
Separation Kernel Protection Profile Revisited:
Choices and Rationale

Timothy E. Levin, Thuy D. Nguyen, Cynthia E. Irvine

Naval Postgraduate School
Michael McEvilley

The MITRE Corporation
{levin, irvine, tdnguyen}@nps.edu, mcevilley@mitre.org

Abstract: A variety of critical decisions were made during the development of the U.S. Government
Protection Profile for Separation Kernels in Environments Requiring High Robustness (the SKPP); in
addition several errata that have come to light since its publication. This paper is intended to help future
SKPP users to better understand the intent of the requirements.

1. Introduction	

The U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness (or
“SKPP”), is and has been the basis for the development and evaluation of various high assurance products. Every
protection profile is required to provide reasoning and explanations regarding its requirements. However, the general
case is that these ad hoc explanations and structured rationale are often brief, pro forma statements that do not
provide extensive background due to resource limitations during protection profile development. The purpose of
this paper is to explain in more depth of a variety of critical decisions in the development of the SKPP, and describe
several errata that have come to light since its publication. This will help future users of the SKPP to better
understand the intent of the requirements.
Several challenges during development of the SKPP resulted in its four-year project lifetime. Primarily, the project
explored several novel areas in Common Criteria requirements specification, some of which are discussed in the rest
of this paper. It was the first high robustness product protection profile sanctioned by the U.S. Government. It
addressed new requirements in the specification of Target of Evaluation (TOE) hardware. It developed a new
abstraction and related requirements for least privilege in separation kernels, and a means by which a TOE could
ensure the adequacy of its trusted subjects (with respect to the basic abstract policy). It developed the configuration
vector abstraction by which the basic abstract policy and other requirements for configuration could be provided to
the TOE. It developed specifications for a configuration tool to be used by security administrators to prepare
configuration vectors for submission to the TOE. And finally, the authoring team developed concepts and
requirements for dynamic, runtime changes to the security configuration of the TOE.
Development of the SKPP began in 2003 with a series of planning meetings called by the National Security Agency
(NSA). The NSA then assigned a small group of security analysts from The MITRE Corporation and the Naval
Postgraduate School (NPS) to build a U.S. Government High Robustness protection profile for separation kernels,
using an existing, unpublished Partitioning Kernel Protection Profile [PKPP] skeleton1 as “a starting point.” The
members of this authoring team (who are also the authors of this paper) were: Michael McEvilley from The MITRE
Corporation; and Cynthia Irvine, Thuy Nguyen, and Timothy Levin from NPS. Hugo Badillo, NSA, managed the
project; and Cynthia Irvine provided authoring team leadership. This team brought to the project a broad collective
background, including extensive experience with authoring Common Criteria Protection Profiles; high assurance
security kernel development; formal verification; product evaluation; and engineering of operational requirements
that in part motivated the need for the SKPP.

1 The PKPP was developed by members of The Open Group Real-Time and Embedded Systems Forum

2. Separation	
 Kernel	

A separation kernel is an executive that serves a simple purpose: it controls all of the physical resources of a system
(i.e., hardware, firmware, software); it constructs different types of resource abstractions from the physical
resources, while leaving other physical resources in their original form; it exports a subset of these resources; it
allocates the exported resources to partitions; and it controls information flow between the partitions and between
exported resources. The exported resources, partitions, and allowed flows are specified in a configuration-vector
input to the separation kernel during its initialization.
A subset of the exported resources are active, i.e., they can cause operations to be performed, and are commonly
referred to as subjects. Flows occur between a subject and a resource, and between the subject’s partition and the
resource’s partition, in a direction defined by a mode. In read mode, the subject is the destination of the flow and in
write mode the subject is the source of the flow (by convention, the subject is always listed first in flow statements,
followed by the resource and the mode). The system enforces a partition-to-partition (P2Pp) policy and a subject-to-
resource (S2Rp) policy (also known as a least privilege policy). Associated with each policy are the rules regarding
flows, P2P and S2R respectively, which can be thought of as sets of flows:

flow: [s: subject, r: resource, m: mode] (1)
pflow: [sub_p: partition, res_p: partition, m: mode]
S2R: {flow}
P2P: {pflow}

