IV121: Computer science applications in biology

Qualitative Models in Biology

David Šafránek

February 25, 2013

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

What is discrete? What does discrete mean?

- think of you communicating with your friends today
 - how many interactions have you noticed?
 - each one caused you a discrete event
- think of flies flying in the room
 - what interactions they have with each other?
 - what interactions they have with the room walls?
 - each one is a discrete event
- think of molecules in a solution or in a cell

Is there something what is not discrete?

- think of movement around you
- think of you moving
- think of time passing
- think of current in the power supply
 - · electron flow through or around the wire material
 - is it discrete or continous?

A way to understand the world...

- to understand (and capture) things happening around us we developed a modeling framework
 - discrete-time dynamics models
 - music "modeled" on CD
 - video clips filmed by your camera
 - . . .
 - continuous-time dynamics models
 - mathematical model describing the flow of electrons in an electrical circuit
 - models of chemical reaction dynamics
 - . . .
 - discrete-event models
 - model of a coffey machine
 - model of an elevator
 - models of chemical reaction dynamics
 - mixed models e.g., hybrid systems …

A way to understand the world...

- to understand (and capture) things happening around us we developed a modeling framework
 - discrete-time dynamics models
 - music "modeled" on CD
 - video clips filmed by your camera
 - . . .
 - continuous-time dynamics models
 - mathematical model describing the flow of electrons in an electrical circuit
 - models of chemical reaction dynamics
 - . . .
 - discrete-event models
 - model of a coffey machine
 - model of an elevator
 - models of chemical reaction dynamics
 - mixed models e.g., hybrid systems ...

A way to understand the world...

System Specification Formalism:

DESS: differential equation

DTSS: difference equation

DEVS: discrete event

B.P. Zeigler, H. Praehofer, T. Gon Kim. Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press, 2000.

A way to understand the world... $_{\rm Time\ scales}$

- think of a lightning causing a fire
 - very fast electron flow \rightarrow long-lasting fire
 - one of the views: a discrete event (lightning) changing the continuous world
 - is this a reasonable simplification?
- when modeling the world we have to abstract
- our abstract views (models) can make a hierarchy
- a drawback of simplifications: there can be feedbacks we silently omit ...

Time scales in a cell

Quantitative parameters	Values in E.Coli
cell size	$1 \mu m^3$
number of protein molecules in a cell	$4\cdot 10^6$
size of a protein molecule	5 <i>nm</i>
concentration of a particular protein in a cell	1 nM
amount of proteins in a cell	18%
time of protein diffusion	0, 1 <i>s</i>
time of other molecules diffusion	1 <i>msec</i>
number of genes	4500

A way to understand the world... $_{\rm Abstractions}$

- abstraction of time
 - think of ticks of the clock...
 - continuous-time domain sampled into the discrete-time domain
 - a single discrete time-step can abstract some notion of time
 - one generation of bacteria population
 - time abstracted to day/night phases or a.m./p.m.
 - the lowest time observed between any two event occurrences
- abstraction of quantities
 - large (possibly real) valued amounts abstracted by several discrete levels (e.g., light intensity, temperature, ...)
 - large valued amounts abstracted by real values (e.g., concentration of molecules in a cell of particular volume)
- abstraction of behaviour
 - neglecting some aspects (e.g., competitivness in transcription factors-to-DNA binding)
 - theoretical constraints (e.g., well-stirred solutions, fixed conditions temperature, pressure)

A way to understand the world... $_{Abstractions}$

- in computer science abstraction is a formal notion:
 - identify what you add and what you lose by abstracting
- when doing models of life we use approximative abstractions
 - what is lost and what is added?
- note that abstractions between continuous and discrete views can be bidirectional

A way to understand the world... $_{Using \ computers}$

- computation by computers is purely discrete
- quantities are stored in discrete memory
- memory has limited size
- computer-scientific abstractions are employed to automatically (technically) reduce the computational efforts

Systems View of the World

- systems models of the world (e.g., a living cell, a population)
- syntax of the systems model is a network:
 - components (nodes) e.g. chemical substances
 - interactions (edges) e.g. chemical reactions
- each component is assigned some quantity
 - discrete or continuous: number of particles, concentration
 - can be visualized by color intensity of a node
- dynamics is animation of colour intensity changing on nodes in time
 - driven by global rules (e.g., mass-action reactions)

Model Types

Systems View of a Cell: Biological Networks

- identify substances (macromolecules, ligands, proteins, genes, ...)
- identify interactions ((de)complexation, (de)phosphorylation, ...)

