LM Smoothing

 (The EM Algorithm)PA154 Jazykové modelování (3)

Pavel Rychlý

pary@fi.muni.cz
March 9, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

■ "Raw" n-gram language model estimate:

- necessarily, some zeros
- !many: trigram model $\rightarrow 2.16 \times 10^{14}$ parameters, data $\sim 10^{9}$ words
- which are true 0 ?
- optimal situation: even the least grequent trigram would be seen several times, in order to distinguish it's probability vs. other trigrams
- optimal situation cannot happen, unfortunately (open question: how many data would we need?)
$-\rightarrow$ we don't know
- we must eliminate zeros
- Two kinds of zeros: $p(w \mid h)=0$, or even $p(h)=0$!

Eliminating the Zero Probabilites: Smoothing

■ Get new $p^{\prime}(w)$ (same $\left.\Omega\right)$: almost $p(w)$ but no zeros

- Discount w for (some) $p(w)>0$: new $p^{\prime}(w)<p(w)$

$$
\sum_{w \in \text { discounted }}\left(p(w)-p^{\prime}(w)\right)=D
$$

■ Distribute D to all $w ; p(w)=0$: new $p^{\prime}(w)>p(w)$

- possibly also to other w with low $p(w)$
- For some w (possibly): $\mathrm{p}^{\prime}(\mathrm{w})=\mathrm{p}(\mathrm{w})$
- Make sure $\sum_{w \in \Omega} p^{\prime}(w)=1$
- There are many ways of smoothing

Adding less than 1

- Equally simple:

Predicting word w from a vocabulary V , training data T :

$$
p^{\prime}(w \mid h)=\frac{c(h, w)+\lambda}{c(h)+\lambda|V|}, \quad \lambda<1
$$

- for non-conditional distributions: $p^{\prime}(w)=\frac{c(w)+\lambda}{|T|+\lambda|V|}$
- Example:

Training data: $\quad<S>$ what is it what is small? $|T|=8$
$\mathrm{V}=\{$ what, is, it, small, ?,<s> ,flying, birds, are, a, bird, .\}, $|\mathrm{V}|=12$
$p($ it $)=.125, p($ what $)=.25, p()=.0 \quad p($ what is it? $)=.25^{2} \times .125^{2} \cong .001$ p (it is flying.) $=.125 \times .25 \times 0^{2}=0$
Use $\lambda=.1$
$p^{\prime}($ it $) \cong .12, p^{\prime}($ what $) \cong .23, \quad p^{\prime}($ what is it? $)=.23^{2} \times .12^{2} \cong .0007$
$p^{\prime}(.) \cong .01$
p^{\prime} (it is flying. $)=.12 \times .23 \times .01^{2} \cong .000003$

Good-Turing

- Suitable for estimation from large data
- similar idea: discount/boost the relative frequency estimate:

$$
p_{r}(w)=\frac{(c(w)+1) \times N(c(w)+1)}{|T| \times N(c(w))}
$$

where $N(c)$ is the count of words with count c (count-of-counts) specifically, for $c(w)=0$ (unseen words), $p_{r}(w)=\frac{N(1)}{|T| \times N(0)}$

- good for small counts (<5-10, where $N(c)$ is high)
- normalization! (so that we have $\sum_{w} p^{\prime}(w)=1$)

Smoothing by Combination: Linear Interpolation

- Combine what?
- distribution of various level of detail vs. reliability
- n-gram models:
- use ($\mathrm{n}-1$) gram, ($\mathrm{n}-2$) gram,... , uniform

$$
\longrightarrow \text { reliability }
$$

\longleftarrow detail

- Simplest possible combination:
- sum of probabilities, normalize:
- $p(0 \mid 0)=.8, p(1 \mid 0)=.2, p(0 \mid 1)=1, p(1 \mid 1)=0$, $p(0)=.4, p(1)=.6$
- $\mathrm{p}^{\prime}(0 \mid 0)=.6, \mathrm{p}^{\prime}(1 \mid 0)=.4, \mathrm{p}^{\prime}(1 \mid 0)=.7, \mathrm{p}^{\prime}(1 \mid 1)=.3$

Held-out Data

■ What data to use?