3. Compound	
 Security	
 Policy	

The SKPP was written to enforce a compound security policy, or PIFP, with requirements at the gross partition level
as well as at the granularity of individual subjects and resources. The efficacy of a compound policy prompted
significant discussion during the review of the SKPP. Some of this discussion follows.

3.1. Reduction	
 of	
 Dual	
 Policies	

It has been suggested that the dual policies can be systematically reduced offline to one statement of allowed
subject-to-resource flows, by, for example, simply removing from the S2R matrix all of the flows not allowed by
both policies. Certainly, this reduction would need to be performed by trusted components in order to have
assurance that the correct policy is enforced. However, the clarity provided by a combination of a high level
abstract policy and a granular least privilege policy would be lost. Such a reduction has been proposed in other
systems as well, with similar loss. For example, one could reduce the Bell and LaPadula model’s [Bell73] (1)
current access set and (2) permission matrix into a simple “what is allowed” matrix for the sake of mathematical
simplicity, but this would suffer the disadvantage of losing the ability to reason about the system’s fundamental
MAC and DAC security relationships. The maximal mathematical reduction is not always the most useful
expression for engineering and comprehension.
The SKPP requires the security policy to be defined by an external configuration vector, and that this policy be
bound to the evaluated product during initialization. As made clear starting in Section 1 of the SKPP, this approach
to policy definition (versus, for example, a policy that is evaluated as part of the TSF) levies a responsibility on
actors and elements outside of the TOE to ensure that the policy is semantically correct and has not been corrupted.
While such a configurable mandatory security policy can be of high practical value in reducing the cost of the
evaluated product, the additional product complexity, and the uncertainty as to whether a given instantiation of
configuration data is well-formed, may weaken the assurance arguments. This problem is given considerable relief
with the SKPP’s use of a compound security policy, in which both partition-to-partition policy rules (P2P) and the
subject-to-resource (S2R) policy rules apply: no matter how complex the S2R rules are, with correctly configured
policy data, the information stake-holders such as the site security officer (SSO) and the accreditor have the ability
to understand the compound policy by examining the P2P rules.
The P2Pp policy provides the foundation for covert channel requirements. Without the P2Pp, the covert channel
requirements, as they are written, would be vacuous.
Finally, regarding the S2Rp policy, the ability of a secure system to realize the goals of accountability, as well as the
confinement of damage is limited by the level of granularity with which the system is able to invoke the principle of
least privilege [Saltzer75]. To provide high assurance, SKPP requirements for least privilege apply at the same
granularity as the resources that are exported, i.e., at the resource level.

Given that an SKPP-based system is configured to enforce a compound policy, one might ask: “Are you saying that
the separation kernel must literally make two separate checks before allowing any operation that invokes a flow?”
The answer is: “yes,” and engineering aspects are discussed in the next section.

3.2. Engineering	
 of	
 Compound	
 Policies	

A TOE implementation can encode the compound policies however it likes for efficiency, and cache the related
decisions, as long as these encodings and caches are performed by the TSF or its initialization routines. In fact, with
suitable hardware support, runtime software checks may not be needed at all, e.g., if all of the flows of each runtime
application are verified during initialization to conform to the policy, and those verifications are cached in the form
of hardware segment descriptors. The kernel could then pass the descriptors to applications in the form of
application start-up data, and no further software checks would be required.
This approach requires that the entire compound policy must be checked by trusted mechanisms. It is not sufficient,
for example, to reduce the policies in an ad hoc manner and then pass the simplified “what is allowed” matrix to the
runtime separation kernel, as there would be no assurance of correctness in the reduction.
Of course, it may not be feasible to reduce access control to an initialization function, e.g., if resources are created or
brought into a subject’s address space during runtime, or if resources are not associated with durable permission
caches (such as segment descriptors). Such resources might include certain encapsulated synchronization objects,
for which it may be possible for the TSF to cache a “reduced” matrix representing the compound policy.

