SIMILARITY SEARCH
The Metric Space Approach

Pavel Zezula, Giuseppe Amato,
Vlastislav Dohnal, Michal Batko

Table of Content

Part I. Metric searching in a nutshell
Foundations of metric space searching
Survey of existing approaches

Part Il: Metric searching in large collections
Centralized index structures
Approximate similarity search
Parallel and distributed indexes

Similarity Search: Part II, Chapter 5

Parallel and Distributed Indexes

preliminaries

processing M-trees with parallel resources
scalable and distributed similarity search
performance trials

Similarity Search: Part II, Chapter 5

Parallel Computing

Parallel system

o Multiple independent processing units

o Multiple independent storage places

o Shared dedicated communication media
o Shared data

Example

o Processors (CPUs) share operating memory (RAM) and
use a shared internal bus for communicating with the disks

Similarity Search: Part II, Chapter 5

Parallel Index Structures

Exploiting parallel computing paradigm

Speeding up the object retrieval

o Parallel evaluations
using multiple processors at the same time

o Parallel data access
several independent storage units

Improving responses
o CPU and 1I/O costs

Similarity Search: Part II, Chapter 5

Parallel Search Measures

The degree of the parallel improvement
Speedup

o Elapsed time of a fixed job run on
a small system (ST)
a big system (BT)
speedup = ST
BT

o Linear speedup
n-times bigger system yields a speedup of n

Similarity Search: Part II, Chapter 5

Parallel Search Measures

Scaleup

o Elapsed time of
a small problem run on a small system (STSP)
a big problem run on a big system (BTBP)

STSP
scaleup = ———

BTBP

o Linear scaleup

The n-times bigger problem on n-times bigger system is
evaluated in the same time as needed by the original system
to process the original problem size

Similarity Search: Part II, Chapter 5

Distributed Computing

Parallel computing on several computers

o Independent processing and storage units
CPUs and disks of all the participating computers
o Connected by a network
High speed
Large scale
Internet, corporate LANS, etc.

Practically unlimited resources

Similarity Search: Part II, Chapter 5

Distributed Index Structures

Data stored on multiple computers
o Navigation (routing) algorithms

Solving queries and data updates
o Network communication

Efficiency and scalability
o Scalable and Distributed Data Structures
o Peer-to-peer networks

Similarity Search: Part II, Chapter 5

Scalable & Distributed Data Structures

Client/server paradigm

o Clients pose queries and update data
o Servers solve queries and store data
Navigation algorithms

o Use local information

o Can be imprecise
image adjustment technique to update local info

Similarity Search: Part II, Chapter 5 10

Distributed Index Example

Server

Similarity Search: Part II, Chapter 5

11

SDDS Properties

Scalability

o data migrate to new network nodes gracefully, and only
when the network nodes already used are sufficiently
loaded

No hotspot

o there is no master site that must be accessed for resolving
addresses of searched objects, e.g., centralized directory

Independence

o the file access and maintenance primitives (search, insert,
node split, etc.) never requires atomic updates on multiple
nodes

Similarity Search: Part II, Chapter 5 12

Peer-to-Peer Data Networks

Inherit basic principles of the SDDS

Peers are equal in functionality

o Computers participating in the P2P network have the
functionality of both the client and the server

Additional high-availability restrictions
o Fault-tolerance
o Redundancy

Similarity Search: Part II, Chapter 5

13

Peer-to-Peer Index Example

Peer

Peer

Peer

Similarity Search:

Peer

Peer

Peer

—

Part II, Chapter 5

14

Parallel and Distributed Indexes

preliminaries

processing M-trees with parallel resources
scalable and distributed similarity search
performance trials

Similarity Search: Part II, Chapter 5

15

Processing M-trees with parallel resources

Parallel extension to the basic M-Tree
o To decrease both the I1/O and CPU costs
o Range queries

o Kk-NN queries

Restrictions

o Hierarchical dependencies between tree nodes
o Priority queue during the k-NN search

Similarity Search: Part II, Chapter 5

16

M-tree: Internal Node (reminder)

Internal node consists of an entry for each subtree

Each entry consists of:

o Pivot: p

o Covering radius of the sub-tree: r°

o Distance from p to parent pivot pP: d(p,pP)
o Pointer to sub-tree: ptr

<p]9rlcad(plapp)9ptrl> <p297"2€ad(p2>pp):ptr2> <pmarncf;9d(pm9pp)aptrm>

o All objects in the sub-tree ptr are within the distance r°
from p.

