure coding principles and practices

– Very useful

• PA018 – Advanced Topics in IT Security

– No strict dependence

• IA159 – Formal Verification Methods

– Useful follow-up

3 IA169

Course topics I

• Need for verification in the security area – Common

Criteria, FIPS 140-2, threat models, assurance

• Introduction to formal verification and testing

• Deductive verification

• LTL (Linear Temporal Logic) Model Checking

• CTL (Computation Tree Logic) Model Checking

• Symbolic execution

4 IA169

Course topics II

• Bounded Model Checking

• CEGAR and Abstract Interpretation

• Verification of Real-Time and Hybrid systems

• Verification of systems with probabilities

5 IA169

Course structure, credits

• 2/2/2 credits, +2 for the final exam

– Lecture: 2 hours weekly

– Seminar: 2 hours weekly

– Homework: 5+ hours weekly (on average)

6 IA169

Course marking

• Final exam: 70%

• Assignments: 30%

• Marking scheme:

A for 90% or higher, then

B for 80% or higher, then

C for 70% or higher, then

D for 60% or higher, then

E for 50% or higher, then

F(ail) for less than 50%.

Colloquy or credit – at least 44%.
7 IA169

Resources used – first lecture

• Common Criteria for Information Technology Security

Evaluation, v 3.4, rev. 4, Sep 2012

– http://www.commoncriteriaportal.org/

• Separation Kernel Protection Profile Revisited: Choices

and Rationale, T.E. Levin et al., 4th Annual Layered

Assurance Workshop, 2010

• Common Criteria Certification in the UK – UK IT security

evaluation & certification scheme, CESG

• Understanding the Windows EAL4 evaluation, J.S.

Shapiro, IEEE Computer 03/2003

• Security Requirements for Cryptographic Modules, FIPS

PUB 140-2

– http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
8 IA169

http://www.commoncriteriaportal.org/
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Security threat model

• Two views:

1) Description of security threats considered when
designing a (security) solution/system.

2) Definition of (all) possible threats to consider.

• Usual security notion:

– Assets to be protected

– Vulnerabilities of assets and relevant systems

– Threats exploiting the vulnerabilities

– Countermeasures (aim to) mitigate the threats

9 IA169

Threat modelling – approaches

• Attacker centric

– Popular in the research community (following two slides)

• System centric (a.k.a. design/SW centric)

– Taking over in the past decade or so, e.g. used in the
Microsoft Security Development Lifecycle

• Asset centric

– Business logic

• Defender/owner view getting more prominent

10 IA169

Attacker models – Needham & Schroeder

• attacker can eavesdrop and interfere all

communication

– record/modify/replay/inject messages

• node internal processes are safe

– secret keys, encryption process, …

• Comms security classics, paper from 1978 – paper

Using encryption for authentication in large

networks of computers, ACM Communications

11 IA169

Attacker models – Dolev & Yao

• Network = set of abstract machines exchanging

messages.

• Message = formal terms. Terms reveal some of the

message internal structure to the adversary, but not

all.

• Adversary can overhear, intercept, and synthesize

any message, is limited by the constraints of the

cryptographic methods used.

– Sometimes put as “the attacker carries the message.”
• Paper “On the security of public key protocols”,

IEEE Trans. on Information Theory, 1983
12 IA169

Trusted system/product

• Such one that behaves in a way we expect it to

behave

• Can be trusted to only such a functionality that

adheres to the relevant security policy

• Trust

– Belief that (a system…) satisfies given (security)
requirements and specifications

– Chance that (a system…) can breach the (security) policy
without leaving any trace of evidence

13 IA169

Common Criteria

14 IA169

• Interests of users, manufacturers, evaluators

• Target of evaluation (TOE) – what is (to be)
evaluated

• Protection profile (PP) (smartcards, biometrics, etc.)
– Catalogued as a self-standing evaluation document

• Security target (ST) – theoretical concept/aim

• Security Functional Requirements (SFRs) –
individual security functions provided by the TOE

• Evaluation of TOE – is the reality corresponding to
theory (ST)?