Systems Biology of a Cell

Biological Networks and Pathways

- what is the "right" meaning?
- in order to *analyse* we need to *formalise* a bit. . .

Graphical Specification in SBGN Systems Biology Graphical Notation

- PD: biochemical interaction level (the most concrete)
- ER: relations among components and interactions
- AF: abstraction to mutual interaction among activities

Graphical Specification in SBGN Systems Biology Graphical Notation

- SBGN.org iniciative (from 2008)
- standard notation for biological processes
- http://sbgn.org
- Nature Biotechnology (doi:10.1038/nbt.1558, 08/2009)
- three sub-languages:
 - SBGN PD (Process Description) (doi:10.1038/npre.2009.3721.1)
 - SBGN ER (Entity Relationship) (doi:10.1038/npre.2009.3719.1)
 - SBGN AF (Activity Flow) (doi:10.1038/npre.2009.3724.1)
- tool support:
 - SBGN PD supported by CellDesigner
 - SBGN-ED (http://www.sbgn-ed.org)

Kinase Cascade in CellDesigner (SBGN)

From Systems Structure to Systems Dynamics Discrete Events View

- once the systems structure is captured we want to animate
- each node in SBGN PD represents some quantity of a particular species
- species are assumed to be well stirred in the cell
- interactions are events affecting related species (in amounts given by stoichiometry)
 - abstract from time (no information when the event occurred, events last zero time)
 - usually abstract from space (no information where the event occurred)
 - but see agent-based models at the end of the lecture
 - purely qualitative model of systems dynamics

Qualitative Model of a Reaction

$AB \rightarrow A + B$

state configuration captures number of molecules:

 $\langle \#[AB],\#[A],\#[B]\rangle$

- global rule:
 - one molecule AB is removed from the solution
 - one molecule A is added to the solution
 - one molecule B is added to the solution

$$\begin{array}{l} \#[AB](t+1) = \#[AB](t) - 1 \\ \#[A](t+1) = \#[A](t) + 1 \\ \#[B](t+1) = \#[B](t) + 1 \end{array}$$

Consider three reactions:

 $\begin{array}{l} A \rightarrow B \\ A + B \rightarrow AB \\ AB \rightarrow A + B \end{array}$

- state configuration has the form $\langle \#A, \#B, \#AB \rangle$
- consider, e.g., configuration (2,2,1)
 ⇒ what is the next configuration?
- reactions run in parallel ...

Adam Carl Petri 1926–2010

- formal model for concurrent systems
- used for general modeling and simulation
- many simulation and analysis tools
- various semantics
- unambiguous system representation

$$2H_2 + O_2 \rightarrow 2H_2O$$

Adam Carl Petri 1926–2010

- formal model for concurrent systems
- used for general modeling and simulation
- many simulation and analysis tools
- various semantics
- unambiguous system representation

$$2H_2 + O_2 \rightarrow 2H_2O$$

Adam Carl Petri 1926–2010

- formal model for concurrent systems
- used for general modeling and simulation
- many simulation and analysis tools
- various semantics
- unambiguous system representation

$$2H_2 + O_2 \rightarrow 2H_2O$$

Adam Carl Petri 1926–2010

- formal model for concurrent systems
- used for general modeling and simulation
- many simulation and analysis tools
- various semantics
- unambiguous system representation

$$2H_2 + O_2 \rightarrow 2H_2O$$

Petri Net Representation of Biological Networks

Petri Net Representation of Biological Networks

Petri Net Representation of Biological Networks

• visually infeasible but unambiguous, formal, and still graphical

Petri Net Representation of Biological Networks Kinase Cascade in MAPK/ERK Signalling Network

Petri Net Representation of Biological Networks Kinase Cascade in MAPK/ERK Signalling Network

Petri Net Analysis Framework

Petri Net Analysis Framework

Petri Net Structure

(Place/Transition) Petri net is a quadruple $\mathcal{N} = \langle S, R, f, m(0) \rangle$ where

- S finite set of places (substances),
- T finite set of transitions (reactions),
- $f:((P \times T) \cup (T \times P)) \rightarrow \mathbb{N}_0$ set of weighted edges,
 - $x \bullet = \{y \in S \cup R \mid f(x, y) \neq 0\}$ denotes target of x
 - • $x = \{y \in S \cup R \mid f(y, x) \neq 0\}$ denotes source of x
 - weight represents stoichiometric coefficients
- $m(0): S \to \mathbb{N}_0$ is *initial marking* (initial condition).