Similarity Search: Part II, Chapter 5 17

M-tree: L.eat Node (reminder)

Leaf node contains data entries

Each entry consists of pairs:
o Object (its identifier): o
o Distance between o and its parent pivot: d(o,0P)

<019d(0190p)> <029d(0290p)> <0m9d(0m>0p)>

Similarity Search: Part II, Chapter 5

18

Parallel M-Tree: Lowering CPU costs

Inner node parallel acceleration

2 Node on given level cannot be accessed
Until all its ancestors have been processed

o Up to m processors compute distances to pivots d(q,p;)

(p1>1 -d(p1, p?), ptr)| 2.1 ,d(pa, PP, P K P> s (P PF), DI
— ~ ™~

_eaf node parallel acceleration
o Independent distance evaluation d(q,0;) for all leaf objects

<01>d(0190p)> <029d(0290p)> <0m9d(0m90p)>
k-NN query priority queue
o One dedicated CPU

Similarity Search: Part II, Chapter 5

19

Parallel M-Tree: Lowering /O costs

Node accessed in specific order
o Determined by a specific similarity query
o Fetching nodes into main memory (1/0)

Parallel I/O for multiple disks
o Distributing nodes among disks

o Declustering to maximize parallel fetch
Choose disk where to place a new node (originating from a
split)
Disk with as few nodes with similar objects/regions as
possible is a good candidate.

Similarity Search: Part II, Chapter 5

20

Parallel M-Tree: Declustering

Global allocation declustering

o Only number of nodes stored on a disk taken into account
Round robin strategy to store a new node
Random strategy

o No data skew
Proximity-based allocation declustering

o Proximity of nodes’ regions determine allocation

o Choose the disk with the lowest sum of proximities
between the new node region
and all the nodes already stored on the disk

Similarity Search: Part II, Chapter 5 21

Parallel M-Tree: Efticiency

Experimental evaluation
o Good speedup and scaleup
o Sequential components not very restrictive

Linear speedup on CPU costs
o Adding processors linearly decreased costs

Nearly constant scaleup

o Response time practically the same with
a five times bigger dataset
a five times more processors

o Limited by the number of processors

Similarity Search: Part II, Chapter 5

22

Parallel M-Tree: Object Declustering

Declusters objects instead of nodes
o Inner M-Tree nodes remain the same

o Leaf nodes contain pointers to objects
Objects get spread among different disks

Similar objects are stored on different disks

o Objects accessed by a similarity query are maximally
distributed among disks
Maximum |/O parallelization
o Range query R(o,,d(o,,p)) while inserting o,
Choose the disk for physical storage
o with the minimum number of retrieved objects

Similarity Search: Part II, Chapter 5 23

Parallel and Distributed Indexes

preliminaries

processing M-trees with parallel resources
scalable and distributed similarity search
performance trials

Similarity Search: Part II, Chapter 5

24

Distributed Similarity Search

Metric space indexing technique
o Generalized hyper-plane partitioning

Peer-to-Peer paradigm

o Self organizing

o Fully scalable

o No centralized components

GHT* Structure

Similarity Search: Part II, Chapter 5

25

GH'T™* Architecture

Peers

o Computers connected by the network
message passing paradigm
request and acknowledgment messages

Unique (network node) identifier NNID
Issue queries

Insert/update data

Process data and answer queries

Similarity Search: Part II, Chapter 5

26

GHT* Architecture (cont.)

Buckets

o Storage for data
metric space objects
no knowledge about internal structure

o Limited space
Splits/merges possible

o Held by peers, multiple buckets per peer
there can be no bucket in a peer
identified by BID, unique within a peer

Similarity Search: Part II, Chapter 5

27

GH'T* Architecture Schema

Peer 1

No buckets

Peer 2 Peer 3

Two buckets One bucket

Similarity Search: Part II, Chapter 5

28

GHT* Architecture Schema (cont.)

Request and acknowledgment
messages

Similarity Search: Part II, Chapter 5 29

GHT* Architecture (cont.)

