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1 Introduction

Work on part-of-speech tagging has concentrated on English in the past, since a lot of manually

tagged training material is available for English and results can be compared to those of other

researchers. It was assumed that methods which have been developed for English would work for

other languages as well.

There are some special problems to tackle, however, during the development of taggers for other

languages. One problem arises from the morphological productivity of languages, as e.g. German,

which results in a large number of di�erent word forms which in turn leads to a large number

of lexical parameters { at least in the standard Markov Model approach. Another quite general

problem is the lack of large, reliably tagged corpora for training purposes. To overcome these

problems, methods are needed which achieve high accuracy with small amounts of training data.

A method which has been popular for English is the trigram tagger. It has seldom been used

for other languages, however, because the number of parameters becomes too large to be estimated

reliably from corpus frequencies. Given a tagset of 50 tags, 125,000 contextual parameters would

have to be estimated from perhaps 10,000 to 100,000 tokens of training data. This means that

less than one training token is available per parameter on the average. The estimation of lexical

probabilities poses similar problems since their number is often even larger.

Unsupervised training on untagged corpora with the Baum-Welch algorithm is an alternative

to the direct estimation of Markov Model probabilities from frequency counts. However, Merialdo

[Merialdo, 1994] concluded that Baum-Welch reestimation \will generally degrade ... accuracy,

except when only a very limited amount of hand-tagged text is available." In his experiments

Baum-Welch training did not improve accuracy if more than 5000 training sentences were used for

the initialization of parameters.

This paper presents a couple of extensions to a basic Markov Model tagger (called TreeTagger)

which improve its accuracy when trained on small corpora. The basic tagger was originally developed

for English [Schmid, 1994]. The extensions together reduced error rates on a German test corpus

by more than a third.
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2 The Basic TreeTagger

The TreeTagger is a Markov Model tagger which makes use of a decision tree to get more reliable

estimates for contextual parameters.

2.1 Markov Models
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Using two simplifying assumptions, namely that the probability of a word w
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Recursive application of Bayes' theorem and these simplifying assumptions results in the formula
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Probabilistic models of this kind where the next state (tag) depends only on the k preceding

states (tags) are known as Markov Models of k-th order. Mainly �rst-order Markov models (bigram

tagger) and second-order Markov Models (trigram tagger) are used in POS tagging.

The simplifying assumptions above are not fully justi�ed, of course. Neither does a word depend

solely on its POS nor is the POS at some position in a sentence solely determined by the POS of

the neighboring words. Nevertheless, Markov Modell taggers achieve high accuracy in practice and

are very useful due to their robustness and e�ciency.

The TreeTagger's scoring function for alternative tag sequences is a slightly modi�ed version of

the above formula which results from another application of Bayes' theorem and omission of the

factor P (w

i

) which is identical for all alternative tag sequences. The new formula simpli�es the

calculation of lexical probabilities.
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The most probable tag sequence is e�ciently calculated by the Viterbi algorithm.

2.2 Parameter Estimation

Before a Markov Model tagger can be used to annotate data, it is necessary to estimate the values

of its probability parameters. There are essentially two methods for this purpose. One method

(see e.g. [Cutting et al., 1992]) estimates the parameters from untagged training data by iterated

reestimation with the Forward-Backward Algorithm.

1
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in some reasonable way, e.g. to mimic the tag sequence at the end of a (not existent) preceding sentence.
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The other method needs a training corpus which has been annotated with POS and estimates

parameters directly from corpus frequencies (N-gram counts) usingMaximum Likelihood Estimation:
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The question is how large a training corpus has to be in order to allow reliable estimates from

frequencies. From Zipf's law which states that most of the words in a corpus are rare, it is evident

that the lexical probabilities P (wjt) can not be estimated reliably for the majority of words. The

same holds for the contextual parameters P (t

n

jt

n�k

: : : t

n�1

) if the tagset and/or the context k is

large relative to corpus size.

