
PA160: Net-Centric Computing II.

Distributed Systems

Luděk Matyska

Slides by: Tomáš Rebok

Faculty of Informatics Masaryk University

Spring 2017

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 1 / 100

Lecture overview

Lecture overview

1 Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

2 Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

3 Web Services

4 Grid Services

5 Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

6 Conclusion

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 2 / 100

Distributed Systems

Lecture overview

1 Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

2 Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

3 Web Services

4 Grid Services

5 Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

6 Conclusion

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 3 / 100

Distributed Systems

Distributed Systems – Definition

Distributed System by Coulouris, Dollimore, and Kindberg

A system in which hardware and software components located at
networked computers communicate and coordinate their actions only by
message passing.

Distributed System by Tanenbaum and Steen

A collection of independent computers that appears to its users as a single
coherent system.

the independent/autonomous machines are interconnected by
communication networks and equipped with software systems
designed to produce an integrated and consistent computing
environment

Core objective of a distributed system: resource sharing

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 4 / 100

Distributed Systems Key characteristics

Distributed Systems – Key characteristics

Key Characteristics of Distributed Systems:
Autonomicity – there are several autonomous computational entities, each
of which has its own local memory
Heterogeneity – the entities may differ in many ways

computer HW (different data types’ representation), network
interconnection, operating systems (different APIs), programming languages
(different data structures), implementations by different developers, etc.

Concurrency – concurrent (distributed) program execution and resource
access
No global clock – programs (distributed components) coordinate their
actions by exchanging messages

message communication can be affected by delays, can suffer from variety of
failures, and is vulnerable to security attacks

Independent failures – each component of the system can fail
independently, leaving the others still running (and possibly not informed
about the failure)

How to know/differ the states when a network has failed or became
unusually slow?
How to know if a remote server crashed immediately?

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 5 / 100

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

What do we want from a Distributed System (DS)?

Resource Sharing

Openness

Concurrency

Scalability

Fault Tolerance

Security

Transparency

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 6 / 100

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Resource Sharing and Openness

Resource Sharing

main motivating factor for constructing DSs
is should be easy for the users (and applications) to access remote
resources, and to share them in a controlled and efficient way

each resource must be managed by a software that provides interfaces
which enable the resource to be manipulated by clients
resource = anything you can imagine (e.g., storage facilities, data, files,
Web pages, etc.)

Openness
whether the system can be extended and re-implemented in various
ways and new resource-sharing services can be added and made
available for use by a variety of client programs

specification and documentation of key software interfaces must be
published

using an Interface Definition Language (IDL)

involves HW extensibility as well
i.e., the ability to add hardware from different vendors

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 7 / 100

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Concurrency and Scalability

Concurrency
every resource in a DS must be designed to be safe in a concurrent
environment

applies not only to servers, but to objects in applications as well

ensured by standard techniques, like semaphores

Scalability
a DS is scalable if the cost of adding a user (or resource) is a
constant amount in terms of resources that must be added

and is able to utilize the extra hardware/software efficiently
and remains manageable

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 8 / 100

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Fault Tolerance and Security

Fault Tolerance

a characteristic where a distributed system provides an appropriately
handling of errors that occurred in the system

the failures can be detected (sometimes hard or even impossible),
masked (made hidden or less severe), or tolerated

achieved by deploying two approaches: hardware redundancy and
software recovery

Security

involves confidentiality, integrity, authentication, and availability

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 9 / 100

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Transparency I.