Precise location of every object
o Impossible to maintain on every peer
o Navigation needed in the network

Address search tree (AST)

o Present in every peer

o May be imprecise
repeating navigation in several steps
Image adjustment

Similarity Search: Part II, Chapter 5

30

GH'T* Address Search Tree

Based on Generalized Hyperplane Tree

Binary tree ,
Inner nodes P | P
o pairs of pivots 5 3

o serial numbers

P3 | P4
Leaf nodes ./ \ / \

o BID pointers to buckets (5) (5ID;) (B’Ds) (NNlDz

888

Similarity Search: Part II, Chapter 5 31

o NNID pointers to peers

GH'T* Address Search Tree

Similarity Search: Part II, Chapter 5

32

GHT* Inserting Objects

Peer 1 starts inserting an object o
o Use local AST
o Start from the root

o In every inner node: 2
take right branch if A
d(p,,0) > d(p,.0) / \ \
take left branch if C 50) (B’D2 :

d(ps,0)=d(p,0)

o Till a leaf node is reached 8 8 8

Similarity Search: Part II, Chapter 5 33

‘ GHT* Inserting Objects (cont.)

= Peer 1 inserting the object o
o If a BID pointer is found

= Store the object o into 2
the pointed bucket

= The bucket is local / \ \
(stored on peer 1) (BID,) (BID,) (BID;) (NNID)

908 &

Similarity Search: Part II, Chapter 5

34

‘ GHT* Inserting Objects (cont.)

= Peer 1 inserting the object o
o If an NNID pointer is found

= The inserted object o 2
is sent to peer 2 P3 | P4 ,
= Where the insertion / \ /
resumes (B,) (BD,) (BID,) (NNID,)

908 o

Similarity Search: Part II, Chapter 5 35

'GHT* Binary Path

= Represents an AST traversal path

= String of ones and zeros o | b
‘0’ means left branch
2 ‘1’ means right branch o 2 T o
= Serial numbers / \ \
o ininner nodes (BID) (BID) (BID) (NNID)

o detect obsolete parts

= Traversal example: 8 8 8
0

Similarity Search: Part II, Chapter 5 36

‘ GH'T* Binary Path (cont.)

= Example of a different path

P1 | P2

P3 | P4

/ 7\

(BID) (BID) (BID) (NNID)

988 &

Similarity Search: Part II, Chapter 5 37

GHT* Storage Management

Database grows as new data are inserted
Buckets have limited capacity

Bucket splits
o Allocate a new bucket

o Extend routing information
choose new pivots

o Move objects

Similarity Search: Part II, Chapter 5

38

Splitting

Bucket capacity is reached

Allocate a new bucket
o Either a new local bucket
o or at another peer

Similarity Search: Part II, Chapter 5

AST
2
Ps | P4
\

v

COverfilled bucket)

O

O

39

Splitting

Bucket capacity is reached

Allocate a new bucket
o Either a new local bucket

o or at another peer
Choose new pivots
Adjust AST

Similarity Search:

AST

COverfilled bucket)

O (@)
Ps

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘0
*

Part II, Chapter 5

Qew buckeD

40

Splitting AST

Bucket capacity is reached

P3

/

Allocate a new bucket ;7 pi

o Either a new local bucket

(BiD,) (BiD/NNID)

o or at another peer
Choose new pivots
Adjust AST

2 Inner node with pivots

o Leaf node for the
new bucket

Move objects

Similarity Search: Part II, Chapter 5

41

Pivot Choosing Algorithm

Pivots are pre-selected during insertion
o Two objects are marked at any time
o The marked objects become pivots on split

Heuristic to maximize the distance between pivots
o Mark the first two inserted objects

o Whenever a new object arrives

Compute its distances from Q
the currently marked objects

If one of the distances is greater

than the distance between

marked objects @ """"" @

0 change the marked objects

Similarity Search: Part II, Chapter 5

42

GHT* Range Search

Peer 1 starts evaluating a query R(q,r)
o Use the local AST
o Start from the root

o In each inner node: 2
take right branch if
d(p,,q)*tr>d(p,,q)—r / \
take left branch if (e,) (&,)

d(p,,q)~r=<d(p,,q)tr i
both branches can qualify 8 8 8
o Till a leaf node is reached ‘

in each followed path

Similarity Search: Part II, Chapter 5 43

GHT* Range Search (cont.)