For these reasons it is necessary to either smooth probability estimates or to reduce the num-

ber of probability parameters. Smoothing techniques for N-gram counts are discussed e.g. in

[Jelinek and Mercer, 1980], [Katz, 1987] and [Church and Gale, 1991].

The TreeTagger follows the other path and reduces the number of contextual parameters via a

decision tree method as discussed in the next section. Section 3.1 presents a smoothing method for

lexical probabilities.

2.3 Decision Trees for Context Restriction

The selection of a tag based on the sequence of the preceding tags can be seen as a classi�cation

problem: Given a set of features (here the preceding tags), what is the most likely class of the item

(the tag of the next word)?

One well knownmethod for solving such classi�cation problems is the ID3 algorithm [Quinlan, 1983]

2

.

It builds a classi�cation tree in which each non-terminal node corresponds to the examination of a

feature, while the terminal nodes contain class information. The classi�cation tree is built recur-

sively from a set of training items whose class is known. The ID3 algorithm selects at each step the

test which yields maximal information about the class of the training items, splits the training set

according to the tested feature and invokes itself recursively to build decision trees for each subset of

the training items. The algorithm terminates when the class is unambiguous, i.e. when all training

items of the current subtree are of the same class.

A straightforward choice of features for POS prediction are the tags of the k preceding words.

Since closer tags provide more information, the algorithm creates in this case a decision tree which

examines the preceding tags in sequence until full disambiguation is achieved; the number of ex-

amined preceding tags varies depending on the context. Using the tags of the preceding words as

features, however, has the disadvantage that each test splits the set of training items in as many

subsets as there are tags. While some of the subsets may be quite large, others might be empty and

therefore no prediction would be possible. To circumvent this problem and to gain more exibility,

binary features are used. Each binary feature tells whether the last but k word has some tag t.

Binary tests in the decision tree are guaranteed to produce non-empty subsets because otherwise

the information gain of the test is zero.

Full disambiguation of the tag of the next word on the basis of the preceding words alone is not

possible in general. Therefore, unambiguous classi�cations at the terminal nodes of the decision tree

are replaced by probability distributions which reect the tag distribution of the training set which

corresponds to the respective node. To get reliable estimates, these \terminal" training sets have to

be su�ciently large. To prevent the algorithm from splitting a training set too far, the TreeTagger

applies the heuristic that the weighted information gain at a terminal node n has to exceed some

threshold �

c

. The weighted information gain G

n

is de�ned as the product of the frequency F

n

of

the training items at node n and the di�erence between the amount of information H

p

needed to

2

A successor of ID3 called C4.5 is also available [Quinlan, 1993].
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disambiguate at the parent node p and the amount of information H
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The threshold �

c

is either set to some prede�ned value or determined by cross evaluation. Fig.

1 shows a sample decision tree.

-1 -2

-2

-1
tag    = JJ ?

tag    = NN ? tag    = DT ?

tag    = JJ ?

no yes

no yes

NN:   70%

   .
   .   .

JJ:      10%

Figure 1: A sample decision tree (partially drawn).

The number of preceding tags which the TreeTagger may examine is de�ned by the user. Large

values were expected to produce the best results. This was con�rmed by experiments on English

with 2 million words training data from the Penn Treebank corpus [Marcus et al., 1993] where the

highest accuracy was achieved with three preceding tags as context. Results for German where less

data was available were less clear. Depending on the pruning factor �

c

, the results were sometimes

better with larger contexts and sometimes better with smaller contexts.

2.4 The Su�x Lexicon

When a tagger is processing unrestricted text, it is likely to encounter a number of unknown words

even if its lexicon is fairly large. Hence the tagger needs a strategy to deal with unknown words.

The simplest strategy is to assign unknown words to each POS tag with equal probability. However,

some tags which are called closed class tags (such as determiner, complementizer, preposition) can

be safely excluded since the words with these POSs can be listed completely in the lexicon.