Common Criteria model

• TOE: Target of

Evaluation – the

evaluated system

• TSF: TOE Security

Functions – HW, SW,

FW used by the TOE

• TSC: TSF Scope of

Control – interactions

under the TOE

security policy

15 IA169

Common Criteria – two catalogues

• Two catalogues of components for specification of

assurance and functionality requirements, with a

standard terminology.

• Functionality – rules governing access to & use of

TOE resources, and thus information and services

controlled by the TOE

• Assurance

– grounds for confidence that an entity meets its security
objectives (CC v2.3)

– grounds for confidence that a TOE meets the SFRs (CC
v3.1)

16 IA169

Assurance is not robustness

• Assurance

– grounds for confidence that an entity meets its security
objectives (CC v2.3)

– grounds for confidence that a TOE meets the SFRs (CC
v3.1)

• Robustness

– characterization of the strength of a security function,
mechanism, service or solution, and the assurance (or
confidence) that it is implemented and functioning correctly
(US DoD definition)

17 IA169

CC evaluation in a nutshell

1. Define the product/system for evaluation

2. Specify its functionality

3. Specify the assurance level claimed

4. See details of evaluation with a certification body

5. Prepare evidence

18 IA169

CC: Functional & Assurance Requirements

Security Functional

Requirements (SFRs)

• The core – CC is in a

major part a catalogue

of security functions

• Same product with

different ST => different

SFRs

• Correctness of one

function can depend on

another function

Security Assurance

Requirements (SARs)

• Measures taken to

assure compliance with

the claimed functionality

• Design, development,

evaluation/verification

• CC provides a

catalogue of SARs

19 IA169

CC functional classes

• FAU: SECURITY AUDIT

• FCO: COMMUNICATION

• FCS: CRYPTOGRAPHIC SUPPORT

• FDP: USER DATA PROTECTION

• FIA: IDENTIFICATION AND AUTHENTICATION

• FMT: SECURITY MANAGEMENT

• FPR: PRIVACY

• FPT: PROTECTION OF THE TSF

• FRU: RESOURCE UTILISATION

• FTA: TOE ACCESS

• FTP: TRUSTED PATH/CHANNELS
20 IA169

CC assurance classes

• APE: PROTECTION PROFILE EVALUATION

• ASE: SECURITY TARGET EVALUATION

• ADV: DEVELOPMENT

• AGD: GUIDANCE DOCUMENTS

• ALC: LIFE-CYCLE SUPPORT

• ATE: TESTS

• AVA: VULNERABILITY ASSESSMENT

• ACO: COMPOSITION

21 IA169

CC assurance paradigms

• assurance based upon an evaluation (active

investigation)

• measuring the validity of the documentation and of

the resulting IT product by expert evaluators with

increasing emphasis on scope, depth, and rigour

• CC does not exclude, nor does it comment upon,

the relative merits of other means of gaining

assurance

22 IA169

Assurance through evaluation I

a) analysis and checking of process(es) and

procedure(s);

b) checking that process(es) and procedure(s) are

being applied;

c) analysis of the correspondence between TOE

design representations;

d) analysis of the TOE design representation against

the requirements;

e) verification of proofs;

23 IA169

Assurance through evaluation II

f) analysis of guidance documents;

g) analysis of functional tests developed and the

results provided;

h) independent functional testing;

i) analysis for vulnerabilities (including flaw

hypothesis);

j) penetration testing.

24 IA169

CC evaluation assurance scale

The increasing level of effort is based upon:

a) scope – the effort is greater because a larger

portion of the IT product is included;

b) depth – the effort is greater because it is deployed

to a finer level of design and implementation detail;

c) rigour – the effort is greater because it is applied in

a more structured, formal manner.

25 IA169

CC – assurance hierarchy & component
structure

26 IA169

Assurance elements – 3 exclusive classes

1. Developer action elements: activities that shall be

performed by the developer. Further qualified by

evidential material referenced in the following set of

elements. Req’s marked by “D” at the element No.

2. Content and presentation of evidence elements: the

evidence required, what the evidence demonstrates,

what the evidence shall convey. Marked by “C”.
3. Evaluator action elements: activities that shall be

performed by the evaluator. Marked by “E”.