Transparency

certain aspects of the DS should be made invisible to the user /
application programmer

i.e., the system is perceived as a whole rather than a collection of
independent components

several forms of transparency:

Access transparency – enables local and remote resources to be
accessed using identical operations
Location transparency – enables resources to be accessed without
knowledge of their location
Concurrency transparency – enables several processes to operate
concurrently using shared resources without interference between them
Replication transparency – enables multiple instances of resources to
be used to increase reliability and performance

without knowledge of the replicas by users / application programmers

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 10 / 100

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Transparency II.

forms of transparency cont’d.:

Failure transparency – enables the concealment of faults, allowing
users and application programs to complete their tasks despite of a
failure of HW/SW components
Mobility/migration transparency – allows the movement of
resources and clients within a system without affecting the operation of
users or programs
Performance transparency – allows the system to be reconfigured to
improve performance as loads vary
Scaling transparency – allows the system and applications to expand
in scale without changes to the system structure or application
algorithms

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 11 / 100

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models

An architecture model:

defines the way in which the components of systems interact with one
another, and
defines the way in which the components are mapped onto an
underlying network of computers

the overal goal is to ensure that the structure will meet present and
possibly future demands

the major concerns are to make system reliable, manageable,
adaptable, and cost-effective

principal architecture models:
client-server model – most important and most widely used

a service may be further provided by multiple servers
the servers may in turn be clients for another servers
proxy servers (caches) may be employed to increase availability and
performance

peer processes – all the processes play similar roles
based either on structured (Chord, CAN, etc.), unstructured, or hybrid
architectures

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 12 / 100

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Client-Server model

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 13 / 100

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Client-Server model – A Service provided by Multiple Servers

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 14 / 100

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Peer processes

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 15 / 100

Distributed Systems Inter-process Communication

Distributed Systems – Inter-process Communication (IPC)

the processes (components) need to communicate

the communication may be:

synchronous – both send and receive are blocking operations
asynchronous – send is non-blocking and receive can have blocking (more
common) and non-blocking variants

the simplest forms of communication: UDP and TCP sockets

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 16 / 100

Distributed Systems Inter-process Communication

Distributed Systems – Inter-process Communication
UDP and TCP sockets

UDP/TCP sockets

provide unreliable/reliable communication services

+ the complete control over the communication lies in the hands of
applications

– too primitive to be used in developing a distributed system software

higher-level facilities (marshalling/unmarshalling data, error detection,
error recovery, etc.) must be built from scratch by developers on top of
the existing socket primitive facilities
force read/write mechanism instead of a procedure call

– another problem arises when the software needs to be used in a
platform different from where it was developed

the target platform may provide different socket implementation

⇒ these issues are eliminated by the use of a Middleware

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 17 / 100

Middleware

Lecture overview

1 Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

2 Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

3 Web Services

4 Grid Services

5 Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

6 Conclusion

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 18 / 100

Middleware

Middleware

Middleware
a software layer that provides a programming abstraction as well as
masks the heterogeneity of the underlying networks, hardware,
operating systems, and programming languages

⇒ provides transparency services
represented by processes/objects that interact with each other to
implement communication and resource sharing support
provides building blocks for the construction of SW components that
can work with one another

middleware examples:

Sun RPC (ONC RPC)
DCE RPC
MS COM/DCOM
Java RMI
CORBA
etc.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 19 / 100

Middleware

Middleware
Basic Services

Basic services provided:

Directory services – services required to locate application services
and resources, and route messages

≈ service discovery

Data encoding services – uniform data representation services for
dealing with incompatibility problems on remote systems

e.g., Sun XDR, ISO’s ASN.1, CORBA’s CDR, XML, etc.
data marshalling/unmarshalling

Security services – provide inter-application client-server security
mechanisms

Time services – provide a universal format for representing time on
different platforms (possibly located in various time zones) in order to
keep synchronisation among application processes

Transaction services – provide transaction semantics to support
commit, rollback, and recovery mechanisms

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 20 / 100

Middleware

Middleware
Basic Services – A Need for Data Encoding Services

Data encoding services are required, because remote machines may
have:

different byte ordering

different sizes of integers and other types

different floating point representations

different character sets

alignment requirements

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 21 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
very simple idea similar to a well-known procedure call mechanism

a client sends a request and blocks until a remote server sends a
response

the goal is to allow distributed programs to be written in the same
style as conventional programs for centralised computer systems

while being transparent – the programmer need not be aware that the
called procedure is executing on a local or a remote computer

the idea:
the remote procedure is represented as a stub on the client side

behaves like a local procedure, but rather than placing the parameters
into registers, it packs them into a message, issues a send primitive,
and blocks itself waiting for a reply

the server passes the arrived message to a server stub (known as
skeleton as well)

the skeleton unpacks the parameters and calls the procedure in a
conventional manner
the results are returned to the skeleton, which packs them into a
message directed to the client stub