Petri Net Dynamics

Each place $s \in S$ is marked by a value in \mathbb{N}_0 (representing number of molecules of the respective species):

- in Petri net terminology the state configuration (configuration of places) is called *marking*: $m: S \to \mathbb{N}_0$
- marking is represented as an *n*-dimensional vector $m \in \mathbb{N}_0^n$

Dynamics of each *transition* $r \in R$ is the following:

- a transition $r \in R$ must be enabled iff $\forall s \in \bullet r. m(s) \ge f(s, r)$
- enabled transition can be fired, causing an update of related places (marking *m* is updated to marking *m'*):

$$\forall s \in S. \ m'(s) = m(s) - f(r,s) - f(s,r)$$

Static Analysis Matrix Representation

Petri Net can be represented by *incidence matrix* M : S × R → Z defined as follows:

$$\mathbb{M}(s,r) = f(r,s) - f(s,r)$$

• equivalent to stoichiometric matrix

Note: If reversible reactions are considered, forward and backward matrices must be distinguished.

species indices: $s_1...E, s_2...S, s_3...ES, s_4...P$ reaction indices: $r_1: E + S \rightarrow ES, r_2: ES \rightarrow E + S, r_3: ES \rightarrow P + E$

Static Analysis Invariant Analysis – P-invariants

• species vector x is called *P-invariant* iff

$$x\mathbb{M}=0$$

• characteristic property of *P*-invariant *x*:

$$\forall r \in R. \sum_{i=1}^{n} \mathbb{M}(i,r) x_{i} = 0$$

• Petri Net terminology translates the *P*-invariant property to:

$$\forall r \in R. \ \sum_{s \in \bullet r} x_s = \sum_{s \in r \bullet} x_s$$

interpretation: conserved mass

Static Analysis Invariant Analysis – P-invariants

- minimal *P*-invariants:
 - (1,0,1,0): $m_E + m_{ES} = \text{const.}$
 - (0,1,1,1): $m_S + m_{ES} + m_P = \text{const.}$
- minimal *P*-invariants make the basis of \mathbb{M} left-null space
- non-minimal P-invariant example:
 - (1,1,2,1): $m_E + m_S + 2m_{ES} + m_P = \text{const.}$

Static Analysis Invariant Analysis – T-invariants

• species vector y is called T-invariant iff

$$\mathbb{M}y = 0$$

• characteristic property of *T*-invariant *y*:

$$orall s \in S. \; \sum_{j=1}^{|R|} \mathbb{M}(s,j) y_j = 0$$

• Petri Net terminology translates the *T*-invariant property to:

$$\forall s \in S. \ \sum_{r \in \bullet s} y_r = \sum_{r \in s \bullet} y_r$$

interpretation: stable flux mode

Static Analysis Invariant Analysis – T-invariants

- minimal *T*-invariants:
 - (1,1,0,0,0,0): r₁; r₂ (trivial reversibility)
 - (0,0,1,1,0,0): r₃; r₄ (trivial reversibility)
 - (0,0,0,0,1,1): r₅; r₆ (trivial reversibility)
- minimal T-invariants make the basis of \mathbb{M} null space
- non-minimal (and non-trivial) *T*-invariant example:
 - (1,1,1,1,1,1): *r*₁; *r*₂; *r*₃; *r*₄; *r*₅; *r*₆
 - this *T*-invariant represents significant input/output behaviour of the network $(S \longrightarrow P)$

Qualitative Behavioral Properties

boundedness

- no species concentration expands indefinitely
- can be decided statically (*P*-invariant coverability)
- liveness
 - weak form always at least one reaction is working
 - can be decided statically in some cases
 - strong form every reaction is always eventually working – can be decided statically in some cases (*T*-invariant coverability)
- reversibility
 - reversible process (each flux mode keeps realizing)
 - can be decided only by dynamical analysis
- dynamic properties independent of time and quantity

Qualitative Behavioral Properties Example Michaelis Menten Reversible

- bounded, strongly live, reversible
- S and E is never finaly consumed (marked zero)
- P finally marked non-zero

Qualitative Behavioral Properties Example Michaelis Menten Kinetics

- bounded, not live, not reversible
- S finally consumed
- E consumed but recovered finally