27 IA169

28 IA169

29 IA169

7 evaluation assurance levels (EALs)

• Hierarchical system – higher or new components

– bold faced text in the description for the added
components

• The following slides present first the EALs in the

language of the CC and then from a practical

perspective.

30 IA169

EAL1 – functionally tested

• some confidence in correct operation is required,

but the threats to security are not viewed as serious

– sufficient to simply state the SFRs that the TOE must
meet, rather than deriving them from threats, etc. through
security objectives;

– analysis is supported by a search for potential
vulnerabilities in the public domain and independent
testing (functional and penetration) of the TSF;

– This EAL provides a meaningful increase in assurance
over unevaluated IT.

31 IA169

EAL2 – structurally tested

• assurance by a full security target (with given SFRs);

• analysis of the SFRs, using functional and interface

specs, guidance documentation and basic TOE

architecture description to understand the security

behaviour;

• configuration management system and evidence of

secure delivery procedures;

• independent confirmation of the developer test

results, vulnerability analysis (based upon the above

in italics) demonstrating resistance to penetration

attackers with a basic attack potential.
32 IA169

EAL3 – methodically tested and checked

• architectural description of the TOE design;

• development environment controls

• improved testing coverage of the security

functionality and mechanisms and/or procedures

that provide some confidence that the TOE was not

tampered with during development.

33 IA169

EAL4 – methodically designed, tested, and
reviewed

• complete interface specification, description of the

basic modular design of the TOE, implementation

representation for the entire TSF;

• demonstrating resistance to penetration attackers

with an Enhanced-Basic attack potential;

• additional TOE configuration mgmt incl. automation;

34 IA169

EAL5 – semiformally designed and tested

• modular TSF design;

• comprehensive TOE configuration management;

• semiformal design descriptions, a more structured

(and hence analysable) architecture.

35 IA169

EAL6 – semiformally verified design and
tested

• formal model of select TOE security policies;

• semiformal presentation of the functional

specification and TOE design;

• modular layered and simple TSF design;

• structured development process, development

environment controls, and comprehensive TOE

configuration mgmt incl. complete automation;

• more comprehensive analysis, more architectural

structure (e.g. layering), more comprehensive

independent vulnerability analysis.

36 IA169

EAL7 – formally verified design and tested

• structured presentation of the implementation;

• implementation representation, complete

independent confirmation of the developer test

results;

• comprehensive analysis using formal

representations and formal correspondence, and

comprehensive testing.

37 IA169

CC certified products by country & EAL

38 IA169

EAL1 – functionally tested

• analysis supported by independent testing of a

sample of the security functions;

• applicable where confidence in correct operation is

required but the security threat assessment is low.

• This EAL is particularly suitable for legacy systems

as it should be achievable without the assistance of

the developer.

39 IA169

EAL2 – structurally tested

• analysis exercises a functional and interface

specification and the high-level design of the

subsystems of the TOE;

• independent testing of the security functions;

• evidence required of developer 'black box' testing

and development search for obvious vulnerabilities.

• EAL2 is applicable where a low to moderate level of

independently assured security is required.

40 IA169

EAL3 – methodically tested and checked

• analysis supported by 'grey box' testing, selective

independent confirmation of the developer test

results and evidence of a developer search for

obvious vulnerabilities;

• development environment controls and TOE

configuration management are also required.

• EAL3 for a moderate level of independently assured

security, with a thorough investigation of the TOE

and its development, without incurring substantial re-

engineering costs.
41 IA169

EAL4 – methodically designed, tested, and
reviewed

• analysis supported by the low-level design of TOE

modules and a subset of the implementation;

• testing supported by an independent search for

obvious vulnerabilities;

• development controls supported by a life-cycle

model, identification of tools and automated

configuration management.

• EAL4 for a moderate to high level security, where

some additional security-specific engineering costs

may be incurred.
42 IA169

EAL5 – semiformally designed and tested

• analysis includes all of the implementation;

• supplemented by a formal model, a semiformal
presentation of the functional specification and high
level design and a semiformal demonstration of
correspondence;

• search for vulnerabilities must ensure resistance to
penetration attackers with a moderate attack potential;

• covert channel analysis and modular design required.