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 22 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 23 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
The remote procedure call in detail

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 24 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Components

client program, client stub
communication modules
server stub, service procedure
dispatcher – selects one of the server stub procedures according to the procedure identifier
in the request message

Sun RPC: the procedures are identified by:
program number – can be obtained from a central authority to allow every
program to have its own unique number
procedure number – the identifier of the particular procedure within the program
version number – changes when a procedure signature changes

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 25 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Location Services – Portmapper

Clients need to know the port number of a service provided by the server
⇒ Portmapper

a server registers its program#, version#, and port# to the local
portmapper
a client finds out the port# by sending a request

the portmapper listens on a well-known port (111)
the particular procedure required is identified in the subsequent
procedure call

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 26 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Parameters passing

How to pass parameters to remote procedures?

pass by value – easy: just copy data to the network message

pass by reference – makes no sense without shared memory

Pass by reference: the steps

1 copy referenced items (marshalled) to a message buffer

2 ship them over, unmarshal data at server

3 pass local pointer to server stub function

4 send new values back

to support complex structures:

copy the structure into pointerless representation
transmit
reconstruct the structure with local pointers on the server

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 27 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Parameters passing – eXternal Data Representation (XDR)

Sun RPC: to avoid compatibility problems, the eXternal Data
Representation (XDR) is used

XDR primitive functions examples:

xdr int(), xdr char(), xdr u short(), xdr bool(), xdr long(),
xdr u int(), xdr wrapstring(), xdr short(), xdr enum(),
xdr void()

XDR aggregation functions:

xdr array(), xdr string(), xdr union(), xdr vector(),
xdr opaque()

only a single input parameter is allowed in a procedure call

⇒ procedures requiring multiple parameters must include them as
components of a single structure

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 28 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong I.

local procedure calls do not fail

if they core dump, entire process dies

there are more opportunities for errors with RPC

server could generate an error
problems in network (lost/delayed requests/replies)
server crash
client might crash while server is still executing code for it

transparency breaks here

applications should be prepared to deal with RPC failures

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 29 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong II.

Semantics of local procedure calls: exactly once
difficult to achieve with RPC

Four remote calls semantics available in RPC:
at-least-once semantic

client keeps trying sending the message until a reply has been received
failure is assumed after n re-sends

guarantees that the call has been made “at least once”, but possibly multiple
times
ideal for idempotent operations

at-most-once semantic
client gives up immediately and reports back a failure
guarantees that the call has been made “at most once”, but possibly none at
all

exactly-once semantic
the most desirable, but the most difficult to implement

maybe semantic
no message delivery guarantees are provided at all
(easy to implement)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 30 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong III.

Figure: Message-passing semantics. (a) at-least-once; (b) exactly-once.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 31 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong IV. – Complications

1 it is necessary to understand the application
idempotent functions – in the case of a failure, the message may be
retransmitted and re-run without a harm
non-idempotent functions – has side-effects ⇒ the retransmission has to be
controlled by the server

the duplicity request (retransmission) has to be detected
once detected, the server procedure is NOT re-run; just the results are resent
(if available in a server cache)

2 in the case of a server crash, the order of execution vs. crash matters

3 in the case of a client crash, the procedure keeps running on the server
consumes resources (e.g., CPU time), possesess resources (e.g., locked files),
etc.
may be overcome by employing soft-state principles

keep-alive messages

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 32 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Code Generation I.