4. SKPP	
 Policy	
 Semantics	

The SKPP compound policy semantics resulted from a long and winding road. For two years during which there
was much discussion with the NSA, the original policy (see Equation 2) was stable. Then a revised version was
submitted for review in August of 2006 (Equation 3). In September, the NSA directed the authoring team to restate
the compound policy as an ordered system of checks with three-state access control values (viz., allow, deny, don’t
care), much like a DAC system (see Equation 4). By October of 2006, the final policy was submitted to the NSA
(see Equation 5). These policies are described below. Related specifications are described in Appendix A.

4.1. Original	
 Policy	

The original security policy for the SKPP was fairly simple, but strict: for a flow be ALLOWED, it must be
permitted by both the P2P policy rules and the S2R policy rules, as shown in this boolean expression
[SKPPv0.621_2004_07_07]:
 ALLOWED([s: subject, r:resource, m:mode]) = (2)
 [s, r, m] ∈ S2R
 ∧
 [s.p, r.p, m] ∈ P2P
This policy was revised to accommodate vendors who wished to bifurcate the compound policy [SKPP V1.0-
060801-clean], allowing either or both policies to be active in a given system:

ALLOWED([s: subject, r:resource, m:mode]) = (3)
 S2Rp ∈ sys.policy →
 [s, r, m] ∈ S2R
 ∧

P2Pp ∈ sys.policy →
 [s.p, r.p, m] ∈ P2P
(where sys.policy indicates which policies are configured to be active).

4.2. Ordered	
 Policy	

Based on a desire for the SKPP S2R policy to be consistent with DAC policies in other systems (e.g., [MLOSPP]),
the SKPP management team decided that the S2R policy should be structured with a set of ordered rules by which
the priority of authorizations would be determined [Badillo06]. This policy includes notions of explicit denial of
access, and a “don’t care” mode of access, such that each mode (read, write) in the policy matrix would have one
of three values (allowed, denied, or null).

The ordering was as follows:
 ALLOWED([s: subject, r:resource, m:mode]) = (4)
 If S2R(s,r).m = deny

then false
else if S2R(s, r).m = allow

then true
else if P2P(s.p, r.p).m = deny #null S2R(s, r).m

then false
else if P2P(s.p, r.p).m = allow

then true
else false # null P2P(s.p, r.p).m

This policy allows an override of the P2Pp policy by including anything other than null in the S2R entry. Some of
the problems with this policy that were discussed were:

• It is not the role of a protection profile to dictate how to build a system, rather its purpose is to establish
requirements for what the derived system should be and do. In this case, the suggested policy appears to be
telling the vendor how to implement DAC, in terms of the ordering of precedence rules.

• For the SKPP to require a specific ordering is too restrictive: it cannot possibly be the best model for every IT
environment. Ideally, “the System Security Officer can decide the most suitable semantics for a specific
application environment, without being forced to adopt a specific built-in policy” [Bertino99].

• The ordering seems arbitrary, as there does not appear to be a reason that the more granular permissions
should have more precedence. It would seem reasonable to build a system with either S2R or P2P having
precedence.

• Negative authorizations can introduce complexity (e.g., policy conflicts and potential user confusion
[Barkley98]). In complex environments, monotonicity is recognized as a simplifying restriction, which
ensures computability and correctness [Blaze99] as well as coherency, since a unique access decision is
readily apparent [Karjoth01].

In the end, specific modes of access are not required by SKPP. It is sufficient if the means of indicating individual
permissions allow the TSF to differentiate between authorization and denial of a requested flow. It is an exercise for
the TOE developer to determine how best to achieve the intent.

