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HMM: The Tasks

» HMM(the general case):
» five-tuple (S, So, Y, Ps, Py), where:
» S={s1,%,...,s7} is the set of states, Sy is the initial state,
Y = {y1,¥2,...,yy} is the output alphabet,
Ps(sj|si) is the set of prob. distributions of transitions,
Py (yk|si, sj) is the set of output (emission) probability
distributions.
» Given an HMM & an output sequence Y = {y1,y2,..., Yk} :
» (Task 1) compute the probability of Y;
» (Task 2) compute the most likely sequence of states which has
generated Y
» (Task 3) Estimating the parameters (transition/output
distributions)

vvyy
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A variant of EM

» Idea(~EM, for another variant see LM smoothing):

» Start with (possibly random) estimates of Ps and Py.

» Compute(fractional) "counts” of state transitions/emissions
taken, from Ps and Py, given data Y

» Adjust the estimates of Ps and Py from these "counts” (using
MLE, i.e. relative frequency as the estimate).

» Remarks:

» many m,ore parameters than the simple four-way smoothing
» no proofs here; see Jelinek Chapter 9
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Setting
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HMM (without Ps, Py)(S, So, Y), and data
T =

{y' € Y ic1 T
will use T ~ |T|

HMM structure is given: (S, Sp)
Ps: Typically, one wants to allow " fully connected” graph

(i.e. no transitions forbidden ~ no transitions set to hard 0)
why? — we better leave it on the learning phase, based on the
datal

sometimes possible to remove some transitions ahead of time

should be restricted (if not, we will not get anywhere!)

» restricted ~ hard 0 probabilities of p(y|s,s’)
» "Dictionary": states <> words, "m:n" mapping on S X Y (in

10/24/00

general)
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Initialization

» For computing the initial expected " counts”
» Important part
» EM guaranteed to find a local maximum only (albeit a good
one in most cases)
» Py initialization more important

» fortunately, often easy to determine

> together with dictionary <+ vocabulary mapping, get counts,
then MLE

Ps initialization less important
» e.g. uniform distribution for each p(.|s)

v
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Data structures

» Will need storage for:

» The predetermined structure of the HMM (unless fully
connected — need not to keep it!)

The parameters to be estimated (Ps, Py)

The expected counts (same size as (Ps, Py))

The training data T = {y' € Y}i=1..1

The trellis (if f.c.):

vV vy vy

4T  Size: T X S (Precisely, |T|X|S[)
Each trellis state: 0@ 6 & O €
two [float] numbers 9O oo @ S
(forward/backward) 0 @ W W &
BRN R E R W ...and then some)
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The Algorithm Part |

1. Initialize Pg, Py
2. Compute "forward” probabilities:
» follow the procedure for trellis (summing), compute a(s, i)
everywhere
» use the current values of Ps, Py (p(s'|s), p(y|s,s’)) :
a(s’,i) =35 als, i — 1) x p(s'[s) x p(yils, s')
» NB: do not throw away the previous stage!
3. Compute "backward” probabilities
» start at all nodes of the last stage, proceed backwards, §(s, i)

> i.e., probability of the "tail” of data from stage i to the end of
data

Bs' 1) = 2o B(s,i+1) x p(s]s') x p(yils's s)
» also, keep the (s, /) at all trellis states
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The Algorithm Part |l

1. Collect counts:
» for each output/transition pair compute

C055) = Eig 11, 08 PO PG5 LS

prefix prob. tail prob

one pass through data, this transition prob
only stop at (output) y % output prob

c(s,s") =2 ,cy cly,s,s’) (assuming all observed y; in Y)
c(s) = Xsescls,s)
2. Reestimate: p'(s'|s) = c(s,s")/c(s)
p'yls,s') = cly,s,s')/c(s,s)
3. Repeat 2-5 until desired convergence limit is reached
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Baum-Welch: Tips & Tricks

» Normalization badly needed

> long training data — extremely small probabilities

» Normalize «, 8 using the same norm.factor:
N(i) = Yes als. )
as follows:

» compute «(s, i) as usual (Step 2 of the algorithm), computing
the sum N(/) at the given stage i as you go.