RPC drawbacks:

complex API, not easy to debug
the use of XDR is difficult

but, it’s often used in a similar way

⇒ the server/client code can be automatically generated

assumes well-defined interfaces (IDL)
the application programmer has to supply the following:

interface definition file – defines the interfaces (data structures,
procedure names, and parameters) of the remote procedures that are
offered by the server
client program – defines the user interfaces, the calls to the remote
procedures of the server, and the client side processing functions
server program – implements the calls offered by the server

compilers:

rpcgen for C/C++, jrpcgen for Java

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 33 / 100

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Code Generation II.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 34 / 100

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)

as the popularity of object technology increased, techniques were
developed to allow calls to remote objects instead of remote
procedures only

⇒ Remote Method Invocation (RMI)
essentially the same as the RPC, except that it operates on objects
instead of applications/procedures

the RMI model represents a distributed object application
it allows an object inside a JVM (a client) to invoke a method on an
object running on a remote JVM (a server) and have the results
returned to the client

the server application creates an object and makes it accesible remotely
(i.e., registers it)
the client application receives a reference to the object on the server
and invokes methods on it

the reference is obtained through looking up in the registry

important: a method invocation on a remote object has the same
syntax as a method invocation on a local object

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 35 / 100

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture I.

The interface, through which the client and server interact, is (similarly to RPC)

provided by stubs and skeletons:

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 36 / 100

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture II.

Two fundamental concepts as the heart of distributed object model:

remote object reference – an identifier that can be used throughout a
distributed system to refer to a particular unique remote object

its construction must ensure its uniqueness

remote interface – specifies, which methods of the particular object
can be invoked remotely

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 37 / 100

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture III.

the remote objects can be accessed concurrently
the encapsulation allows objects to provide methods for protecting
themselves against incorrect accesses

e.g., synchronization primitives (condition variables, semaphores, etc.)

RMI transaction semantics similar to the RPC ones

at-least-once, at-most-once, exactly-once, and maybe semantics

data encoding services:
stubs use Object Serialization to marshal the arguments

object arguments’ values are rendered into a stream of bytes that can
be transmitted over a network
⇒ the arguments must be primitive types or objects that implement
Serializable interface

parameters passing:

local objects passed by value
remote objects passed by reference

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 38 / 100

Middleware Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA)

an industry standard developed by the OMG (Object Management
Group – a consortium of more than 700 companies) to aid in
distributed objects programming

OMG was established in 1988
initial CORBA specification came out in 1992

but significant revisions have taken place from that time

provides a platform-independent and language-independent
architecture (framework) for writing distributed, object-oriented
applications

i.e., application programs can communicate without restrictions to:

programming languages, hardware platforms, software platforms,
networks they communicate over

but CORBA is just a specification for creating and using distributed
objects; it is not a piece of software or a programming language

several implementations of the CORBA standard exist (e.g., IBM’s
SOM and DSOM architectures)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 39 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components

CORBA is composed of five major components:

Object Request Broker (ORB)

Interface Definition Language (IDL)

Dynamic Invocation Interface (DII)

Interface Repositories (IR)

Object Adapters (OA)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 40 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Request Broker (ORB) I.

Object Request Broker (ORB)
the heart of CORBA

introduced as a part of OMG’s Object Management Architecture (OMA), which the
CORBA is based on

a distributed service that implements all the requests to the remote object(s)
it locates the remote object on the network, communicates the request to the
object, waits for the results and (when available) communicates those results back
to the client

implements location transparency
exactly the same request mechanism is used regardless of where the object is

located
might be in the same process with the client or across the planet

implements programming language independence
the client issuing a request can be written in a different programming language from
the implementation of the CORBA object

both the client and the object implementation are isolated from the ORB by an
IDL interface
Internet Inter-ORB Protocol (IIOP) – the standard communication protocol
between ORBs

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 41 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Request Broker (ORB) II.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 42 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) I.