- try training data T : but we will always get $\lambda_{3}=1$
- why? let $\mathrm{p}_{i T}$ be an i-gram distribution estimated using r.f. from T)
- minimizing $H_{T}\left(\mathrm{p}^{\prime}\right)$ over a vector λ, $\mathrm{p}^{\prime}{ }_{\lambda}=$
$\lambda_{3} p_{3 T}+\lambda_{2} p_{2 T}+\lambda_{1} p_{1 T}+\lambda_{0} /|V|$
- remember $H_{T}\left(\mathrm{p}^{\prime}{ }_{\lambda}\right)=\mathrm{H}\left(\mathrm{p}_{3 T}\right)+\mathrm{D}\left(\mathrm{p}_{3} \| \mathrm{p}^{\prime}{ }_{\lambda}\right)$; p_{3} fixed $\rightarrow \mathrm{H}\left(\mathrm{p}_{3} T\right)$ fixed, best)
- which $p^{\prime}{ }_{\lambda}$ minimizes $H_{T}\left(p^{\prime}{ }_{\lambda}\right)$? Obviously, a $p^{\prime}{ }_{\lambda}$ for which $D\left(p_{3 T} \| p^{\prime}{ }_{\lambda}\right)$
$=0$
- ...and that's p_{3} (because $D(p \| p)=0$, as we know)
$-\ldots$ and certainly $\mathrm{p}_{\lambda}^{\prime}=\mathrm{p}_{3}$ if $\lambda_{3}=1$ (maybe in some other cases, too).
$-\left(p^{\prime}{ }_{\lambda}=1 \times p_{3 T}+0 \times p_{2 T}+1 \times p_{1 T}+0 / / \mathrm{V} \mid\right)$
- thus: do not use the training data for estimation of λ !
- must hold out part of the training data (heldout data, \underline{H})
- ...call remaining data the (true/raw) training data, \mathbb{T}
- the test data $\underline{\mathrm{S}}$ (e.g., for comparison purposes): still different data!

Good-Turing: An Example

$$
\begin{aligned}
& \text { Remember: } p_{r}(w)=\frac{(c(w)+1) \times N(c(w)+1)}{|T| \times N(c(w))} \\
& \quad \ll>\text { what is it what is small? } \quad|T|=8 \\
& \text { Training data: } \quad \begin{aligned}
\mathrm{V}=\{\text { what, is, it, small, ?,<s>, flying, birds, are, a, bird, } .\},|\mathrm{V}|=12
\end{aligned} \\
& \mathrm{p}(\text { it })=.125, \mathrm{p}(\text { what })=.25, \mathrm{p}(.)=0 \\
& \quad \begin{array}{l}
\mathrm{p}(\text { what is it } ?)=.25^{2} \times .125^{2} \cong .001 \\
\mathrm{p}(\text { it is flying. })=.125 \times .25 \times 0^{2}=0
\end{array}
\end{aligned}
$$

\square Raw estimation $(N(0)=6, N(1)=4, N(2)=2, N(i)=0$, for $i>2)$:
$p_{r}($ (it $)=(1+1) \times N(1+1) /(8 \times N(1))=2 \times 2 /(8 \times 4)=.125$
$p_{r}($ what $)=(2+1) \times N(2+1) /(8 \times N(2))=3 \times 0 /(8 \times 2)=0$: keep orig. $\mathrm{p}($ what $)$
$p_{r}()=.(0+1) \times N(0+1) /(8 \times N(0))=1 \times 4 /(8 \times 6) \cong .083$
■ Normalize (divide by $\left.1.5=\sum_{w \in|V|} p_{r}(w)\right)$ and compute:
$p^{\prime}($ it $) \cong .08, p^{\prime}($ what $) \cong .17, p^{\prime}(.) \cong .06$
$p^{\prime}($ what is it? $)=.17^{2} \times .08^{2} \cong .0002$
$\mathrm{p}^{\prime}($ it is flying. $)=.08^{2} \times .17 \times .06^{2} \cong .00004$

Typical n-gram LM Smoothing

$■$ Weight in less detailed distributions using $\lambda=\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$:
$\mathrm{p}^{\prime}{ }_{\lambda}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\lambda_{3} p_{3}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)+$

$$
\lambda_{2} p_{2}\left(w_{i} \mid w_{i-1}\right)+\lambda_{1} p_{1}\left(w_{i}\right)+\lambda_{0} /|V|
$$

■ Normalize:

$$
\lambda_{i}>0, \sum_{i=0}^{n} \lambda_{i}=1 \text { is sufficient }\left(\lambda_{0}=1-\sum_{i=1}^{n} \lambda_{i}\right)(\mathrm{n}=3)
$$

■ Estimation using MLE:

- fix the p_{3}, p_{2}, p_{1} and $|\mathrm{V}|$ parameters as estimated from the training data
- then find such $\left\{\lambda_{i}\right\}$ which minimizes the cross entropy
(maximazes probablity of data): $-\frac{1}{|D|} \sum_{i=1}^{|D|} \log _{2}\left(p_{\lambda}^{\prime}\left(w_{i} \mid h_{i}\right)\right)$

The Formulas

Repeat: minimizing $\frac{-1}{|H|} \sum_{i=1}^{|H|} \log _{2}\left(p_{\lambda}^{\prime}\left(w_{i} \mid h_{i}\right)\right)$ over λ

$$
\begin{aligned}
& p_{\lambda}^{\prime}\left(w_{i} \mid h_{i}\right)=p_{\lambda}^{\prime}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)= \\
& =\lambda_{3} p_{3}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)+\lambda_{2} p_{2}\left(w_{i} \mid w_{i-1}\right)+\lambda_{1} p_{1}\left(w_{i}\right)+\lambda_{0} \frac{1}{|V|}
\end{aligned}
$$