4.3. Final	
 Policy	

The final policy [SKPP] simplified the ordered set of rules, although it is still more complicated and less restrictive
than the original:
 ALLOWED([s: subject, r: resource, m: mode]) = (5)
 S2Rp ∈ sys.policy → (
 S2R(s, r). m = allow
 ∨
 (S2R(s,r).m = null
 ∧

 P2P(s.p, r.p).m = allow
))
 ∧

P2Pp ∈ sys.policy →
 P2P(s.p, r.p).m = allow

In the S2Rp policy the S2R rules override the P2P rules everywhere except where there is a null entry in the S2R
rule set. Note that the S2Rp policy is defined to reference the P2P values, regardless of whether the P2Pp policy
itself is active.

4.4. Verification	
 and	
 Engineering	
 Suggestions	

We believe that it is a viable option for a vendor to elect to implement the original policy (see Equation 2) as the
default in an SKPP-based system. Since the S2R matrix cannot be ignored in the original policy, the set of secure

reachable states (or the set of accesses allowed) is a subset of those allowed by the final policy: so the original policy
can be considered to be at least as secure as the final policy, insofar as it introduces no new states that would require
further analysis. Of course, having implemented the original policy as a default, a vendor could also choose to allow
the final policy to be selected as a configuration-vector option.
The SKPP requires the vendor to provide a formal security policy model of the behavior observable at the interface
of the TSF. The formalization in Equation 5 precisely describes the flow, or access control, requirement of the

SKPP. A vendor may choose a different representation of the security policy in the formal model [Greve03], or add
more descriptive elements to the formal model (e.g. a representation of state changes), but Equation 5 (or Equations
2 or 3) should be sufficient as the core of the policy statement in a formal security policy model of an SKPP-based
system (e.g., [Levin04]).

5. Basic	
 Acyclic	
 Flows	
 	
 	

Another significant concern with separation kernels is the identification of trusted subjects. Information stakeholders
need assurance that all trusted subjects in deployed systems are suitably trustworthy, and that they are confined with
respect to the principle of least privilege. To support the analysis of trusted subjects, the SKPP requires the
identification of a strict base policy, or PIFP Acyclic Subset (PAS), an acyclic subset of the flows allowed by the
P2P rules (the PAS terminology is introduced here to explain the SKPP requirements stated in
OE.TRUSTED_FLOWS). The PAS allows the SSO to understand the core lattice [Denning76] of the policy,
identify trusted subjects, as well as understand the scope of (relaxed) flows available to trusted subjects. However, if
the separation kernel is designed or configured such that P2P rules are advisory, in the sense that they may be over-
ridden by the S2R rules, then the value of the PAS as a tool will be diminished. Figure 1 shows a cycle between
partitions 1, 2 and 3 (thick arrows) and between resources (thin arrows), and illustrates how a PAS (the thick, solid
arrows) determines which of the subjects must be trusted (i.e., the subject in Partition 3) [Levin06].
Like the P2P matrix, the PAS can be viewed as a set of partition flows:

PAS = {[subj_p: partition, res_p: partition, m: mode]} (6)
The PAS is a subset of P2P, and does not contain any cycles:

PAS ⊆ P2P (7)
∧
∀ px: path (
 px ⊆ PAS →

∄ px2: path (
px2 ⊆ PAS

 ∧
 (px.first = px2.last ∧ px.last = px2.first)
))

Figure 1. Cycle resolved via PAS

where path is an ordered set (list) of partition flows in which the destination of each flow in the list is the source of
each succeeding flow, thus linking the two partitions:
 ∀ p:path, i: integer ((8)

i >= 1 ∧ i < length(p) ->
destination(p.i) = source(p.i+1)

)
Since a path, here, is a total order, the set of possible paths in the PAS (i.e., the power set of paths in the PAS) may
contain paths that partially overlap.
The point of PAS is to concisely identify the basic strict policy of the system, and to help ensure that the system’s
identified set of trusted subjects is correct. The TOE must ensure the latter property, based on the PAS (per
OE.TRUSTED_FLOWS2).