Interface Definition Language (IDL)
as with RMI, CORBA objects have to be specified with interfaces

interface ≈ a contract between the client (code using a object) and the
server (code implementing the object)

indicates a set of operations the object supports and how they should be
invoked (but NOT how they are implemented)

defines modules, interfaces, types, attributes, exceptions, and method
signatures

uses same lexical rules as C++
with additional keywords to support distribution (e.g. interface, any,

attribute, in, out, inout, readonly, raises)

defines language bindings for many different programming languages (e.g.,
C/C++, Java, etc.)

via language mappings, the IDL translates to different constructs in the
different implementation languages
it allows an object implementor to choose the appropriate programming
language for the object, and
it allows the developer of the client to choose the appropriate and possibly
different programming language for the client

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 43 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) II.

Interface Definition Language (IDL) example:
module StockObjects {

struct Quote {

string symbol;

long at_time;

double price;

long volume;

};

exception Unknown{};

interface Stock {

// Returns the current stock quote.

Quote get_quote() raises(Unknown);

// Sets the current stock quote.

void set_quote(in Quote stock_quote);

// // Provides the stock description, e.g. company name.

readonly attribute string description;

};

interface StockFactory {

Stock create_stock(in string symbol, in string description);

};

};

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 44 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) III. – Stubs and Skeletons

IDL compiler automatically compiles the IDL into client stubs and object
skeletons:

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 45 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) IV. – Development Process Using IDL

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 46 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Dynamic Invocation Interface (DII) & Dynamic Skeleton Interface (DSI)

Dynamic Invocation Interface (DII)

CORBA supports both the dynamic and the static invocation
interfaces

static invocation interfaces are determined at compile time
dynamic interfaces allow client applications to use server objects
without knowing the type of those objects at compile time

DII – an API which allows dynamic construction of CORBA object
invocations

Dynamic Skeleton Interface (DSI)

DSI is the server side’s analogue to the client side’s DII

allows an ORB to deliver requests to an object implementation that
does not have compile-time knowledge of the type of the object it is
implementing

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 47 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Repository (IR)

Interface Repository (IR)

a runtime component used to dynamically obtain information on IDL
types (e.g. object interfaces)

using the IR, a client should be able to locate an object that is
unknown at compile time, find information about its interface, and
build a request to be forwarded through the ORB
this kind of information is necessary when a client wants to use the DII
to construct requests dynamically

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 48 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Adapters (OAs)

Object Adapters (OAs)
the interface between the ORB and the server process

OAs listen for client connections/requests and map the inbound
requests to the desired target object instance

provide an API that object implementations use for:
generation and interpretation of object references
method invocation
security of interactions
object and implementation activation and deactivation
mapping object references to the corresponding object implementations
registration of implementations

two basic kinds of OAs:
basic object adapter (BOA) – leaves many features unsupported,
requiring proprietary extensions
portable object adapter (POA) – intended to support multiple ORB
implementations (of different vendors), allow persistent objects, etc.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 49 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Object & Object Reference

CORBA Objects are fully encapsulated
accessed through well-defined interfaces only

interfaces & implementations are totally separate
for one interface, multiple implementations possible
one implementation may be supporting multiple interfaces

CORBA Object Reference is the distributed computing equivalent of a pointer
CORBA defines the Interoperable Object Reference (IOR)

an IOR contains a fixed object key, containing:
the object’s fully qualified interface name (repository ID)
user-defined data for the instance identifier

can also contain transient information:
the host and port of its server, metadata about the server’s ORB (for
potential optimizations), etc.

⇒ the IOR uniquely identifies one object instance

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 50 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Services

CORBA Services (COS)

the OMG has defined a set of Common Object Services to support
the integration and interoperation of distributed objects

= frequently used components needed for building robust applications
typically supplied by vendors
OMG defines interfaces to services to ensure interoperability

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 51 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Services
Popular Services Example

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 52 / 100

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Architecture Summary

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 53 / 100

Web Services

Lecture overview

1 Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

2 Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

3 Web Services

4 Grid Services

5 Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

6 Conclusion

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 54 / 100

Grid Services

Lecture overview

1 Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

2 Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

3 Web Services

4 Grid Services

5 Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

6 Conclusion

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 55 / 100

Issues Examples

Lecture overview

1 Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

2 Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

3 Web Services

4 Grid Services

5 Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

6 Conclusion

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 56 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems I.