"Expected counts of lambdas": $\mathrm{j}=0 . .3$

$$
c\left(\lambda_{j}\right)=\sum_{i=1}^{|H|} \frac{\lambda_{j} p_{j}\left(w_{i} \mid h_{i}\right)}{p_{\lambda}^{\prime}\left(w_{i} \mid h_{i}\right)}
$$

"Next λ ": j = $0 . .3$

$$
\lambda_{j, \text { next }}=\frac{c\left(\lambda_{j}\right)}{\sum_{k=0}^{3} c\left(\lambda_{k}\right)}
$$

The (Smoothing) EM Algorithm

1 Start with some λ, such that $\lambda>0$ for all $\mathrm{j} \in 0 . .3$
2 Compute "Expected Counts" for each λ_{j}.
3 Compute new set of λ_{j}, using "Next λ " formula.
4 Start over at step 2, unless a termination condition is met.

- Termination condition: convergence of λ.
- Simply set an ε, and finish if $\left|\lambda_{j}-\lambda_{j, \text { next }}\right|<\varepsilon$ for each j (step 3).

■ Guaranteed to converge: follows from Jensen's inequality, plus a technical proof.

Bucketed Smoothing: The Algorithm

■ First, determine the bucketing function b (use heldout!): - decide in advance you want e.g. 1000 buckets - compute the total frequency of histories in 1 bucket ($\left.f_{\max }(\mathrm{b})\right)$ - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed $f_{\max }($ b) (you might end up with slightly more than 1000 buckets)

- Divide your heldout data according to buckets
- Apply the previous algorithm to each bucket and its data

Some More Technical Hints

- Set $\mathrm{V}=$ all words from training data\}.
- You may also consider $\mathrm{V}=\mathrm{T} \cup \mathrm{H}$, but it does not make the coding in any way simpler (in fact, harder).
- But: you must never use the test data for your vocabulary

■ Prepend two "words" in front of all data:

- avoids beginning-of-data problems
- call these index -1 and 0 : then the formulas hold exactly
- When $c_{n}(\mathrm{w}, \mathrm{h})=0$:
- Assing 0 probability to $p_{n}(\mathrm{w} \mid \mathrm{h})$ where $c_{n-1}(\mathrm{~h})>0$, but a uniform probablity $(1 / / \mathrm{V} \mid)$ to those $p_{n}(\mathrm{w} \mid \mathrm{h})$ where $c_{n-1}(\mathrm{~h})=0$ (this must be done both when working on the heldout data during EM, as well as when computing cross-entropy on the test data!)

■ "Bucketed Smoothing":

- use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(\mathrm{h})$
- e.g. for $\mathrm{h}=$ (micrograms,per) we will have
$\lambda(\mathrm{h})=(.999, .0009, .00009, .00001)$
(because "cubic" is the only word to follow...)
- actually: not a separate set for each history, but rather a set for "similar" histories ("bucket"):
$\lambda(\mathrm{b}(\mathrm{h}))$, where $\mathrm{b}: \mathrm{V}^{2} \rightarrow N$ (in the case of trigrams)
b classifies histories according to their reliability (\sim frequency)

Simple Example

- Raw distribution (unigram only; smooth with uniform): $\mathrm{p}(\mathrm{a})=.25, \mathrm{p}(\mathrm{b})=.5, \mathrm{p}(\alpha)=1 / 64$ for $\alpha \in\{c . . r\},=0$ for the rest: $\mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}$, $\mathrm{x}, \mathrm{y}, \mathrm{z}$
■ Heldout data: baby; use one set of λ (λ_{1} : unigram, λ_{0} : uniform)
■ Start with $\lambda_{0}=\lambda_{1}=.5$:

$$
\begin{gathered}
p_{\lambda}^{\prime}(b)=.5 \times .5+.5 / 26=.27 \\
p_{\lambda}^{\prime}(a)=.5 \times .25+.5 / 26=.14 \\
p_{\lambda}^{\prime}(y)=.5 \times 0+.5 / 26=.02
\end{gathered}
$$

$c\left(\lambda_{1}\right)=.5 \times .5 / .27+.5 \times .25 / .14+.5 \times .5 / .27+.5 \times 0 / .02=2.27$
$\mathrm{c}\left(\lambda_{0}\right)=.5 \times .04 / .27+.5 \times .04 / .14+.5 \times .04 / .27+.5 \times .04 / .02=1.28$
Normalize $\lambda_{1, \text { next }}=.68, \lambda_{0, \text { next }}=.32$
Repeat from step 2 (recomputep' ${ }_{\lambda}$ first for efficient computation, then $\left.\mathrm{c}\left(\lambda_{i}\right), \ldots\right)$.
Finish when new lambdas almost equal to the old ones (say, <0.01 difference).