∀ s: subject, r:resource, m:mode((9)
ALLOWED([s, r, m]) # see definition of ALLOWED
→ (

[s.p, r.p, m] ∈ PAS # either the flow is in PAS
⋁
s ∈ trusted_subjects # or the flow is caused by trusted subject

))

5.1. Multiple	
 Partitions	
 per	
 Equivalence	
 Class	

In determining the PAS, it is necessary to address the possibility of cycles among partitions. The SKPP allows two
different forms of cycles among partitions:

1). A cycle that includes one or more flows that (a) are caused by a trusted subject and (b) are not in the
PAS; together with zero or more flows from the PAS).
2). A cycle in which all of the flows are in the same equivalence class.

A TOE may be configured with multiple partitions representing a single policy equivalence class, where the
resources in such a group of partitions would be treated equivalently with respect to the P2Pp policy. For example,
an MLS application running on the TOE could have multiple partitions interpreted as SECRET in the application
domain. Another example of a policy equivalence class is the group of partitions labeled B in Figure 2; which is
part of an acyclic flow from partition A to partition C. For determining whether or not the PAS is acyclic, each
equivalence class included in the PAS is collapsed, so that any cycles therein are discounted.

2 … a partial order of the flows that are allowed between policy equivalence classes will be identified. Any subject
allowed by the configuration data to cause information flow that is contrary to the partial order will be trusted …
[SKPP]

Figure 2. Acyclic Flows with Policy Equivalence Class

The abstract PAS policy is monomorphic to an MLS policy over the same entities, meaning that a given PAS policy
can always be mapped to (a subset of) an MLS policy. Since the partition flows are acyclic, they can be embedded in
a corresponding lattice (however the reverse is not necessarily true, as the lattice’s transitivity characteristic might
not be present). Thus, so-called intransitive non-interference [Rushby92] policies can be implemented with the
PAS, as shown in Figure 3.

5.2. Alternative	
 Policy	
 Model	

Other models for P2P, S2R and PAS resolution are possible. For example, a compelling alternative (indicated as
P2P’ and S2R’) is one where P2P’ itself would be required to be acyclic (per Equation 7), and PAS would not be
necessary. Flows allowed by S2R’ rules but not by P2P’ rules would be denied unless the calling subject was a
trusted subject. This has the benefit of both simplifying the policy and also allowing S2R to override P2P for trusted
subjects, obviating the need for a bifurcated policy (per Equation 5):

ALLOWED([s: subject, r:resource, m:mode]) = (10)
[s, r, m] ∈ S2R’
∧
([s.p, r.p, m] ∈ P2P’ # either the flow is in P2P’
 ⋁
 s ∈ trusted_subjects # or the flow is caused by trusted subject
)

6. Assurance	
 level	
 of	
 SKPP	
 	

Since the publication of the SKPP, there has been some controversy regarding assurance and robustness levels of
separation kernels. This section provides some historical perspective.

6.1. Robustness	
 vs.	
 EAL	

The CC definition of assurance has changed over time. In CC Version 2.3 (against which the SKPP was evaluated),
assurance is defined as “grounds for confidence that an entity meets its security objectives.” [CCv2.3] This
definition was modified in CC Version 3.1 Revision 3 (the current version) to “grounds for confidence that a TOE
meets the SFRs” [CCv3.1]. The revised definition clarifies that assurance is determined through a (presumably)
objective assessment of the security functionality provided by a TOE.
The CC does not address robustness, but the US Department of Defense IA policies define it as “a characterization
of the strength of a security function, mechanism, service or solution, and the assurance (or confidence) that it is
implemented and functioning correctly” [8500.01E, 8500.2]. The robustness of an IA solution is rated as high,
medium or basic where high robustness is defined as “security services and mechanisms that provide the most
stringent protection and rigorous security countermeasures” [IATF]. In other words, robustness is not the same as
assurance.