Peer 1 evaluating the range query R(q,r)

o For every BID pointer found
Search the corresponding

local bucket 5

Retrieve all objects o in 3 | Psa

the bucket that satisfy / \
d(q,0)<r (BID)(BID)(BID)

Any centralized similarity
search method can be used

188 &

Similarity Search: Part II, Chapter 5 44

‘ GHT* Range Search (cont.)

= Peer 1 evaluating the range query R(q,r)

o For every NNID pointer found

= Continue with the search
at corresponding peers 5

.

(BID) (BID) (BID) (NNID)

990 &

Similarity Search: Part II, Chapter 5 45

GHT* Range Search (cont.)

Peer 1 evaluating the range query R(q,r)
o For every NNID pointer found
Continue with the search g@i
at corresponding peers S
0 Build BPATH for the traversal : 8 8
o Forward the message : ;

Destination peers consult their ASTs BPATH: 1[2] 1[3]
0 Avoid repeated computations : :

using the BPATH
Wait until the results are : -
gathered from all active peers @ TP
Merge them with results OO0

from local buckets

Similarity Search: Part II, Chapter 5 46

GHT* Nearest Neighbor Search

Based on the range search
o Estimate the query radius

Evaluate k-nearest neighbors query k-NN(q)

o Locate a bucket where g would be inserted
use the strategy for inserting an object

o Start a range query with radius r equal to the distance
between q and the k-th nearest neighbor of q in this bucket

If the bucket contains less than k objects, estimate r using:
0 an optimistic strategy
0 an pessimistic strategy

o The result of the range query contains the k-NN result

Similarity Search: Part II, Chapter 5 47

GHT* £-NN Search Example

Example 5-NN(q)
o Use the insert strategy in the local AST

d(p,,q)>d(p,,q)

d(ps,q)<d(pg.q)

Ps | P4
o Until a BID pointer is found (B,’D{) (}DZ)

Continue searching at other
peer whenever an NNID

¢ :
pointer is found 8 8

o Search the destination bucket

Similarity Search: Part II, Chapter 5

NNID,

‘

48

GHT* £-NN Search Example (cont.)

Example 5-NN(q)

o Retrieve five nearest neighbors of q in the local bucket

o Set rto the distance of the fifth
nearest neighbor found

o Evaluate a distributed range
search R(q,r) o

results include at least five
nearest neighbors from the local bucket

however, some additional objects o
closer to g can be found

o Get the first five nearest objects of R(q,r)

Similarity Search: Part II, Chapter 5

49

GHT* Updates and Deletions

Updating an object
o Delete the original object
o Insert the updated version

Deleting an object

o Locate the bucket where the object is stored
the insert navigation algorithm is used

o Remove the object from the bucket

o The bucket occupation may become too low

merge the bucket with another one
update the corresponding nodes in the AST

Similarity Search: Part II, Chapter 5

50

GHT* Merging Buckets

Remove a bucket
o Get its sibling 2\
either a leaf node (bucket)
or an inner node BID,) BID,

o Reinsert all remaining objects

into the sibling
O multiple buckets possibly

Remove the inner node Np
Increase the node’s serial number

<19[9([

BID,)BID,) | BID, | BID,

Similarity Search: Part II, Chapter 5

AST: Image Adjustment

The AST is modified on bucket splits and merges
o Only changed peers are aware of the change (4 and 5)

Similarity Search: Part II, Chapter 5 52

AST: Image Adjustment (cont.)

The AST is modified on bucket splits and merges
o Only changed peers are aware of the change (4 and 5)

When other peer searches
o Forwards the query to a peer

Similarity Search: Part II, Chapter 5 53

AST: Image Adjustment (cont.)

The AST is modified on bucket splits and merges
o Only changed peers are aware of the change (4 and 5)

When other peer searches

o Forwards the query to a peer
which has a different AST view

o The incomplete search is detected 1

by too short BPATH ;3 Pi !
o The search evaluation resumes -
possibly forwarding the query 2 &]

to some other peers

Similarity Search: Part II, Chapter 5

54

AST: Image Adjustment (cont.)