A morphological analyzer { if available { can be used to provide more information about unknown

words. But since the TreeTagger was designed to work with only a simple full form lexicon and a

training corpus, requiring no additional resources, an automatically created su�x lexicon is used

instead.

The su�x lexicon (see also [Cutting et al., 1992]) assigns tag probabilities to words based on

their endings. Construction of the su�x lexicon involves three steps. First a letter tree is built

from the su�xes of length �ve of all open class words in the lexicon and su�x frequencies are

counted. The same pruning strategy as for decision trees but with a di�erent threshold �

l

then
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removes terminal nodes with unreliable probability estimates. Finally lexical probability estimates

are calculated for each terminal node.

Fig. 2 shows a sample su�x tree.
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Figure 2: A sample su�x tree of maximal length 3.

3 Improvements to the Basic TreeTagger

The tagger described above worked well for English where large training corpora are available.

Results for German where only small manually tagged corpora are available were less satisfying.

This is not surprising given the fact that only about 50 percent of the word forms in the test text had

occurred in the training text. The methods described in the following sections have been developed

to improve poor lexical probability estimates obtained from small corpora.

3.1 Smoothing with Equivalence Classes

Grouping words into equivalence classes based on the set of possible tags is used in the Cutting et

al. tagger to reduce the number of lexical parameters which have to be reestimated during training.

Only one lexical parameter is needed for all words having the same set of possible POSs.

Equivalence classes can also be used for smoothing. If the assumption holds that words with

the same set of possible POSs have mostly similar probability distributions, it should be possible

to get reasonable probability estimates for rare words from equivalence class probabilities. Tag

probabilities for frequent words on the other hand can be based on corpus frequencies. Equation 10

implements a gliding transition from parameter estimation based on equivalence class probabilities

to estimation based on corpus frequencies. The equivalence class based lexical probability P (t j [w])

is multiplied by a weight factor � and is added to the frequency F (t; w). The resulting smoothed

frequency count

^

F (t; w) is used to calculate the lexical probabilities estimates

^
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F (t; w) = F (t; w) + � P (t j [w]) (11)

3

The same result is obtained if the word based probabilitity P (tjw) is weighted proportional to word frequency

F (w)d and added to the equivalence class based probabilitity P (tjw) and renormalized.
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3.2 Pre�x Lexicon

The inuence of the beginning of a word on its POS is small for English words, the only important

regularity being that capitalized words are proper names.

4

In such languages as German on the

other hand there is a stronger inuence since German has also inectional pre�xes.

To model this, the su�x lexicon (see section 2.4) was combined with a pre�x lexicon which is

built in the same way as the su�x lexicon, but from word pre�xes. The probability estimates of

the su�x lexicon and the pre�x lexicon are multiplied and renormalized in order to be combined.

3.3 Information from Automatically Tagged Corpora

Experiments on unsupervised training of taggers ([Cutting et al., 1992]) have shown that relevant

information can also be extracted from untagged corpora.

Untagged corpora presumably are most useful for estimating parameters of words which do not

occur in the tagged training corpus or words which are not even contained in the lexicon. For the

latter type of words, no information about possible POSs is available to the TreeTagger besides

that provided by the pre�x-su�x lexicon. There is a good chance, however, to �nd occurrences of

such infrequent words in large untagged corpora. Using the tagger itself (after supervised training)

to disambiguate the POSs of these occurrences within context, sets of probable POSs for unknown

words can be extracted and added to the full form lexicon so that the tagger has more speci�c

entries for these words than the pre�x-su�x lexicon entries which are not very restrictive.

Finding missing lexical entries is one way to make use of automatically tagged data. Another

possibility which has been investigated is to calculate probability estimates from such data and to

combine them with the lexical probabilities in the same way as the equivalence class probabilities

have been combined (see section 3.1).