Qualitative Behavioral Properties Example MAPK/ERK pathway

- bounded, strongly live, reversible
- dephosphorylations at higher cascade level independent on phosphorylations at lower level

Petri Net Representation Example of complex signalling network

inactive HCP inactive JAK2 IL-3R heterodimer inactive She IL-3 plants tembras 1123 isactive Gri Res. HCP inactive STAT5 inactive STAT JAK: Raf-1 inactivate Res-GDP APE izactiva c-fez MAFE Res.(V) STAT sucher membrane inactiv Raf-1 Pan-C inactive MAPKE STAT 2.46.1 MAPK MAPK APICIC MAPK transmiption

Tool Support

- format transformation and editing
 - Snoopy visual editing, SBML export/import, Petri net variants transformation
 - PIPE visual editing
- static analysis
 - Charlie (Petri Net invariant analysis)
 - also can be used: Matlab/Octave (stoichiometric analysis)
- qualitative behavioral analysis
 - Charlie (liveness, boundedness, and more ...)
 - MARCIE (qualitative dynamics analysis)
- Petri Net simulation
 - Snoopy simulation of qualitative and stochastic nets
 - Cell Illustrator proffesional tool, hybrid semantics

Literature

- M. Heiner & D. Gilbert. *How Might Petri Nets Enhance Your Systems Biology Toolkit.* Petri Nets 2011: 17-37
- M. Heiner, D. Gilbert & R. Donaldson. *Petri Nets for Systems and Synthetic Biology.* SFM 2008: 215-264
- Koch, I., Reisig, W. & Schreiber, F. Modeling in Systems Biology: The Petri Net Approach. Computational Biology, Vol. 16, Springer-Verlag, 2011.
- Pinney, J.W., Westhead, D.R. & McConkey, G.A. Petri Net representations in systems biology. Biochem Soc Trans. 2003 Dec;31(Pt 6):1513-5.
- Reddy, V.N., Mavrovouniotis M.L.& Liebman M.N. Petri net representation in metabolic pathways. Proc Int Conf Intell Syst Mol Biol 1993, 328-336.

Regulatory Networks of Cellular Processes

- identify substances (proteins, genes)
- identify interactions (transcriptory activation, repression do we no reactions behind?)

Example of a gene regulatory network

Gene regulatory network of E. Coli

Identification of regulatory dynamics

- systems measurement of transcriptome (mRNA concentration) is imprecise and discrete!
- interactions can be partially identified by analysis of transcriptor factor binding sites (e.g., TRANSFAC)
- microarray experiments can be reversed engineered

Identification of regulatory dynamics

Identification of regulatory dynamics Boolean and Bayesian networks

$$\begin{array}{ll} crp(t+1) = \neg crp(t) \land \neg cya(t) & P(X_{crp}) \\ cya(t+1) = \neg cya(t) \land \neg crp(t) & P(X_{cya}) \\ fis(t+1) = \neg crp(t) \land \neg cya(t) & P(X_{fis}|X_{crp}, X_{cya}) \\ tRNA(t+1) = fis(t) & P(X_{tRNA}|X_{fis}) \end{array}$$

From Structure to Dynamics

R. Thomas and R. d'Ari, CRC Press 1990. Biological feedback.

Model example – autoregulation

Model example - autoregulation

· identification of discrete expression levels

Model example - autoregulation

• spontanneous (basal) transcription: $A \rightarrow 4$

Model example - autoregulation

• range of regulatory activity ($A \in \{3,4\} \Rightarrow$ regulation active)

$Model\ example\ -\ autoregulation$

• target level (
$$A \in \{3,4\} \Rightarrow A \rightarrow 0$$
)

State space – autoregulation

- state transition system $\langle S, T, S_0 \rangle$
 - S state set, $S \equiv \{0, 1, 2, 3, 4\}$
 - $S_0 \subseteq S$ initial state set
 - $T \subseteq S \times S$ transition function:

source state	active regulation	target state
0	$\emptyset; [A \rightarrow 4]$	1
1	$\emptyset; [A \rightarrow 4]$	2
2	$\emptyset; [A \rightarrow 4]$	3
3	$A \rightarrow^{-} A$; $[A \rightarrow 0]$	2
4	$A \rightarrow^{-} A$; $[A \rightarrow 0]$	3

