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The Notion of Entropy

m Entropy — “chaos” , fuzziness, opposite of order,. ..
» you know it
> it is much easier to create“mess” than to tidy things up...

m Comes from physics:

» Entropy does not go down unless energy is used
m Measure of uncertainty:

> if low ...low uncertainty

The higher the entropy, the higher uncertainty, but the higher
“surprise” (information) we can get out of experiment.
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The Formula

m Let py(x) be a distribution of random variable X

m Basic outcomes (alphabet) Q

H(X) = = >_xeq P(x) logy p(x)

m Unit: bits (log;q: nats)
m Notation: H(X) = Hp(X) = H(p) = Hx(p) = H(px)
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Using the Formula: Example

m Toss a fair coin: Q = {head, tail}
» p(head) = .5, p(tail) =
» H(p) = —0.5log,(0.5) + (—0.5l0g,(0.5)) =
2x ((-05)x(-1))=2x05=1

1
m Take fair, 32-sided die: p(x) = £ for every side x

» H(p) = — X 121 3 P(xi) logz p(xi) = —32(p(x1) log, p(x1))
(smce for aII ip(x) =px1) =%
—32x (35 x (=5)) =5 (now you see why it's called bits?)
m Unfair coin:

> p(head) = .2 ...H(p)
> p(head) = .1 ...H(p)
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Example: Book Availability

Entropy

1

Hp)

bad bookstore

good baokstare

1

 p(Book Available)
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The Limits

m When H(p) =07

» if a result of an experiment is known ahead of time:
> necessarily:

Ix € Qi p(x) =1&Vy € Qiy #x = p(y) =0

m Upper bound?

> none in general
> for |2 |=n: H(p) <log,n
> nothing can be more uncertain than the uniform distribution
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Entropy and Expectation

m Recall:
» E(X) = erx(n) Px(x) x x
m Then:

E (légz (565)) = Seexapion (-15)

- ZXEX(Q) pX(X) |0g2 pX(X) = H(pX) —notation H(P)
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Perplexity: motivation

m Recall:
» 2 equiprobable outcomes: H(p) = 1 bit
» 32 equiprobable outcomes: H(p) = 5 bits
» 4.3 billion equiprobable outcomes: H(p) = 32 bits
m What if the outcomes are not equiprobable?
» 32 outcomes, 2 equiprobable at 0.5, rest impossible:
> H(p) = 1 bit
» any measure for comparing the entropy (i.e. uncertainty/difficulty
of prediction) (also) for random variables with
different number of outcomes?
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Perplexity

m Perplexity:
> G(p) =2"")
m ...so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins,
etc.
m it is easier to imagine:

» NLP example: vocabulary size of a vocabulary with uniform
distribution, which is equally hard to predict

m the “wilder” (biased) distribution, the better:
» lower entropy, lower perplexity
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Joint Entropy and Conditional Entropy

m Two random variables: X (space Q), Y (V)
m Joint entropy:
» no big deal: ((X,)Y) considered a single event):

=Y p(x.y)log, p(x, )

xeEQyew

m Conditional entropy:

H(YIX)==> "> p(x,y)log, p(y|x)

x€Q yewv

1
recall that H(X) = E { log, ——
( ) < g2 px(X)>

(weighted “average”, and weights are not conditional)
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Conditional Entropy (Using the Calculus)

m other definition:

H(Y1X) = ¥eq POOH(YIX = x) =
for H(Y|X = x), we can use
the single-variable definition (x ~ constant)
= Sren P(x) (= ,ev p(yIx) loga plyx) ) =
= = xeq 2oyew Py [x)p(x) loga p(y|x) =
= =D xeq 2yew P(X; ¥) logs p(y|x)
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Properties of Entropy |

m Entropy

is non-negative:

» H(X)>0
> proof: (recall: H(X) = —>_ o p(x)log, p(x))

>
>

>
>

log,(p(x)) is negative or zero for x <1,

p(x) is non-negative; their product p(x) log(p(x)) is thus
negative,

sum of negative numbers is negative,

and -f is positive for negative f

m Chain rule:
» H(X,Y)=H(Y|X)+ H(X), as well as
» H(X,Y) = H(X|Y)+ H(Y) (since H(Y,X) = H(X, Y))
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Properties of Entropy Il

m Conditional Entropy is better (than unconditional):
» H(Y|X) < H(Y)

u H(X, Y) < H(X) + H( Y) (follows from the previous (in)equalities)
» equality iff XY independent
> (recall: XY independent iff p(X,Y)=p(X)p(Y))

m H(p) is concave (remember the book availability
graph?)
» concave function f over an interval (a,b):
Vx,y € (a,b),VA € [0,1] :
FOX + (1= A)y) = M(x) + (L= A)f(y)

» function f is convex if -f is concave

B for proofs and generalizations, see Cover/Thomas
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