» at the end of each stage, recompute all alphas(for each state
s):

ax(s,i)=a(s,)/N(i)

» use the same N(/) for s at the end of each backward (Step 3)

stage:

B * (57 l) = ﬁ(sa I)/N(’)
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Example

» Task: pronunciation of "the”

» Solution: build HMM, fully connected, 4 states:
» S - short article, L - long article, C,V - word starting
w/consonant, vowel
» thus, only "the" is ambiguous (a, an, the - not members of
cV)

» Output form states only (p(w|s,s’) = p(w|s’))

* Data Y:an e¢gg and a picce of the big the end
€ €3
Trellis: 0 @ 3] &
P V) &2,
®) Q €2,
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Example: Initialization

» Qutput probabilities:
> pinit(w|c) = c(c, w)/c(c); where
c(S, the) = c(L, the) = c(the)/2
(other than that, everything is deterministic)
» Transition probabilities:
> pinit(c’|c) = 1/4(uniform)
» Don't forget:

» about the space needed
» initialize a(X,0) =1 (X : the never-occuring front buffer st.)
» initialize B(s, T) = 1 for all s (except for s = X)
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Fill in alpha, beta

> Left to right, alpha:
a(s', i) =3 o als,i—1) x p(s|s) x p(w;|s’), where s is
the output from states

» Remember normalization (N(i)).

» Similary, beta (on the way back from the end).

an egg and a piecc of the big the end

a(V,8)
@ @
Bw @1

m) B(L. T (LIV)p (the L)+ DW) (V. 8) = (L) p(CIL)p(blg,C)+
B(S,7)p(S[Vip(the,5) @7 (S, p(ClS)phig C)
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Counts & Reestimation

» One pass through data
» At each position i, go through all pairs (s;, si+1)
» Increment appropriate counters by frac. counts (Step 4):
> inc(yit1, i, Siv1) = a(si, 1)p(sit1]si) P(yit1lsit1) b(siv1,i+1)
» c(y,si,si+1)+ = inc (for y at pos i+1)
> c(si, si+1)+ = inc (always)
» c(s;)+ = inc (always)
inc(big,L,C)=a(L, 7)p(C|L)p(big,C)5(V,8)
inc(big,5,.C)=a(S, 7)p(C|S)p(big, C)A(V, )
» Reestimate p(s'|s), p(y|s)
» and hope for increase in p(C|S) and p(V|L)... !

of the big

10/24/00 JHU CS 600.465/Intro to NLP/Jan Hajic 13/14



HMM: Final Remarks

> Parameter "tying"
» keep certain parameters same (~ just one "counter” for all of
them)
> any combination in principle possible
» ex.: smoothing (just one set of lambdas)
» Real Numbers Output
» Y of infinite size (R, R")
> parametric (typically: few) distribution needed (e.g.,
" Gaussian”)
» "Empty” transitions: do not generate output
» ~ vertical areas in trellis; do not use in " counting”
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Review

> Recall:
» tagging ~ morphological disambiguation
» tagset V1 C (Cl, G, ... C,,)
» C; - morphological categories, such as POS, NUMBER, CASE,
PERSON, TENSE, GENDER,...
» mapping w — {t € Vr} exists
> restriction of Morphological Analysis: AT — 2
where A is the language alphabet, L is the set of lemmas

(L,C2,C2,...,Cn)

» extension of punctuation, sentence boundaries (treated as
words)
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The Setting

» Noisy Channel setting:

Input (tags)

D —————

NNP VBZDT...

The channel

(adds “noise”

Output (words)

John drinks the ...

» Goal (as usual): discover "input” to the channel (T, the tag
seq.) given the "output” (W, the word sequence)

> p(TIW) = p(WI[T)p(T)/p(W)

» p(W) fixed (W given)...
argmaxp(T|W) = argmax7p(W|T)p(T)

10/31/00
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The Model

» Two models (d = |W| = | T| word sequence length):

» p(WIT) = Nj—1. gp(wilwi, ..., wi_1, t1,..
» p(T) = Mj=1._ qp(tilts,..., ti—1)

» Too much parameters (as always)

» Approximation using the following assumptions:

» words do not depend on the context
> tag depends on limited history:
p(tilts, ..., tic1) = p(tilti—nta, - - -5 tio1)
> n-gram tag "language” mode

» word depends on tag only:

p(W,"Wl7 Wiy, b, td) = p(W,"t,')
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The HMM Model Definition