The AST is modified on bucket splits and merges
o Only changed peers are aware of the change (4 and 5)

When other peer searches

o Forwards the query to a peer
which has a different AST view

o The incomplete search is detected 1
by too short BPATH Bs | Pa

o The search evaluation resumes /. !
possibly forwarding the query 2 &
to some other peers 1 <

Image adjustment is sent back é é

Similarity Search: Part II, Chapter 5 55

AST: Logarithmic Replication

The full AST on every peer is space consuming
o many pivots must be replicated at each peer

Only a limited AST stored

o all paths to local buckets
o nothing more

Hidden parts o, 1

o replaced by the NNIDs .~
of the leftmost peers

Ps | Ps

P12 P13 | P1a

\

NID,) (NNIDD(NNID,)

Similarity Search: Part II, Chapter 5 56

AST: Logarithmic Replication (cont.)

Result of logarithmic replication
o The partial AST

Hidden parts

o replaced by the NNIDs P, | P
of the leftmost peers

Similarity Search: Part II, Chapter 5

57

GHT* Joining P2P Network

A new node joining the network sends “I'm here”
o Received by each active peer

o Peers add the node to their ;:I))
lists of available peers ~— —

If a node is needed by a split =
= __— ~—

o Get one peer from the list)
send an activation request
o The peer sends “I'm being used”
the other peers remove it from their lists

o The peer is “Ready to serve’

Similarity Search: Part II, Chapter 5

" ':L

ffl m (11

58

GHT* Leaving P2P Network

Unexpected leaves not handled
o Requires replication or other fault-tolerant techniques

Peers without storage
o Can leave without restrictions

Peers storing some data

o Delete all stored data
all buckets are merged

o Reinsert data back to the structure
without offering its own storage capacity

Better leaving/fault-tolerant is a research challenge

Similarity Search: Part II, Chapter 5

59

Parallel and Distributed Indexes

preliminaries

processing M-trees with parallel resources
scalable and distributed similarity search
performance trials

Similarity Search: Part II, Chapter 5

60

Performance Trials

Objectives: show the performance of the distributed
similarity search index structure

The same datasets as for the centralized ones
o Comparison possible

Experiments show that the response times are
nearly constant

Similarity Search: Part II, Chapter 5 01

Datasets

Trials performed on two datasets:

o VEC: 45-dimensional vectors of image color features
compared by the quadratic distance measure

o STR: sentences of a Czech language corpus compared by

the edit distance

Similarity Search: Part II, Chapter 5

62

Datasets: Distance Distribution

Frequency VEC Frequency STR
0.008 T T T T 0.008
N [
0.004 . 0.004 .
0 O] | | | I
0 2,000 4,000 6,000 8,000 0 200 600 1,000 1,600
Distance Distance

Distribution of the distances within the datasets

o VEC.: practically normal distance distribution
o STR: skewed distribution

Similarity Search: Part II, Chapter 5

63

Computing Infrastructure

300 Intel Pentium workstations
o Linux operating system
o available for use to university students

Connected by a 100Mbps network

0 access times approximately 5ms

Memory based buckets
o limited capacity - up to 1,000 objects

Basic datasets:
o 100,000 objects
o 25 peers

Similarity Search: Part II, Chapter 5

64

Performance Trials: Measures

Distance computations

2 Number of all evaluations of the metric function
either in the AST or in buckets

o Represent the CPU costs

depends on the metric function complexity

0 the evaluation may vary from hundreds of nanoseconds to
seconds

Accessed buckets
o Number of buckets accessed during a query evaluation
o Represents the I/O costs

Similarity Search: Part II, Chapter 5 65

Performance Trials: Measures (cont.)

