# Probability PA154 Jazykové modelování (1.2)

Pavel Rychlý

pary@fi.muni.cz

February 23, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

- Experiment, process, test, ...
- Set of possible basic outcomes: sample space Ω (základní prostor obsahující možné výsledky)
  - coin toss ( $\Omega = \{\text{head, tail}\}$ ), die ( $\Omega = \{1..6\}$ )
  - ▶ yes/no opinion poll, quality test (bad/good) ( $\Omega = \{0,1\}$ )
  - lottery ( $|\Omega| \cong 10^7..10^{12}$ )
  - # of traffic accidents somewhere per year ( $\Omega = N$ )
  - ► spelling errors (Ω = Z<sup>\*</sup>), where Z is an aplhabet, and Z<sup>\*</sup> is set of possible strings over such alphabet
  - missing word ( $|\Omega| \cong$  vocabulary size)

#### Events

- Event (jev) A is a set of basic outcomes
- Usually  $A \subset \Omega$ , and all  $A \in 2^{\Omega}$  (the event space, jevové pole)
  - Ω is the certain event (jistý jev), Ø is the impossible event (nemožný jev)
- Example:
  - experiment: three times coin toss
    - $\Omega = \{$ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
  - count cases with exactly two tails: then

- all heads:
  - ► A = {HHH}

- Repeat experiment many times, record how many times a given event A occured ("count" c<sub>1</sub>).
- Do this whole series many times; remember all  $c_i$ s.
- Observation: if repeated really many times, the ratios of C<sub>i</sub>/T<sub>i</sub> (where T<sub>i</sub> is the number of experiments run in the *i*-th series) are close to some (unknown but) <u>constant</u> value.
- Call this constant a **probability of A**. Notation: **p(A)**

## Estimating Probability

- Remember: ... close to an *unknown* constant.
- We can only estimate it:
  - from a single series (typical case, as mostly the outcome of a series is given to us we cannot repeat the experiment):

$$p(A)=\frac{c_1}{T_1}$$

- This is the <u>best</u> estimate.

# Example

Recall our example:

- experiment: three times coin toss
  - $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- count cases with exactly two tails:  $A = \{HTT, THT, TTH\}$
- Run an experiment 1000 times (i.e. 3000 tosses)
- Counted: 386 cases with two tails (HTT, THT or TTH)
- estimate: p(A) = 386/100 = .386
- Run again: 373, 399, 382, 355, 372, 406, 359
  - p(A) = .379 (weighted average) or simply 3032/8000
- Uniform distribution assumption: p(A) = 3/8 = .375

## **Basic Properties**

#### Basic properties:

- ► p:  $2^{\Omega} \rightarrow [0,1]$
- ▶ p(Ω) = 1
- Disjoint events:  $p(\cup A_i) = \sum_i p(A_i)$
- NB: <u>axiomatic definiton</u> of probability: take the above three conditions as axioms
- Immediate consequences:

- ►  $p(\overline{A}) = 1 p(a)$
- $A \subseteq B \Rightarrow p(A) \le P(B)$
- $\sum_{a \in \Omega} p(a) = 1$

#### Joint and Conditional Probability

$$p(A,B) = p(A \cap B)$$
$$p(A|B) = \frac{p(A,B)}{p(B)}$$

Estimating form counts:

► 
$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{\frac{c(A \cap B)}{T}}{\frac{c(B)}{T}} = \frac{c(A \cap B)}{c(B)}$$



## Bayes Rule

- p(A,B) = p(B,A) since  $p(A \cap B) = p(B \cap A)$ 
  - therefore p(A|B)p(B) = p(B|A)p(A), and therefore:

# Bayes Rule $p(A|B) = rac{p(B|A) imes p(A)}{p(B)}$



#### Independence

- Can we compute p(A,B) from p(A) and p(B)?
- Recall from previous foil:

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$
$$p(A|B) \times p(B) = p(B|A) \times p(A)$$
$$p(A, B) = p(B|A) \times p(A)$$

... we're almost there: how p(B|A) relates to p(B)?

• p(B|A) = p(B) iff A and B are **independent** 

- Example: two coin tosses, weather today and weather on March 4th 1789;
- Any two events for which p(B|A) = P(B)!

$$p(A_1, A_2, A_3, A_4, \dots, A_n) = p(A_1 | A_2, A_3, A_4, \dots, A_n) \times p(A_2 | A_3, A_4, \dots, A_n) \times \times p(A_3 | A_4, \dots, A_n) \times \dots \times p(A_{n-1} | A_n) \times p(A_n)$$

• this is a direct consequence of the Bayes rule.

Interested in an event A given B (where it is not easy or practical or desirable) to estimate p(A|B):

■ take Bayes rule, max over all Bs:

■ 
$$\operatorname{argmax}_{A}p(A|B) = \operatorname{argmax}_{A} \frac{p(B|A) \times p(A)}{p(B)} =$$
  
 $\boxed{\operatorname{argmax}_{A}(p(B|A) \times p(A))}$ 

• ... as p(B) is constant when changing As

#### Random Variables

- is a function  $X: \Omega \to Q$ 
  - in general  $Q = R^n$ , typically R
  - easier to handle real numbers than real-world events
- random variable is *discrete* if *Q* is <u>countable</u> (i.e. also if <u>finite</u>)
- Example: *die*: natural "numbering" [1,6], *coin*: {0,1}
- Probability distribution:
  - ►  $p_X(x) = p(X = x) =_{df} p(A_x)$  where  $A_x = \{a \in \Omega : X(a) = x\}$
  - often just p(x) if it is clear from context what X is

# Expectation Joint and Conditional Distributions

■ is a mean of a random variable (weighted average)

• 
$$E(X) = \sum_{x \in X(\Omega)} x \cdot p_X(x)$$

- Example: one six-sided die: 3.5, two dice (sum): 7
- Joint and Conditional distribution rules:
  - analogous to probability of events

Bayes:  $p_{X|Y}(x, y) =_{notation} p_{XY}(x|y) =_{even simpler notation}$ 

$$p(x|y) = \frac{p(y|x).p(x)}{p(y)}$$

• Chain rule: 
$$\left(p(w,x,y,z) = p(z).p(y|z).p(x|y,z).p(w|x,y,z)\right)$$

## Standard Distributions

- Binomial (discrete)
  - outcome: 0 or 1 (thus binomial)
  - make n trials
  - ▶ interested in the (probability of) numbers of successes r
- Must be careful: it's not uniform!

• 
$$p_b(r|n) = \frac{\binom{n}{r}}{2^n}$$
 (for equally likely outcome)

 <sup>n</sup>
 <sup>r</sup>
 counts how many possibilities there are for choosing r
 objects out of n;

$$(nr) = \frac{n!}{(n-r)!r!}$$

## Continuous Distributions

■ The normal distribution ("Gaussian")

• 
$$p_{norm}(x|\mu,\sigma) = exp \left[ \frac{\frac{-(x-\mu)^2}{2\sigma^2}}{\sigma\sqrt{2\pi}} \right]$$

where:

- $\mu$  is the mean (x-coordinate of the peak) (0)
- $\sigma$  is the standard deviation (1)



• other: hyperbolic, t