
PA160: Net-Centric Computing II.

Time Synchronization

Luděk Matyska

Faculty of Informatics Masaryk University

Spring 2018

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 1 / 15



Time on a single node

Time on a single node

Timer (clock)

Oscillating quartz crystal
Counter

Each oscillation decreases the counter value
Interrupt when zero

Each individual interrupt is a tick
Holding register

Counter initiation after interrupt

Stored time increased after each interrupt

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 2 / 15



Time on a single node

Distributed computer systems

Each node has its own timer

Time is not automatically synchronized
Clock skew

Relation to the absolute time

Problems

Internode synchronization
Absolute time synchronization

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 3 / 15



Time on a single node

Absolute time

Original (old) definition of the time unit

1 second equals 1/86 400 solar day

Current definition of the time unit—atomic clock

Electronic transition frequency of the electromagnetic spectrum of
atoms
Cesium-133 standard in 1955
Chip-scale atomic clock in 2004 (125 mW)
1 second equals 9 192 631 770 cycles (transitions between two energy
levels of Cs-133)

International atomic clock

Average measurement of around 50 world laboratories

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 4 / 15



Time on a single node

Universal Coordinated Time, UTC

Atomic and solar times are not synchronized

Leap second needed

Compensation for the irregularities of Earth rotation
Added whenever difference between atomic clock and mean solar time
gets 800 ms

Result is the Universal Coordinated Time (UTC)

GMT replacement

UTC globally synchronized

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 5 / 15



Time on a single node

Clock synchronization

Basic assumptions

A set of nodes with their own clocks/timers
Interrupt frequency H Hz

Cp(t) is the time measured by clock at node p

Ideally Cp(t) = t for all p
Real behavior: If there exists ρ such as

1− ρ ≤ dC

dt
≤ 1 + ρ

then clock Cp works with the specification ρ
ρ is defined by the clock producer (it is the maximal time skew)
If we are looking for a clock synchronization with the highest difference
δ, then the synchronization must occur at most every δ/2ρ seconds

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 6 / 15



Time on a single node

Cristian’s algorithms

We have a time server

synchronized with UTC

Each δ/2ρ each node sends a request to the server

Server replies with its own (UTC) time (as fast as possible)

Naive solution: the node modifies its time accordingly

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 7 / 15



Time on a single node

Problems

Important—delay compensation
Time stops to have linear course (shape)

Unexpected and undesirable effects
Time cannot move “backwards”

Solution

The absolute time is not increased at the interrupt
We “stop” the time

Small—communication delay

Measure the time of sending (T0) and receiving (T1) the request
Add time of the transfer (T0 + T1)/2
Correct for the time spent at the server (request processing), if known

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 8 / 15



Time on a single node

Berkeley algorithm

Active time server

Periodically queries nodes for their absolute time
Averages node times
Sends this new time to all nodes

Suitable if no access to UTC source exists

Analogy of UTC—time based on the agreement of the nodes

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 9 / 15



Time on a single node

Decentralized solutions

Re-synchronization intervals

A starting point T0 globally agreed
Interval i starts at the time T0 + iR
Interval i ends at the time T0 + (i + 1)R
R is an agreed system parameter

All nodes broadcast their absolute time at the beginning of each
interval

Each node does the following

Receives S messages
Computes the average (with the removal of m outliers)
Improvement possible if the message propagation delay known

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 10 / 15



Time on a single node

NTP

Network Time Protocol

Version 3 (RFC1305), version 2 (RFC1119), version 1 (RFC 1059)
S(imple)NTP: RFC 1769

Hierarchical structure based on stratums

Stratum 1 directly connected to UTC (atomic clock, . . . )
Stratum i + 1 connects to server(s) at Stratum i
Up to 16 levels (Stratum 16)

Highly scalable

More than one server

Tolerant to server fault of precision loss

Servers tik.cesnet.cz and tak.cesnet.cz

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 11 / 15



Time on a single node

Logical time

Absolute time is not always necessary

Relative time (relation between events) often more important

Logical time

No need for absolute synchronization
Need agreement on the order

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 12 / 15



Time on a single node

Lamport timestamps

Relation “happens-before”

a→ b means that all processes agree that a happened before b

If a represents an event of sending a particular message and b
represents the receipt of the same message, then a→ b holds

Properties

a→ b is transitive
Events x and y are concurrent iff nor x → y nor y → x holds

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 13 / 15



Time on a single node

Implementation

Each process does have its own logical clock

For events within any particular process the relation “happens-before”
is trivially fulfilled

Interprocess synchronization is the result of message passing

Each message contains time stamp Ts of the sender (its time of
sending the message)
If internal receiver time Tr is lower (i.e. “younger”) than the time of
sending the message (Ts), we put Tr = Ts + 1

Additional condition

No two events happen at the same time

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 14 / 15



Time on a single node

Summary

Lamport’s algorithm is sufficient to define and keep a global (logical)
time in a distributed system

Properties

If a happens before b in the same process, C (a) < C (b)
If a is sending and b receipt of the same message, C (a) < C (b)
For all events a, b such that a 6= b, C (a) 6= C (b) holds

The algorithms provides global (partial) order on events in a
distributed system

First published in 1978 in CACM; one of the most cited articles in
Computer Science of all time

Luděk Matyska (FI MU) 4. Time Synchronization Spring 2018 15 / 15