For concurrent execution of interacting processes:

communication and synchronization between processes are the
two essential system components

Before the processes can execute, they need to be:

scheduled and

allocated with resources

Why scheduling in distributed systems is of special interest?

because of the issues that are different from those in traditional
multiprocessor systems:

the communication overhead is significant
the effect of underlying architecture cannot be ignored
the dynamic behaviour of the system must be addressed

local scheduling (on each node) + global scheduling

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 57 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems II.

Scheduling/Load-balancing in Distributed Systems
let’s have a pool of jobs

there are some inter-dependencies among them

let’s have a set of nodes (processors), which are able to reciprocally
communicate

Load-balancing

The term load-balancing means assigning the jobs to the processors in the way,

which minimizes the time/communication overhead necessary to compute them.

load-balancing – divides the jobs among the processors
scheduling – defines, in which order the jobs have to be executed (on each
processor)

load-balancing and planning are tightly-coupled (usually considered as
synonyms in DSs)

objectives:
enhance overall system performance metric

process completion time and processor utilization
location and performance transparency

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 58 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems III.

the scheduling/load-balancing task can be represented using graph
theory:

the pool of N jobs with dependencies can be described as a graph
G (V ,U), where

the nodes represent the jobs (processes)
the edges represent the dependencies among the jobs/processes (e.g.,
an edge from i to j requires that the process i has to complete before j
can start executing)

the graph G has to be splitted into p parts, so that:
N = N1 ∪ N2 ∪ · · · ∪ Np

which satisfy the condition, that |Ni | ≈ |N|
p , where

|Ni | is the number of jobs assigned to the processor i , and
p is the number of processors, and
the number/cost of the edges connecting the parts is minimal

the objectives:
uniform jobs’ load-balancing
minimizing the communication (the minimal number of edges among
the parts)

the splitting problem is NP-complete
the heuristic approaches have to be usedLuděk Matyska (FI MU) 2. Distributed Systems Spring 2017 59 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems III.
An illustration

Figure: An illustration of splitting 4 jobs onto 2 processors.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 60 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems IV.

the “proper” approach to the scheduling/load-balancing problem
depends on the following criteria:

jobs’ cost
dependencies among the jobs
jobs’ locality

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 61 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems IV.
Jobs’ Cost

the job’s cost may be known:

before the whole problem set’s execution
during problem’s execution, but before the particular job’s execution
just after the particular job finishes

cost’s variability – all the jobs may have (more or less) the same cost
or the costs may differ

the problem classes based on jobs’ cost:

all the jobs have the same cost: easy
the costs are variable, but, known: more complex
the costs are unknown in advance: the most complex

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 62 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems IV.
Dependencies Among the Jobs

is the order of jobs’ execution important?

the dependencies among the jobs may be known:

before the whole problem set’s execution
during problem’s execution, but before the particular job’s execution
are fully dynamic

the problem classes based on jobs’ dependencies:

the jobs are fully independent on each other: easy
the dependencies are known or predictable: more complex

flooding
in-trees, out-trees (balanced or unbalanced)
generic oriented trees (DAG)

the dependencies dynamically change: the most complex

e.g., searching/lookup problems

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 63 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems IV.
Locality

communicate all the jobs in the same/similar way?

is it suitable/necessary to execute some jobs “close” to each other?

when the job’s communication dependencies are known?

the problem classes based on jobs’ locality:

the jobs do not communicate (at most during initialization): easy
the communications are known/predictable: more complex

regular (e.g., a grid) or irregular

the communications are unknown in advance: the most complex

e.g., a discrete events’ simulation

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 64 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods

in general, the “proper” solving method depends on the time, when
the particular information is known

basic solving algorithms’ classes:

static – offline algorithms
semi-static – hybrid approaches
dynamic – online algorithms

some (but not all) variants:

static load-balancing
semi-static load-balancing
self-scheduling
distributed queues
DAG planning

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 65 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods
Semi-static load-balancing

Semi-static load-balancing

suitable for problem sets with slow changes in parameters, and with
locality importance

iterative approach

uses static algorithm
the result (from the static algorithm) is used for several steps (slight
unbalance is accepted)
after the steps, the problem set is recalculated with the static algorithm
again

often used for:

particle simulation
calculations of slowly-changing grids (but in a different sense than in
the previous lectures)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 66 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods
Self-scheduling I.