State space – autoregulation

state transition system for negative autoregulation $\langle S, T, S_0 = S \rangle$:

Combined regulation

Discrete characteristics of dynamics

identification of dicrete levels of expression

Discrete characteristics of dynamics

• spontanneous (basal) transcription: $A \rightarrow 1, B \rightarrow 2$

Characteristics of regulation

• range of regulatory activity $B \rightarrow^{-} B$ ($B = 2 \Rightarrow$ regulation active)

Characteristics of regulation

• target level $B \rightarrow^{-} B \ (B = 2 \Rightarrow B \rightarrow 0)$

• range of regulatory activity $B \rightarrow^{-} A$ ($B \in \{1,2\} \Rightarrow$ reg. active)

• range of regulatory activity $A \rightarrow^{-} A$ ($A = 1 \Rightarrow$ reg. active)

• AND-combined regulation $A \rightarrow^{-} A \land B \rightarrow^{-} A$: $A = 1 \land B \in \{1, 2\} \Rightarrow$ regulation active

• target levels of combined regulation $A \rightarrow^{-} A \land B \rightarrow^{-} A$: $A = 1 \land B \in \{1, 2\} \Rightarrow A \rightarrow 0$

State space – synchronnous semantics

• state transition system $\langle S, T, S_0 \rangle$

•
$$S \equiv \{0,1\} \times \{0,1,2\}$$

- $S_0 \subseteq S$, we consider $S_0 = S$
- $T \subseteq S \times S$ transition function:

source state	active regulation	target state
[0,0]	$\emptyset; \ [A ightarrow 1, B ightarrow 2]$	[1, 1]
[0, 1]	$B ightarrow^- A$; $[A ightarrow 0, B ightarrow 2]$	[0,2]
[0, 2]	$B \rightarrow^{-} B \wedge B \rightarrow^{-} A$; $[A \rightarrow 0, B \rightarrow 0]$	[0,1]
[1,0]	$A ightarrow^- A$; $[A ightarrow 0, B ightarrow 2]$	[0,1]
[1, 1]	$A \rightarrow^{-} A \land B \rightarrow^{-} A$; $[A \rightarrow 0, B \rightarrow 2]$	[0,2]
[1,2]	$ A \rightarrow^{-} A \land B \rightarrow^{-} A \land B \rightarrow^{-} B; [A \rightarrow 0, B \rightarrow 0] $	[0, 1]

State space – synchronnous semantics

state transition system
$$\langle S,\, T,\, S_0=S\rangle$$
 :

State space – asynchronnous semantics

• state transition system $\langle S, T, S_0 \rangle$

•
$$S \equiv \{0,1\} \times \{0,1,2\}$$

- $S_0 \subseteq S$, we consider $S_0 = S$
- $T \subseteq S \times S$ transition function:

source state	active regulation	target states
[0,0]	$\emptyset; \; [\mathcal{A} ightarrow 1, \mathcal{B} ightarrow 2]$	[1,0], [0,1]
[0, 1]	$B ightarrow^- A$; $[A ightarrow 0, B ightarrow 2]$	[0, 2]
[0, 2]	$B \rightarrow^{-} B \wedge B \rightarrow^{-} A$; $[A \rightarrow 0, B \rightarrow 0]$	[0, 1]
[1,0]	$A ightarrow^- A$; $[A ightarrow 0, B ightarrow 2]$	[0,0], [1,1]
[1, 1]	$A \rightarrow^{-} A \wedge B \rightarrow^{-} A$; $[A \rightarrow 0, B \rightarrow 2]$	[0,1], [1,2]
[1,2]	$A \rightarrow^{-} A \wedge B \rightarrow^{-} A \wedge B \rightarrow^{-} B; [A \rightarrow 0, B \rightarrow 0]$	[0,2], [1,1]

State space – asynchronnous semantics

state transition system
$$\langle S, T, S_0 = S \rangle$$
:

Properties of discrete semantics

- synchronous semantics
 - effect of active regulations is realized in terms of a single event
 - strong approximation leading to deterministic state transition system
- asynchronnous semantics
 - effect of active regulations is realized for each gene/protein individually in terms of single events
 - nondeterminism models all possible serializations (so called interleaving)
 - approximation is rather conservative