• EAL5 for a high level of security in a planned
development coupled with a rigorous development
approach.

43 IA169

EAL6 – semiformally verified design and
tested

• analysis supported by a modular approach to

design and a structured presentation of the

implementation;

• independent search for vulnerabilities must ensure

resistance to penetration attackers with a high

attack potential;

• a systematic search for covert channels;

• EAL6 where a specialised security TOE is required

for high risk situations.

44 IA169

EAL7 – formally verified design and tested

• the formal model is supplemented by a formal

presentation of the functional specification and high

level design, showing correspondence;

• evidence of developer 'white box‘ testing and

complete independent confirmation of developer

test results.

• EAL7 where a specialised security TOE is required

for extremely high risk situations.

45 IA169

CC certified products by country & EAL

46 IA169

Famous issue – Windows 2000

• Windows 2000 operating system was certified

(Common Criteria) at EAL-4 in 2002.

– with SP3 and one patch;

– EAL-4, augmented with ALC_FLR.3 (Systematic Flaw
Remediation);

– Microsoft invested millions of dollars and three years of
effort to gain the certification. (S. Bekker, Redmond
Magazine).

• Controlled Access Protection Profile (CAPP)

47 IA169

CAPP assumption A.PEER

“Any other systems with which the TOE communicates

are assumed to be under the same management

control and operate under the same security policy

constraints.

The TOE is applicable to networked or distributed

environments only if the entire network operates under

the same constraints and resides within a single

management domain.

There are no security requirements that address the

need to trust external systems or the communications

links to such systems.”
48 IA169

Controlled Access Protection Profile

• Level of protection appropriate for an assumed non-

hostile and well-managed user community

– requiring protection against threats of inadvertent or casual
attempts to breach the system security.

• The profile is not intended to be applicable to

circumstances in which protection is required

against determined attempts by hostile and well

funded attackers to breach system security.

• CAPP does not fully address the threats posed by

malicious system development or administrative

personnel.
49 IA169

Windows 2000 EAL-4 certification

• EAL4 rating means that you did a lot of paperwork

related to the software process, but says absolutely

nothing about the quality of the software itself. (J.S.

Shapiro)

• System disconnected from networks (at different

security level), disabled media drives, etc.

• Don't hook this to the internet, don't run email, don't

install software unless you can 100 percent trust the

developer, and if anybody who works for you turns

out to be out to get you, you are toast. (J.S. Shapiro)

50 IA169

And Now for Something Completely
Different… about Assurance viewed by…
• Customer – what level of guarantee I get that

security has been implemented in the product?

• Developer – what (inputs and cooperation) will my

team have to provide for the evaluation?

• Evaluator – did I get all required inputs and did all

tests run OK to confirm the claim?

• Operator – what assumptions can I build on when

preparing for my actions?

51 IA169

Security Requirements for Cryptographic
Modules

• Federal Information Processing Standard (FIPS)

Publication 140-2 (FIPS PUB 140-2)

• published May 2001 and last updated Dec 2002

– FIPS 140-3 (Draft) – proposed revision, hanging in the air
since 2009 (!)

• 4 levels, hierarchical levelling

• 11 functions (requirements):

– Cryptographic module specification; Cryptographic module
ports and interfaces; Role, services, and authentication;
Physical security; Operational environment; Cryptographic
key management; Mitigation of other attacks; …

52 IA169

FIPS 140-2 Annexes (drafts)

• Annex A: Approved Security Functions (Draft 2011)

• Annex B: Approved Protection Profiles (Draft 2007)

• Annex C: Approved Random Number Generators

(Draft 2010)

• Annex D: Approved Key Establishment Techniques

(Draft 2011)

53 IA169

FIPS 140-2 levels I

Level 1

– basic security requirements (e.g., certified algorithm);

– no specific physical security mechanisms.

Level 2

– features that show evidence of tampering – physical
access to the plaintext cryptographic keys and critical
security parameters (CSPs) within the module

• including tamper-evident coatings or seals that must be
broken to attain,

– or pick-resistant locks on covers or doors to protect
against unauthorized physical access.