Messages sent
o Transmitted between peers using the computer network

o Represent the communication costs
depends on the size of the sent objects

Similarity Search: Part II, Chapter 5

66

Performance Trials: Remarks

Response times are imprecise:

o not dedicated computers

o depend on the actual load of used computers and the
underlying network

o other influences

Query objects follow the dataset distribution

Average over 50 queries:
o different query objects

o the same selectivity (radius or number of nearest neighbors)

Similarity Search: Part II, Chapter 5

67

Performance Trials: Outline

Performance of similarity queries

o Global costs
CPU, I/0O and communication
similar to the centralized structures

o Parallel costs
o Comparison of range and k-nearest neighbors queries

Data volume scalability

o Costs changes while increasing the size of the data
Intraquery parallelism
Interquery parallelism

Similarity Search: Part II, Chapter 5

68

Similarity Queries Global Costs

Changing range query radius
Result set size
o grows exponentially

Buckets accessed
(I/0O costs)

o grows practically linearly
Similar to centralized structures

Peers accessed

o Only slight increase
more buckets accessed per peer

Similarity Search: Part II, Chapter 5

VEC

(@)

result set size/10
buckets accesse(
peers accessed

|

..........

140

120

100

80
60 [
40 r
20 [

0

O 800 1000 1200 1400 1¢

range query radius

STR

[

o

result set size/10
buckets accesse(
peers accessed

>

5 10 15 2
range query radius

69

Similarity Queries Global Costs

VEC

140
buckets accessed

Changing k for k-NN queries 120 | — peers accessed

100
o logarithmic scale 80 -

60
Buckets accessed a0

. . 20 §
o grows very quickly as k increases 0 S
] . 10 100 1000 1000C
K-NN is very expensive ‘
STR
o similar to centralized structures 40— buckets accessed
peers accessed

Peers accessed wOK
80

o follows the number of buckets 60 |

o practically all buckets per peer are :8 —

accessed for higher values of k 00 10 1000 1000C
Kk

Similarity Search: Part II, Chapter 5 70

Similarity Queries Global Costs

VEC
Changing range query radius 5 || o
Distance computations 2 150
(CPU costs) § 100
o Divided for AST and buckets T —

. 600 800 1000 1200 1400 16
small percentage of distance comp. range query radius

during the AST navigation

STR

o Buckets use linear scan & ol — oo
all objects must be accessed 2 200/
no additional pruning technique used & '*°
2 100¢
Similar to centralized structures £ s __—

o

5 10 15 2
range query radius

(@)

Similarity Search: Part II, Chapter 5 71

Similarity Queries Global Costs

Changing k for k-NN queries

o logarithmic scale

Distance computations
o only a small percentage of

distance computations during the

AST navigation is needed

k-NN very expensive

o also with respect to the CPU

costs

Similarity Search:

Part II, Chapter 5

VEC
» 1200
c total/100
-% 1000 | —— AST - —
3 8001
§ 600
8 400
C
®
% 200}
© /
0 fEEEEE| L Lol L Lol L Lo
10 100 1000 100C
K
STR
» 300
c total/100
% 250 | —— AST
3 200
= 150l
(0]
o 100
S /
o 50
©
O Lol L Lol L Lol L IR
10 100 1000 100C
k

72

Similarity Queries Global Costs

Changing range query radius
Number of messages
(Communication costs)

o Divided for requests and forwards

Forward messages means
misaddressing

Only 10% messages forwarded

0 even though logarithmic replication
used

No communication In
centralized structures

Similarity Search: Part II, Chapter 5

number of messages

number of message

o
&

1.4

1.2

VEC

— request/10
— forward

0.6 | | | |
600 800 1000 1200 1400 1¢
range query radius

2.

=
ol
T

=
o

0

o

STR

- —— forward

— request/10

—

5

(@)

10

15 2

range query radius

73

Similarity Queries Global Costs

Changing k for k-NN queries

o logarithmic scale

Number of messages

o very small number of messages

forwarded

o corresponds with the number of

peers accessed

practically all peers accessed for k

greater than 100

o Slightly higher than for range

queries

Similarity Search:

Part I1, Chapter 5

messages sent

messages sent

VEC
35 :
| reques
30 forward
0 M| L PR | L P L PR
10 100 1000 100C
k
STR
35 :
| reques
30 forward
25
20
15 -
10
5L~
0 Lol L PR | L Lol L Lo
10 100 1000 100C