Free Tool Support

- Gene Interaction Network simulation (GINsim) http://gin.univ-mrs.fr/GINsim/accueil.html
- asynchronous and synchronous simulation
 - allows to get rough understanding of regulatory logic
 - allows to identify potential steady states of regulation
 - purely qualitative modelling and analysis
- directly allow application of a large set of computer scientific tools
 - graph algorithms for state space graph analysis
 - model checking

Literature

- Thomas, R. Regulatory networks seen as asynchronous automata : a logical description. J. Theor. Biol. 153 ,(1991) 1-23.
- de Jong. Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology (2002), 9(1):69-105
- Bower, J.M. & Bolouri, H. *Computational Modeling of Genetic and Biochemical Networks.* Bradford Book, 2001.
- A.G. Gonzalez, A. Naldi, L. Sanchez, D. Thieffry, C. Chaouiya. GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems (2006), 84(2):91-100

Top-down vs. bottom-up view

top-to-bottom modeling bottom-to-top modelling systems view agent-based view

Agent-based modeling

- discrete time and discrete space
- strictly local interactions
- dynamics driven by local rules

Agent-based modeling – history

- 1940-60: studying self-reproduction (von Neumann)
 - · found a theoretical machine that copies itself
- 1970: Game of Life (Conway)
 - strong simplification of von Neumann machine
 - preserves theoretical computational power of a Turing machine
- 1983: formalization of **cellular automata and applications** in physics

Agent-based modeling - cellular automata

- discrete space (a grid of cells)
- homogenity (all cell identical)
- finite discrete states of a cell
- interaction strictly local next state of a cell depends on its nearest neighbours
- discrete-time dynamics system evolves in discrete time-steps

Game of Life

- unbounded 2D grid of cells
- · each cell has two states: dead or live
- dynamics evolves in turns
- local rules for a living cell:
 - if less than two neighbours then die from loneliness
 - if more than three neighbours then die from congestion
 - stay alive, otherwise
- local rules for a dead cell:
 - if just three neighbours then go alive
 - stay dead, otherwise

Game of Life

B.P. Zeigler, H. Praehofer, T. Gon Kim. Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press, 2000.

Game of Life

- problem: is an infinite behaviour possible in the game of life?
- proven true!
- game of life has universal Turing power (a computer with unlimited memory and no time contraints)

class I dynamics always leads to a stable (non-changing) state class II dynamics leads to simple repeating (periodical) situations class III dynamics leads to aperiodic, chaotic behaviour class IV complex patterns moving in the space

Examples: http://www.youtube.com/watch?v=XcuBvj0pw-E

Cellular automata – definition

- each cell *i* has a neighbourhood N(i)
- finite set of local states $\Sigma = \{0, ..., k 1\}$
- state of cell *i* in time *t* is denoted $\sigma_i(t) \in \Sigma$
- local dynamics rule Φ:
 - $\Phi: \Sigma^n \to \Sigma$
 - $\sigma_i(t+1) = \Phi(\prod_{j \in N(i)} \sigma_j(t))$

Cellular automata – definition

- semantics is defined by a state transition system (automaton)
- a configuration is determined as the current state of all cells
- state update (discrete transition event) is defined by (synchronous) application of local rule to each cell of the source configuration
- automaton is deterministic
- finite grid implies finite number of configurations

Cellular automata – example Example of a state update on a 1D grid

Cellular automata – example Example of dynamics on a 1D grid

Cellular automata – application in biology

- models in developmental biology
- pattern forming simulation

 modeling and simulation of population models (e.g., sheeps and wolfs)

Cellular automata – example Retinal Cell Development in Chicken Embryo

- light cells neural retinal cells
- dark cells pigmented retinal cells
- dynamics (a) 10 hours, (b) 40 hours, (c) 72 hours

Free Tool Support

- CelLab library for cellular automata programming http://www.fourmilab.ch/cellab/
- NetLogo multi-agent programmable modeling environment
 - education platform for agent-based modelling
 - large library of models
 - many extensions (continuous and stochastic simulation)
 - http://ccl.northwestern.edu/netlogo/

Literature

- Deutsch, A. & Dormann, S. Cellular Automaton Modeling of Biological Pattern Formation. Modeling and Simulation in Science, Engineering and Technology. Springer-Verlag, 2005.
- Ermentroud G.B. & Edelstein-Keshet L. Cellular Automata Approaches to Biological Modeling. J. theor. Biol. (1993), 160:97-133
- M. Alber, M. Kiskowski, J. Glazier & Y. Jiang. On cellular automaton approaches to modeling biological cells., 2002.