Figure 3. Intransitive Flow

For US Government protection profiles, the robustness level of a TOE is established based on the strength of the
protection mechanisms implemented by the TOE to protect the data and the assurance that the design and
implementation are correct. A TOE with a highest EAL rating would not automatically receive the highest
robustness rating. For example, a TOE that meets EAL7 requirements but does not include hardware as part of the
TOE would not be considered as a high robustness TOE. While consistency instruction manuals for development of
US Government Protection Profiles have been published by the NSA for basic and medium robustness [NIAP05a,
NIAP05b], no such manual exists for high robustness.
To extend the robustness or make other enhancements, a protection profile may make two types of changes to the
standard (e.g., EAL6 and EAL7) assurance package requirements. The first is augmentation, where, for a given
EAL, additional assurance components are drawn from the CC-defined family of assurance requirements; in
contrast, the second, extended requirements are either modifications of existing CC requirements or completely new
requirements, which are only specified when there are no equivalent requirements in the CC.

6.2. SKPP	
 Robustness	
 	

The methodology used to derive the assurance requirements for the SKPP involved the following steps:

1. Assemble the initial set of requirements based on the EAL6 package.
2. Augment the base set with EAL7 requirements to attain the assurance necessary for high robustness,

e.g., use of formal methods.
3. Extend the requirements to address issues not covered by the CC, e.g., platform assurance and trusted

initialization.
Following steps one and two, the initial assurance requirements in the SKPP resulted in a combination of assurance
components from the EAL6 and EAL7 assurance packages, which would be considered as EAL6 with augmentation
(i.e., EAL6+). One example is the “depth of testing” requirement. CC Version 2.3 requires ATE_DPT.2, “low-
level design” testing, for both EAL5 and EAL6, while ATE_DPT.3 is only required at EAL7. The latter adds the
requirement that functional testing must be performed at the level of the implementation representation (source
code). To be consistent with high robustness, the team augmented the SKPP with ATE_DPT.3.
In step three, the SKPP introduced a significant number of extended requirements to ensure a level of assurance that
is necessary to support operating environments requiring high robustness. Some of the trusted initialization
concerns raised in the SKPP were subsequently addressed in CC Version 3.1 Revision 3; in ADV_ARC.1.3C and in
annex A (CCV3.1R3, Part 3). Specifically, ADV_ARC.1.3C requires the TOE developer to "describe how the TSF
initialization process is secure;" and Annex A contains discussions on several ADV_INI SARs: the principles of
self-protection, domain separation and non-bypassability must be applied to the initialization function (paragraph
222); the TSF must be protected against the initialization code (paragraph 533); and the initialization function must
ensure the integrity to the TSF (paragraph 534).
Although early SKPP drafts discussed an EAL6+ claim for the SKPP, it was eventually realized that the SKPP
should make no such claim, due to the number of extended requirements it includes and the lack of an NSA-vetted
analysis indicating that those extended requirements constituted a legitimate augmentation of EAL6. Sections 1.3
and 7.9 of the SKPP explicitly state that the SKPP does not claim conformance to any EAL, which is consistent with
its CC validation certificate. Specifically, the CC validation certificate identifies the SKPP as a high robustness
assurance package, but does not make a claim of a specific EAL. Nevertheless, readers of the SKPP may notice that
the rationale for the A.COVERT_CHANNEL assumption mentions EAL6+. This was due to an editorial oversight
and should not be construed to assert an EAL6+ claim for the SKPP.