54 IA169

FIPS 140-2 levels II

Level 3

– high probability of detecting and responding to attempts at
physical access, use or modification of the cryptographic
module;

– may include the use of strong enclosures and tamper
detection/response circuitry that zeroes all plain text CSPs
when the removable covers/doors of the cryptographic

module are opened.

55 IA169

FIPS 140-2 levels III

Level 4

– physical security mechanisms provide a complete
envelope of protection around the cryptographic module
with the intent of detecting and responding to all
unauthorized attempts at physical access;

– protects a cryptographic module against a security
compromise due to environmental conditions or

fluctuations outside of the module's normal operating
ranges for voltage and temperature;

– for operation in physically unprotected environments.

56 IA169

FIPS 140-2

• Level 2 – operating system at EAL2+

• Level 3 – operating system at EAL3+

– and additional req.: Security Policy Model (ADV_SPM.1)

• Level 4 – operating system at EAL4+

57 IA169

Nice standards and theory, but…
• OpenSSL derivative FIPS-certified, found flawed

– that particular one de-certified, others including the flaw
not

• Dual EC DRBG defective by design mandated for

FIPS 140-2

• IBM 4758 (with CCA API) – level 4

– easy/fast logical attacks on CCA API

• Safenet Luna CA3

– disassembling showed no potting material

– undocumented API functions

– functionality in breach of security policy
58 IA169

Study of a particular PP

• PP BSI-PP-0025 – German (BSI) Common Criteria

Protection Profile for USB Storage Media

– https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Z
ertifizierung/ReportePP/pp0025b_engl_pdf.pdf?__blob=pu
blicationFile

• PP organisation:

– the TOE description,

– the TOE security environment,

– the security objectives,

– the IT security requirements and

– the rationale.

59 IA169

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/ReportePP/pp0025b_engl_pdf.pdf?__blob=publicationFile

PP BSI-PP-0025 – roles in the TOE

• Authorised user (S1)

– Holds the authentication attribute required to access the
TOE’s protected memory area, in which the confidential
data is stored.

– Can modify the authentication attribute.

60 IA169

PP BSI-PP-0025 – roles in the TOE, cont’d

• Non-authorised user (S2)

– Wishes to access S1’s confidential data in the USB
storage medium’s memory (examples of confidential data
are given in Section 2.5).

– Does not have the authentication attribute to access the
protected data.

– Can obtain a USB storage medium of the same type. Can

try out both logical and physical attacks on this USB
storage medium.

– Can gain possession of the TOE relatively easily since the
TOE has a compact form.

61 IA169

PP BSI-PP-0025 – threats (countered)

• T.logZugriff – Assuming that S2 gains possession of the

TOE, he/she accesses the confidential data on the TOE.

S2 gains logical access by, for example, connecting the

TOE to the USB interface of a computer system.

• T.phyZugriff – Assuming that S2 gains possession of the

TOE, he/she accesses the TOE’s memory by means of a
physical attack. Such an attack could take the following

form, for example: S2 removes the TOE’s memory and
places it into another USB storage medium which he/she

uses for the purpose of logical access to the memory.

62 IA169

PP BSI-PP-0025 – threats, cont’d

• T.AuthÄndern – Assuming that S2 gains

possession of the TOE, he/she sets a new

authentication attribute, with the result that the

data becomes unusable for S1.

• T.Störung – A failure (e.g. power failure or

operating system error) stops the TOE operating

correctly. As a result, confidential data remains

unencrypted or the TOE’s file system is damaged.

63 IA169

Study of another PP development

• Security kernel – used to simulate a distributed

environment, introduced by J Rushby (1981) as a solution

to the difficulties and problems that had arisen in the

development and verification of large, complex security

kernels that were intended to “provide multilevel secure
operation on general-purpose multi-user systems.”

• U.S. Government Protection Profile for Separation Kernels

in Environments Requiring High Robustness, v 1.03

• Study paper “Separation Kernel Protection Profile

Revisited: Choices and Rationale”, T.E. Levin et al., URL:
http://fm.csl.sri.com/LAW/2010/law2010-03-Levin-Nguyen-Irvine.pdf

64 IA169