Kk

74

Similarity Queries Global Costs

GHT™ is comparable to centralized structures

o No pruning techniques in buckets
slightly increased number of distance computations

o Buckets accessed on peers
not fixed size of blocks, but fixed bucket capacity

Trends are similar
o Costs increase linearly

Similarity Search: Part II, Chapter 5 75

Similarity Quertes Parallel Costs

Correspond to the actual response times

More difficult to measure
o Maximum of the serial costs from all accessed peers

o Example: the parallel distance comp. of a range query

number of distance computations at each peer accessed
0 at a peer, it is a sum of costs for accessed buckets

maximum of the values needed on active peers

k-NN has the serial phase of locating the first bucket
o we must sum the first part with the range query costs

o additional serial iterations may be required if
optimistic/pessimistic strategy is used

Similarity Search: Part II, Chapter 5 76

Similarity Quertes Parallel Costs

Changing range query radius

Parallel buckets accessed
(I/O costs)

o Maximal number of buckets
accessed per peer

o It is bounded by the capacity
a peer has at most five buckets

Not affected by the query size

Similarity Search: Part II, Chapter 5

buckets accessed

buckets accessed

VEC
y
6
5 |
4 /_/_
3L
oL
1t
0 1 1 1 1
600 800 1000 1200 1400 16(
range query radius
STR
7
6L
5
40— |
3L
oL
10
0 1 1 1
0 5 10 15 20

range query radius

77

Similarity Quertes Parallel Costs

Changing k for k-NN queries
o logarithmic scale

lterations

o one additional optimistic strategy
iteration for k greater than 1,000

Parallel bucket access costs

o bounded by the capacity

practically all 5 buckets per peer
are always accessed

o second iteration increases the
costs

Similarity Search: Part II, Chapter 5

VEC
16
7 iterations
— bucket accessed

12 +
10+

8 L

6]
A

2 =

O PR | n PR | n PR | n PR

10 100 1000 100(
k
STR
14
ol iterations
— bucket accessed

10+

8 L

6r ﬁ

J—

4+

2 L

O Lol n Lol n Lol n PR

10 100 1000 1000(

k

78

Similarity Quertes Parallel Costs

. . VEC
Changing the range query radius ¢ 2so0
Parallel distance computations ¢
(CPU costs) S 10000l
o Maximal number of distance £ 5000/
CompUtationS per peer i OGmOO iZOO i400 16
the costs of the linear scans of the range query radius
peer’s accessed buckets STR

30000
25000
200001
15000r

o It is bounded by the capacity

a peer has maximally five buckets of
maximally 1,000 objects
10000t

Good response even for large c000.
rad I 0 0 15 iO 115 2
range query radius

distance computations

Similarity Search: Part II, Chapter 5 79

Similarity Quertes Parallel Costs

Changing k for k-NN queries

o logarithmic scale

Parallel distance computations

o bounded by the capacity

maximally 5,000 distance computations

per peer

all objects per peer are evaluated

o Second iteration (k> 1,000)
Increases the cost

Although k-NN query is expensive,

the CPU costs are bounded

Similarity Search: Part II, Chapter 5

distance computations

stance computations

S 2000°1

VEC

10

100 1000 100(

Kk
STR

10

100 1000 100(

k

80

Similarity Quertes Parallel Costs

Measure for the messages sent
(the communication costs)

o during the query execution, the peer may send messages
to several other peers

the cost is equal to sending only one, because the peer sends
them all at once

o the serial part is thus the forwarding

The number of peers sequentially contacted
a2 hop count

Similarity Search: Part II, Chapter 5 31

Similarity Quertes Parallel Costs

VEC
] [] 3
Changing range query radius 2
S
Hop count -
(Communication costs) g 1_5/
o logarithmically proportional to the . L
600 800 1000 1200 1400 16l
number of peers accessed range query radius
o In practice, this cost is very hard to ; STR
notice
forwarding is executed before the = =3
local buckets scan S 2
= 1sf
. 1 1 1
0 5 10 15 20

range query radius

Similarity Search: Part II, Chapter 5 82

Similarity Quertes Parallel Costs

Changing k for k-NN queries

o logarithmic scale

Hop count

o Since only few messages are
forwarded, the k-NN queries have
practically the same costs as the
range queries

o Small amount of additional hops
during the second phase

approximately one additional hop
IS needed

Similarity Search: Part II, Chapter 5

hop count

hop count

10

12

10 -

o N EaN » (o]
\ \ \

o N B~ OO @
T

Kk

VEC
o
1 10 100 1000 100C
k
STR
i j—
1 10 100 1000 100C

83

Similarity Queries Comparison

k-NN and range queries
o logarithmic scale

o range query has the radius set to the
distance of the k-th nearest object

Total distance computations

that is the perfect estimate

o the k-NN query is slightly more

expensive than the range query

Parallel distance computations

o clearly visible differences of the first
phase and additional iteration(s)