6.3. Product	
 Evaluations	

While SKPP was validated as high robustness, only, a commercial product was soon evaluated against the SKPP and
received credit for achieving both high robustness, and “EAL6+” [VPL]. The SKPP authoring team contacted
NIAP to enquire about the apparent contradiction between the SKPP assurance claim (viz., no assurance claim) and
that stated in the product’s CC validation certificate (EAL6+). The NIAP response [NIAP08] implied that the
product Security Target (ST) constituted a legitimate mapping of High Robustness to the equivalent of EAL6
augmented because that ST “covers the intent of all EAL6 and some EAL7 requirements.” This, however, begs the
question about the criteria used to make such a determination, since the evidence presented in the product’s ST and
in its ST Evaluation Report made no EAL claims, and there has been no statement by the CC community that
describes how extended requirements translate to an EAL.

7. Conclusions	

To help future developers understand the meaning and intent of the SKPP, we have provided a historical perspective
and various rationale for a set of key issues regarding the SKPP. A preliminary set of errata with respect to the
published version of SKPP is provided in Appendix B, and we hope to provide a more thorough examination in the
near future.
	

References	

8500.01E Department of Defense Directive Number 8500.01E, October 24, 2002, Certified Current as of April 23,

2007.
8500.2 Department of Defense Instruction Number 8500.2, February 6, 2003.
Badillo06 Badillo, H, “Summary of Proposed Change to the PIFP,” e-mail communication with authoring team,

September 29, 2006.
Barkley98 J. Barkley and A. Cincotta, “Managing role/permission relationships using object access types.” In

Proceedings of the Third ACM Workshop on Role-Based Access Control, pp. 73-80, 1998.
Bell73 D. E. Bell and L. LaPadula, “Secure computer systems: Mathematical foundations and model,” Tech. Rep.

M74-244, The MITRE Corp., Bedford, MA, May 1973.
Bertino99 E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo, A logical framework for reasoning on data access

control policies, In. Proceedings of the 12th IEEE Computer Security Foundations Workshop, pp. 175 –
189, June 1999.

Blaze99 M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The Role of Trust Management in
Distributed Systems Security,” Lecture Notes in Computer Science, Issue 1603, pp. 185-210, 1999.

CCv2.3 Common Criteria for Information Technology Security Evaluation, Version 2.3, CCIMB-2005-08-[001,
002, 003], August 2005.

CCv3.1 Common Criteria for Information Technology Security Evaluation, Version 3.1 Revision 3, CCIMB-2009-
07-[001, 002, 003], July 2009.

Denning76 D. E. Denning, “A Lattice Model of Secure Information Flow,” Communications of the A.C.M., vol. 19,
no. 5, pp. 236–243, 1976.

Greve03 D. Greve, M. Wilding, and W. M. Vanfleet, “A separation kernel formal security policy,” in Fourth
International Workshop on the ACL2 Theorem Prover and Its Applications, (Boulder, Colorado), July
2003.

IATF Information Assurance Technical Framework, Chapter 4, Release 3.1, National Security Agency, September
2002.

Karjoth01 G. Karjoth, “The Authorization Service of Tivoli Policy Director,” Proceedings of the 17th Annual
Computer Security Applications Conference, pp. 319- 328, December 2001.

Levin 06 T. Levin, C. Irvine and T. Nguyen, “An Analysis of Three Kernel-based Multilevel Security
Architectures”, NPS Technical Report NPS-CS-06-001, August 2006.

Levin04 T. E. Levin, C. E. Irvine, and T. D. Nguyen, “A Least Privilege Model for Static Separation Kernels”,
NPS-CS-05-003, Naval Postgraduate School, October 2004.

MLOSPP Information Assurance Directorate, National Security Agency, Fort George G. Meade, MD 20755-6000,
U.S. Government Protection Profile for Multilevel Operating Systems in Medium Robustness
Environments, Version 1.91, Mar. 2007.