» (Almost) general HMM:

» output (words) emitted by states (not arcs)
» states: (n-1)-tuples of tags if n-gram tag model used
» five-tuple (S, so, Y, Ps, Py) where:
» S ={so,51,...,57} is the set of states, s is the initial state,
» Y ={y1,y,...,yy} is the output alphabet (the words),
> Ps(sj|si) is the set of prob. distributions of transitions
-Ps(Sj|Si) = p(l‘i|ti7n+1, ceey tifl); Sj = (ti—n+2, ceey ti), Si =
(timns1, -5 tic1)
> Py (y«|si) is the set of output (emission) probability
distributions
-another simplification: Py (yk|s;) if s; and s; contain the
same tag as the rightmost element: Py (yk|si) = p(wilt;)
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Supervised Learning (Manually Annotated Data Available)

» Use MLE
> p(wilt;) = cuwe(ti, w;)/ce(ti)
> p(tilti-nt1,) =
Cen(tiznt1s -+ -5 tic1s 1)/ Cene1)(tiznsts - - -5 tic1)
» Smooth(both!)
» p(w;|t;) : "Add 1" for all possible tag, word pairs using a
predefined dictionary (thus some 0 kept!)
> p(ti|tiznt1,-..,ti—1) : linear interpolation:
> e.g. for trigram model:
PA(tilti—2, tim1) =
Asp(tilti—a, tic1) + Aop(ti|ti—1) + Aip(ti) + Xo/| V7|
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Unsupervised Learning

» Completely unsupervised learning impossible
> at least if we have the tagset given- how would we associate
words with tags?
» Assumed (minimal) setting:
> tagset known
» dictionary/morph. analysis available (providing possible tags
for any word)
» Use: Baum-Welch algorithm (see class 15,10/13)

» "tying”: output (state-emitting only, same dist. from two
states with same "final” tag)
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Comments on Unsupervised Learning

» Initialization of Baum-Welch

» is some annotated data available, use them
» keep O for impossible output probabilities

» Beware of:

» degradation of accuracy (Baum-Welch criterion: entropy, not
accuracy!)
» use heldout data for cross-checking

» Supervised almost always better
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Unknown Words

» "OO0V" words (out-of-vocabulary)
» we do not have list of possible tags for them
» and we certainly have no output probabilities
» Solutions:
» try all tags (uniform distribution)
» try open-class tags (uniform, unigram distribution)
> try to "guess’ possible tags (based on suffix/ending) - use
different output distribution based on the ending (and/or other
factors, such as capitalization)
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Running the Tagger

» Use Viterbi
» remember to handle unknown words
> single-best, n-best possible
» Another option
> assign always the best tag at each word, but consider all

possibilities for previous tags (no back pointers nor a
path-backpass)

> introduces random errors, implausible sequences, but might get
higher accuracy (less secondary errors)
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(Tagger) Evaluation

» A must. Test data (S), previously unseen (in training)
» change test data often if at all possible! ("feedback cheating”)

>

Error-rate based

> Formally:

10/31/00

>

vV v vy

Out(w) = set of output "items” for an input "item” w
True(w) = single correct output (annotation) for w
Errors(S) = >_,_1 |56 (Out(w;) # True(w;))
Correct(S) = 32,1 |59 (True(w;) € Out(w;))
Generated(S) = 3_;_; |5 9|Out(w;)|
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Evaluation Metrics

» Accuracy: Single output (tagging: each word gets a single
tag)
» Error rate: Err(S) = Errors(S)/|S]
» Accuracy: Acc(S) = 1—(Errors(S)/|S]) = 1— Err(S)
» What if multiple (or no) output?
» Recall: R(S) = Correct(S)/|S]
» Precision: P(S) = Correct(S)/Generated(S)
» Combination: F measure: F =1/(a/P+ (1 - a)/R)
> « is a weight given to precision vs. recall; for
a=5F=2PR/(R+ P)
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The Task, Again

> Recall:
» tagging ~ morphological disambiguation
> tagset V1 € (C17 G, ..., C,,)
» C; - moprhological categories, such as POS, NUMBER, CASE,
PERSON, TENSE, GENDER,....