3.4 Sentence-Initial Words

Since words are always capitalized at the beginning of a sentence, it is not su�cient in this case to

look up only the capitalized form of the word in the lexicon. There might be an uncapitalized yet

otherwise identical word in the lexicon. Hence the other word form has to be looked up as well and

if both lookups are successful, the probability vectors are weighted by the relative frequency of the

corresponding forms and summed. This is e.g. necessary to prevent the word New in the sentence

\New ownership can bring a fresh outlook to stodgy companies." from being tagged as a proper

name as in New York City.

3.5 Simpli�ed Tagging Formula

Sometimes equation 5 is further simpli�ed to equation 12 by omitting the fraction 1=P (t

i

). This is

justi�ed if the a priori probabilities of all tags are about the same.
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This simpli�ed formula has also been used in initial experiments with the TreeTagger. Tests

have shown, however, that the exact formula 5 is superior (see section 5).

4 Tests

A small hand tagged German corpus which is part of a larger corpus of the German newspaper

Stuttgarter Zeitung was available for tests. The corpus was divided in two subcorpora, one for

training (� 20,000 tokens) and one for testing (� 5,000 tokens).

4

Words at the beginning of a sentence are excepted, of course.

6



tagging method accuracy

su�x lexicon only (1) 96.05 %

(1) + pre�x lexicon 96.10 %

(1) + equival. class smoothing 96.52 %

(1) + sentence initial word treatm. 96.46 %

all features (5) 96.98 %

(5) + additional word/tag-pairs (6) 97.04 %

(6) + additional probabilities < 97.04 %

(5) + standard MM formula 97.53 %

Table 1: Tagging results

A list of word forms was created from the whole newspaper corpus (� 36 million tokens) and

analyzed by DMOR, a German morphological analyzer [Schiller, 1995]. All successfully analyzed

word forms and the corresponding parts of speech were stored in a full form lexicon. All word/tag

pairs from the training corpus which were not yet contained in the full form lexicon were added as

well yielding some 350,000 entries altogether.

Di�erent tagger versions have been tested with these data. The �rst version implemented the

simpli�ed tagging formula and included a su�x lexicon but none of the extensions described in

section 3. A pre�x lexicon was added in the second version. The third version extended version 1

by smoothing with equivalence classes. For version 4, the more sophisticated treatment of sentence-

initial word forms was added to version 1. Version 5 contains all three extensions.

Version 6 is identical to version 5 apart from the fact that word-tag pairs from an automatically

tagged corpus of 1 million words were added to the full form lexicon if missing. 7700 entries have

been added in this way. In version 7 lexical probabilities from the same automatically tagged corpus

were merged as described in section 3.3. In the last version the standard tagging formula 5 was

used instead of the simpli�ed version (cp. section 3.5).

Tagging speed on a Sun SPARCstation 10 computer was about 8,000 tokens per second.

5 Results

Table 5 shows the percentages of correctly tagged tokens for the di�erent tagger versions.

Smoothing with equivalence classes as well as the more sophisticated treatment of sentence-initial

word forms improved accuracy by about 0.5 % and 0.4 % respectively. Improvement from adding

a pre�x lexicon on the other hand was marginal. Information from the beginning of words was

therefore less useful for POS prediction than expected. Adding word/tag pairs from an automati-

cally tagged corpus (version 6) also had only marginal e�ect on tagging accuracy. Merging lexical

probabilities from the same corpus (version 7) even decreased accuracy. How much the accuracy

decreased depended on the weight of the probabilities from the automatically tagged corpus.

The results with version 7 show that the standard tagging formula is superior to the simpli�ed

one presented in section 3.5. Analysis of the tagger output showed that the latter formula tends to

prefer frequent tags. This might have been expected from the fact that the two formulas di�er by

the factor P (t).

The highest accuracy was achieved by version 7 of the tagger with 97.53 %. This is signi�cantly

better than the accuracy obtained with the basic version of the tagger (version 1). The reduction

in the error rate is 37 %.