Self-scheduling

a centralized pool of jobs

idle processors pick the jobs from the pool

new (sub)jobs are added to the pool

+ ease of implementation

suitable for:
a set of independent jobs
jobs with unknown costs
jobs where locality does not matter

unsuitable for too small jobs – due to the communication overhead
⇒ coupling jobs into bulks

fixed size
controlled coupling
tapering
weighted distribution

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 67 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods
Self-scheduling II. – Fixed size & Controlled coupling

Fixed size

typical offline algorithm

requires much information (number and cost of each job, . . .)

it is possible to find the optimal solution

theoretically important, not suitable for practical solutions

Controlled coupling

uses bigger bulks in the beginning of the execution, smaller bulks in
the end of the execution

lower overhead in the beginning, finer coupling in the end

the bulk’s size is computed as: Ki = dRi
p e

where:

Ri . . . the number of remaining jobs
p . . . the number of processors

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 68 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods
Self-scheduling II. – Tapering & Weighted distribution

Tapering

analogical to the Controlled coupling, but the bulks’ size is further a
function of jobs’ variation

uses historical information

low variance ⇒ bigger bulks
high variance ⇒ smaller bulks

Weighted distribution

considers the nodes’ computational power

suitable for heterogenous systems

uses historical information as well

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 69 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods
Distributed Queues

Distributed Queues

≈ self-scheduling for distributed memory

instead of a centralized pool, a queue on each node is used
(per-processor queues)

suitable for:

distributed systems, where the locality does not matter
for both static and dynamic dependencies
for unknown costs

an example: diffuse approach

in every step, the cost of jobs remaining on each processor is computed
processors exchange this information and perform the balancing
locality must not be important

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 70 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods
Centralised Pool vs. Distributed Queues

Figure: Centralised Pool (left) vs. Distributed Queues (right).

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 71 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving Methods
DAG Planning

DAG Planning

another graph model

the nodes represent the jobs (possibly weighted)
the edges represent the dependencies and/or the communication (may
be also weighted)

e.g., suitable for digital signal processing

basic strategy – divide the DAG so that the communication and the
processors’ occupation (time) is minimized

NP-complete problem
takes the dependencies among the jobs into account

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 72 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues I.

When the scheduling/load-balancing is necessary?

for middle-loaded systems

lowly-loaded systems – rarely job waiting (there’s always an idle
processor)
highly-loaded systems – little benefit (the load-balancing cannot help)

What is the performance metric?

mean response time

What is the measure of load?

must be easy to measure

must reflect performance improvement

example: queue lengths at CPU, CPU utilization

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 73 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues I.
Components

Types of policies:

static (decisions hardwired into system), dynamic (uses load
information), adaptive (policy varies according to load)

Policies:

Transfer policy: when to transfer a process?
threshold-based policies are common and easy

Selection policy: which process to transfer?
prefer new processes
transfer cost should be small compared to execution cost

⇒ select processes with long execution times

Location policy: where to transfer the process?
polling, random, nearest neighbor, etc.