» mapping w — {t € Vr} exists
> restriction of Morphological Analysis: At — 2(5C1,C2.Cn)
where A is the language alphabet, L is the set of lemmas

» extension to punctuation, sentence boundaries (treated as
word)
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Setting

» Not a source channel view

» Not even a probabilistic model (no "numbers” used when
tagging a text after a model is developed)

» Statistical, yes:

» uses training data (combination of supervised [manually
annotated data available] and unsupervised [plain text, large
volume] training)

» learning [rules]

» criterion: accuracy (that's what we are interested in in the end
after alll)
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The General Scheme

Training Tagging

Y
TAGGER

Automatically
tagged data
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The Learner

Iteration n

t

.. ) Interim
Iterationl [ Iteration2 annotation

Remove tags

/

Assign initial
tags

ATD without
annotation

11/01/00 JHU CS 600.465/Intro to NLP/Jan Hajic 5/15



The 1/0 of an Iteration

> In (iteration i):
» Intermediate data (initial or the result of previous iteration)
» The TRUTH (the annotated training data)

>
poolofpossiblerules

» Out:
> One rule reected(i) to enhance the set of rules learned so far
» Intermediate data (input data transformed by the rule learned
in this iteration, reejected(i))
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The Initial Assignment of Tags

» One possibilty:

» NN
» Another:

» the most frequent tag for a given word form
» Even:

» use an HMM tagger for the initial assignment
> Not particulary sensitive
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The Criterion

v

Error rate (or Accuracy):
» beginning of an iteration: some error rate E;,
» each possible rule r, when applied at every data position:
> makes an improvement somewhere in the data (Cimproved(r))
> makes it worse at sme places (Cuorsened(r))
> and, of course, does not touch the remaining data

v

Rule contribution to the improvement of the error rate:
> Contrib(r) = Cimproved(r) - Cworsened(r)
Rule selection at iteration i:

v

> Fselected(i) = argmax,contrib(r)

> New error rate: Eoy = Ein — contrib(rsejected(iy)
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The Stopping Criterion

» Obvious:
> no improvement can be made
> contrib(r) <0
» or improvement too small
> contrib(r) < Threshold
> NB: prone to overtraining!
> therefore, setting a reasonable threshold advisable
» Heldout?

» maybe: remove rules which degrade performance on H
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The Pool of Rules(Templates)

» Format: change tag at position i from a to b / condition
» Context rules (condition definition - "template”):

Wis W, W, W W, W, Wi

tis to, t, 4 tir Gty

ligigt
gl

L]
L]
L]
]

| || | |

Instantiation: w, t permitted
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Lexical Rules

» Other type: lexical rules

Wiz W, W, W Wi, Wi Wi

1

tis tio t t; tir b b
] “look inside the word”

» Example:

» w; has suffix -ied
» w; has prefix ge-
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Rule Application

» Two possibilities:

» immediate consequences (left-to-right):

+ data: DT NN VBP NN VBP NN...
» rule: NN — NNS /preceded by NN VBP
+ apply rule at position 4:

DT NN VBP[NN VBPNN...

DT NN VBPNNS VBP NND
+ ...then rule cannot apply at position 6 (context not NN VBP).

» delayed ("fixed input"):
> use original input for context
> the above rule then applies twice
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In Other Words...

Strip the tags off the truth, keep the original truth
Initialize the stripped data by some simple method

Start with an empty set of selected rules S.

B =

Repeat until the stopping criterion applies:
» compute the contribution of the rule r, for each r:

Contrib(r) - Cimproved(r) - Cworsened(r)
» select r which has the biggest contribution contrib(r), add it to
the final set of selected rules S.

5. Output the set S
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The Tagger

> Input:

» untagged data
> rules (S) learned by the learner

> Tagging:
> use the same initialization as the learner did
» fori = 1..n (n - the number of rules learnt)

> apply the rule i to the whole intermediate data, changing
(some) tags

> the last intermediate data is the output

11/01/00 JHU CS 600.465/Intro to NLP/Jan Hajic 14/15



N-best & Unsupervised Modifications

» N-best modification
» allow adding tags by rules
» criterion: optimal combination of accuracy and the number of
tags per word (we want: close to | 1)
» Unsupervised modification
» use only unambiguous words for evaluation criterion
» work extremely well for English
» does not work for languages with few unambiguous words
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