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“Coding” Interpretation of Entropy

m The least (average) number of bits needed to encode a message
(string, sequence, series, ...) (each element having being a
result of a random process with some distribution p): = H(p)

m Remember various compressing algorithms?

> they do well on data with repeating (= easily predictable =
= low entropy) patterns

> their results though have high entropy = compressing compressed
data does nothing

PA154 Jazykové modelovani (2.1) Cross Entropy 2/12



Coding: Example

m How many bits do we need for ISO Latin 17
> => the trivial answer: 8
m Experience: some chars are more common, some (very) rare:
» ...so what if we use more bits for the rare, and less bits for the
frequent? (be careful: want to decode (easily)!)
» suppose: p('a’) = 0.3, p('b’) = 0.3, p('c’) = 0.3, the rest:
p(x)=2.0004
» code: 'a’ ~ 00, 'b" ~ 01, 'c’ ~ 10, rest: 11b;bybzbsbsbebybs

» code 'acbbécbaac’:
00 10 01 01 1100001111 10 01 OO0 00 10

a ¢ b b é c b a a ¢
> number of bits used: 28 (vs. 80 using “naive” coding)

m code length ~ —log(probability)
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Entropy of Language

m Imagine that we produce the next letter using

P(hs1lh, .- ),

where f1, .../, is the sequence of all the letters which had been
uttered so far (i.e. nis really big!); let's call /1,. ../, the history
h(hn+1), and all histories H:

m Then compute its entropy:

> =2 heh 2iea Pl h)logy p(/]h)
m Not very practical, isn't it?
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Cross-Entropy

m Typical case: we've got series of observations
T ={t1, to, t3, ta, ..., tn} (numbers, words, ...; t; € Q);
estimate (sample): Yy € Q: p(y) = i(_,_y‘)
def. c(y)=|{te T;t =y}

® ...but the true p is unknown; every sample is too small!

m Natural question: how well do we do using p (instead of p)?

m Idea: simulate actual p by using a different T (or rather: by
using different observation we simulate the insufficiency of T vs.
some other data (“random” difference))
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Cross Entropy: The Formula

= Hy(B) = H(p) + D(p’llﬁ)
(Hor(B) = = Xeq P'(x) loga p(x))

m p’ is certainly not the true p, but we can consider it the “real

world"” distribution against which we test p

m note on notation (confusing ...): B/ < P, also Hr/(p)
p

m (Cross)Perplexity: Gy (p) = Gri(p) = 2/ (P)
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Conditional Cross Entropy

m So far: “unconditional” distribution(s) p(x), p’(x). ..

m In practice: virtually always conditioning on context

m Interested in: sample space V, r.v. Y, y € V;
context: sample space Q, r.v.X, x € &
“our" distribution p(y|x), test against p’(y, x), which is taken
from some independent data:

Hy(p)=— >_ p(y.x)logyp(ylx)
yeW xeQ
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Sample Space vs. Data

m In practice, it is often inconvenient to sum over the space(s)
V. Q (especially for cross entropy!)

m Use the following formula:
Hy(P) = =32 cw xeq P'(¥: x) logy p(y[x) =
—1/|T'| Zi:l...|T’| log, p(yilxi)
m This is in fact the normalized log probability of the “test” data:

Hp(p) = —1/|T'llogz [ plyilx:)
i=1..|T"|
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Computation Example

m Q= {a, b, .., Z}, prob. distribution (assumed/estimated from data): p(a)
= .25, p(b) = .5, p(a) = 6—14 for a € {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z
m Data (test): barb p'(a) = p'(r) = .25, p'(b) = .5
m Sum over Q:
o3 a becdefg...pgqr st ...z
o’ (eplogop(e) .5+ .5+0+0+0+0+0+0+0+0+0+1.5+0+0+0+0+0 = 2.5

m Sum over data:
ils 1/b 2/a 3/r 4/b ﬁl/lT’l
-log;p(s) 1 + 2 + 6 + 1 =10 {1/4) x10 =2.5
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Cross Entropy: Some Observations

m H(p) 77<,=,>77 Hy (p) : ALL!
m Previous example:
p(a) = .25, p(b) = .5, p(a)= 6%‘ for o € {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

H(p) = 2.5bits = H(p')(barb)
m Other data: probable: (§)(6+6+6+1+2+1+6+6)=4.25
H(p) < 4.25bits = H(p')(probable)
m And finally: abba: (3)(2+1+1+2)=15
H(p) > 1.5bits = H(p')(abba)

m But what about: baby —p/(‘y*)log, p(‘'y') = —.25log, 0 = oo (?7)
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Cross Entropy: Usage

m Comparing data??
» NO! (we believe that we test on real data!)

m Rather: comparing distributions (vs. real data)

m Have (got) 2 distributions: p and g (on some €, X)

» which is better?
> better: has lower cross-entropy (perplexity) on real data S

m “Real” data: §

Hs(p) = =1/1S1 221, 5| log2p(yilxi) @ Hs(q) = =1/1S| X2, 1s) logz2a(yil xi)
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Comparing Distributions

m p(.) from previous example: Hs(p) = 4.25
p(a) = .25, p(b) = .5, p(a) = 6%1 for a € {c..r}, = 0 for the rest: s,t,u,v,w,xy,z

m g(.|.) (conditional; defined by a table):

q(.J)— |a b B i o P 1 other

s

a 0 E 0 0 i 125 0 i

b 1 0 a 0 1 125 0 0 ex.: qlojr) =1

e 0 0 0 1 0 125 0 lo—"1

1 0 3 0 0 i 125 0 o qelp) =125
o 0 0 0 0 0 125 1™ |0 /

o 0 0 0 0 0 125 0 1

t 0 0 0 0 0 125 €f st |

other |0 0 1 0 0 1250 0

(1/8) (log(ploth.)*log(rlp)+log(olr)+log(blo)+log(alb) log(bla) tlogb)*log(c[)

amy¢ o =+ 3 + 0 =+ 0 + 1 + 0 * 1 + 0 )
)
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