20 % of the errors made by the tagger of version 5 resulted from interchanging a �nite verb form

and a non-�nite verb. These errors were caused by a non-local dependency: it is necessary to know

whether an auxiliary precedes in the same clause in order to tell whether a clause-�nal verb form
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which can be either is a �nite verb or an in�nitive.

5

.

The two sentences below illustrate this problem. The verb er�o�nen in the �rst sentence was

erroneously tagged as a �nite form although the modal wollen precedes. The verb halten in the

second sentence is part of a subordinate clause and was incorrectly tagged as a non-�nite verb

although no modal or auxiliary precedes.

1. Wir wollen 1994 die modernste Automobilfabrik in Deutschland er�o�nen.

We want to open the most advanced car factory in Germany in 1994.

2. Was Amerikaner augenblicklich f�ur die beste Produktionsmethode halten, ...

What Americans currently consider to be the best production method, ...

This kind of dependency is di�cult to learn for an N-gram tagger because it looks only at a limited

context. A simple postprocessor can be used to �lter out these tagging errors, however. The

methods presented in [Brill, 1992] could be used to learn such transformation rules automatically.

18 % of the errors resulted from interchanging a noun and a proper name. Two thirds of

the problematic words were either not contained in the full form lexicon (e.g. the proper name

Ebersp�acher) or not contained with the correct tag (e.g. the proper name Trachtenberg was only

listed as a simple noun). 10 % of the problematic words were proper names following an article.

The context strongly predicts a noun in these cases.

98.0 % of the test tokens were found in the full form lexicon of version 5. Tagging accuracy on

these words was 97.4 %. Accuracy on the remaining 2 % of the tokens which were not contained in

the full form lexicon was 78 %.

The average ambiguity of the test tokens was 1.45. This is about the same degree of ambiguity

as for the English Penn Treebank data.

Similar tests have been run for English. The English tagger was trained with two preceding

tags as context. 2 million tokens from the Penn Treebank corpus [Marcus et al., 1993] were used

for training and 100,000 tokens from a di�erent part of the corpus for tests. The lexicon was

created from the training corpus. Three di�erent versions of the tagger were tested corresponding

to version 1, version 5 and version 7 above. The resulting accuracy was 96.34 % for version 1,

96.44 % for version 5 and 96.81 % for version 7. The improvement in accuracy from version 1 to

version 5 is smaller for English than for German. There seems to be less need for smoothing here

because the lexical parameters can be estimated quite reliably due to the size of the training corpus.

6 Conclusions

Several extensions to a MarkovModel based tagger have been presented which reduced the error rate

of the tagger on German data by about 37 %. The best tagger version achieved 97.5 % correctness.

Smoothing lexical probabilities with equivalence class based probabilities as well as a more

sophisticated treatment of sentence-initial words have been useful. A limited further improvement

was obtained by using a pre�x lexicon in addition to a su�x lexicon and by extension of the full

form lexicon with word/tag pairs from an automatically tagged corpus. Merging lexical probability

estimates from an automatically tagged training corpus, however, had no positive e�ects. Finally,

it was found that the tagger performs better with the standard Markov Model formula which uses

p(wjt) as lexical probability than with an alternative formula which uses p(tjw).

The tagger has been implemented in C and is very fast. About 8,000 tokens are tagged per

second.

5

German is a verb-second language. The �nite verb is in main clauses (excepted imperative clauses) the second

constituent. Any non-�nite verbs which form a verb complex together with the �nite verb follow at the end of the

clause. An arbitrary number of words may intervene between both parts of the verb complex. In subordinate clauses

on the other hand the whole verb complex including the �nite verb is located at the end of the clause (ignoring shifted

constituents which may follow in the so called \Nachfeld" position). A verb at the end of a clause can therefore be

either the �nite verb of a subordinate clause or a non �nite verb in a main clause
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