Similarity Search:

Part I1, Chapter 5

VEC

., 16000 5 1o
c — KNN total/l
g 140007 —— kNN pc;slr%;ull(/ellc
5 L e range tota
5 120007 ... range paralle
g 10000
8 80001
8 6000[—
S
Z 4000 f_..",,: ___________________________________
© 2000/

0 P PR | PR | PR

10 100 1000 100(
k
STR

5, 14000
c — kNN total/10
2 12000 —— kNN parallel
g || range total/10
*g_ 10000 ------- range paralle
g 8000 -
@ 60000/
e "
g 40001
2
T 2000r

0 "

10 100 1000 100(
Kk

84

Similarity Quertes Parallel Costs

GHT™ real costs summary
o the real response of the indexing system

GHT™ exhibits

o constant parallel CPU costs
distance computations bounded by bucket capacity
o Constant parallel 1/0 costs
number of buckets accessed bounded by peer capacity

o Logarithmic parallel communication costs
even with the logarithmic replication

Similarity Search: Part II, Chapter 5

85

Data volume scalability

Dataset gradually expanded to 1,000,000 objects

0 measurements after every increment of 2,000 objects

Intraquery parallelism
o parallel response of a query measured in distance comp.
0 maximum of costs incurred at peers involved in the query

Interquery parallelism

o simplified by the ratio of the number of peers involved in a
query to the total number of peers

o the lower the ratio, the higher the chances for other queries
to be executed in parallel

Similarity Search: Part II, Chapter 5 86

Data volume scalability

Changing dataset size
o two different query radii

Intraquery parallelism

o Practically constant responses
even for the growing dataset

some irregularities for small datasets
observed

o Larger radii result in higher costs
though, not much

Similarity Search: Part II, Chapter 5

6000
5000
4000
3000
2000
1000

av. number of distance comp

4000

2000

1000

av. number of distance comp

3000~
j\’\« AN~

VEC

— range 300
— range 500

|

Av/ A\»/V\,\Av_,/-’/\'v-‘

\4

20000 40000 60000 80000 100
data—set size

TXT

—— range 5
— range 15

M~]

20000 40000 60000 80000 100
data—set size

87

Data volume scalability

Changing dataset size
o two different k for k-NN
0 corresponding range queries

Intraquery parallelism

o by analogy to range queries the
responses are nearly constant

o There is a small difference for
different values of k

Similarity Search: Part II, Chapter 5

distance computations

distance computations

VEC
12000——— 30N
10000} ---eeeeee range for 3 NN
------- range for 100 NN
80001
6000
40007, N
2000!
200 400 600 800 10|
dataset size (x 1000)
STR
= 20N
120001 range for 3 NN
10000 range for 100 NN
8000
6000
4000}/
2000

200 400 600 800 10t
dataset size (x 1000)

88

Data volume scalability

VEC

Changing dataset size
o Two different query radii

Interquery parallelism

o As the size of the dataset
Increases, the interquery
parallelism gets better

o Better for the smaller radii

smaller percentage of peers
involved in a query

1
I \ — range 300
0.8 range 500

0.6 Y___\\./A‘_r\";_
> ;_\«/_\x ~
0.2
O 1 1 1 1
20000 40000 60000 80000 100t
data—set size

percentage ot accessed serve

TXT

—— range 5

0.8 h/__\ range 157
RATRA

20000 40000 60000 80000 100t
data—set size

0.2

percentage ot accessed servel

Similarity Search: Part II, Chapter 5 89

Data volume scalability

GHT™ scalability for one query

o Intraquery parallelism
both the AST navigation and the bucket search

o Remains practically constant for growing datasets

GHT™ scalability for multiple queries

o Interquery parallelism
a simplification by percentage of used peers

o Allows more queries executed at the same time as the
dataset grows

Similarity Search: Part II, Chapter 5

90