NIAP08 Email correspondence between NIAP / CCEVS representative and authoring team, December 11, 2008.
NIAP05a Consistency Instruction Manual for Development of U.S. Government Protection Profiles for use in Basic

Robustness Environments, National Security Agency Information Assurance Directorate, Release 3.0, Fort
Meade, MD, 1 February 2005. http://www.niap-ccevs.org/pp/basic_rob_manual-3.0.pdf

NIAP05b Consistency Instruction Manual for Development of U.S. Government Protection Profiles for use in
Medium Robustness Environments, National Security Agency Information Assurance Directorate, Release
3.0, Fort Meade, MD, 1 February 2005. http://www.niap-ccevs.org/pp/med_rob_manual-3.0.pdf

PKPP The Open Group, Protection Profile for Partitioning Kernels in Environments Requiring Augmented High
Robustness. Not Published, 1.3 ed., 2003.

Rushby92 J. Rushby, “Noninterference, transitivity, and channel control security policies,” Tech. Rep. CSL-92-02,
Computer Science Laboratory, SRI International, Menlo Park, CA, December 1992.

Saltzer75 J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,” Proceedings of
the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

SKPP U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness. No.
Version 1.03, National Security Agency, June 2007.

VPL NIAP, “Validated Products List,” accessed 10/10/10: http://www.niap-ccevs.org/vpl.
	

Appendix	
 A:	
 SKPP	
 Versions	

Several versions of the SKPP are referenced in the text to provide readers with a notion of the development timeline.
The review drafts were publically distributed to a broad audience. Although not publically accessible to our
knowledge, the sponsor may choose to make them available.

SKPPv0.621_2004_07_07 – first review, original policy
SKPP V1.0-060801-clean – second review, bifurcated policy
SKPP, June, 2007 – final version, final policy	

Appendix	
 B:	
 Errata	

This section summarizes several suggested corrections to the SKPP, intended as input for a future revision.

EAL	

A.COVERT_CHANNEL mentions EAL6+. This was an editorial oversight and should be removed so as not be
construed to assert an EAL6+ claim for the SKPP.

External	
 vs.	
 Exported
Figure 2-7 contains a typographical error occurs in. The term external should read, exported, instead. ”Resources”
include internal resources that are reserved by the kernel for its own use and resources that the kernel exports. There
are no “external” resources.

Acyclic	
 vs.	
 Partial	
 Order	

In the SKPP, the “PAS” concept is described as a partial order. While a partial order is sufficient, it is not
necessary for the identification of the strict policy. The PAS should be referred to as acyclic because, while a partial
order allows no circular flows between partitions, it requires an explicit relation for all transitive flows; however, it
may not be desirable for an SKPP system policy to include all of the transitive relationships (flows) that its basic
flows imply.
Suggested modifications to A.TRUSTED_FLOWS and OE.TRUSTED_FLOWS follow, with deletions in striked
font and additions in bold font.

A.TRUSTED_FLOWS. For any subject configured to have the ability to cause a partition flow
that is not included in the PIFP Acyclic Subset unrestricted access in multiple policy
equivalence classes, it is assumed that the subject is trusted at least with assurance commensurate
with the value of the IT assets in all equivalence classes to which it has access.
OE.TRUSTED_FLOWS. For each configuration of the TOE, a PIFP Acyclic Subset partial order
will be identified, which is a subset of the flows that are allowed between policy equivalence
classes, and which is acyclic will be identified. Any subject allowed by the configuration data to
cause information flow that is contrary to the PIFP Acyclic Subset will be trusted at least with

assurance commensurate with the value of the IT assets in all equivalence classes to which it has
access.

Inconsistencies	
 from	
 Policy	
 Change	

Areas of the SKPP that are inconsistent with respect to the final policy are:

a. Rationale Section, e.g. AVA_CCA_EXP.2 assumes P2Pp and S2Rp are equally enforced
b. Error from Section 2: The least privilege abstraction requires that both partition-pair and subject-exported

resource pair authorizations are used to determine if a flow mode is allowed.
Whereas, in fact, either policy can be left out through configuration choice.