Information policy: when and from where?
demand driven (only a sender/receiver may ask for), time-driven
(periodic), state-change-driven (send update if load changes)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 74 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Sender-initiated Policy

Sender-initiated Policy

Transfer policy

Selection policy: newly arrived process
Location policy: three variations

Random – may generate lots of transfers
⇒ necessary to limit max transfers

Threshold – probe n nodes sequentially
transfer to the first node below the threshold, if none, keep job

Shortest – poll Np nodes in parallel
choose least loaded node below T
if none, keep the job

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 75 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Receiver-initiated Policy

Receiver-initiated Policy

Transfer policy: if departing process causes load < T , find a process
from elsewhere

Selection policy: newly arrived or partially executed process

Location policy:
Threshold – probe up to Np other nodes sequentially

transfer from first one above the threshold; if none, do nothing

Shortest – poll n nodes in parallel

choose the node with heaviest load above T

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 76 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Symmetric Policy

Symmetric Policy

combines previous two policies without change

nodes act as both senders and receivers

uses average load as the threshold

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 77 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
V-System (Stanford)

V-System (Stanford)

state-change driven information policy

significant change in CPU/memory utilization is broadcast to all other
nodes

M least loaded nodes are receivers, others are senders

sender-initiated with new job selection policy

Location policy:

probe random receiver
if still receiver (below the threshold), transfer the job
otherwise try another

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 78 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) I.

Sprite (Berkeley)

Centralized information policy: coordinator keeps info

state-change driven information policy
Receiver: workstation with no keyboard/mouse activity for the defined
time period (30 seconds) and below the limit (active processes <
number of processors)

Selection policy: manually done by user ⇒ workstation becomes
sender

Location policy: sender queries coordinator

the workstation with the foreign process becomes sender if user
becomes active

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 79 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) II.

Sprite (Berkeley) cont’d.

Sprite process migration:

facilitated by the Sprite file system
state transfer:

swap everything out
send page tables and file descriptors to the receiver
create/establish the process on the receiver and load the necessary
pages
pass the control

the only problem: communication-dependencies

solution: redirect the communication from the workstation to the
receiver

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 80 / 100

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Code and Process
Migration

Code and Process Migration

key reasons: performance and flexibility
flexibility:

dynamic configuration of distributed system
clients don’t need preinstalled software (download on demand)

process migration (strong mobility)
process = code + data + stack
examples: Condor, DQS

code migration (weak mobility)
transferred program always starts from its initial state

migration in heterogeneous systems:
only weak mobility is supported in common systems (recompile code,
no run time information)
the virtual machines may be used: interprets (scripts) or intermediate
code (Java)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 81 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems I.

single machine systems
failures are all or nothing

OS crash, disk failures, etc.

distributed systems: multiple independent nodes

partial failures are also possible (some nodes fail)
probability of failure grows with number of independent components
(nodes) in the system

fault tolerance: system should provide services despite faults

transient faults
intermittent faults
permanent faults

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 82 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems I.
Failure Types

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 83 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems II.

handling faulty processes: through redundancy

organize several processes into a group

all processes perform the same computation
all messages are sent to all the members of the particular group
majority needs to agree on results of a computation
ideally, multiple independent implementations of the application are
desirable (to prevent identical bugs)

use process groups to organize such processes

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 84 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems III.

Figure: Flat Groups vs. Hierarchical Groups.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 85 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems

How should processes agree on results of a computation?

K -fault tolerant: system can survive k faults and yet function
assume processes fail silently

⇒ need (k + 1) redundancy to tolerant k faults

Byzantine failures: processes run even if sick

produce erroneous, random or malicious replies
byzantine failures are most difficult to deal with

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 86 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Byzantine Faults

Byzantine Generals Problem:

four generals lead their divisions of an army
the divisions camp on the mountains on the four sides of an enemy-occupied valley

the divisions can only communicate via messengers

messengers are totally reliable, but may need an arbitrary amount of time to cross

the valley

they may even be captured and never arrive

if the actions taken by each division is not consistent with that of the others, the
army will be defeated

we need a scheme for the generals to agree on a common plan of action (attack or

retreat)
even if some of the generals are traitors who will do anything to prevent loyal
generals from reaching the agreement

the problem is nontrivial even if messengers are totally reliable
with unreliable messengers, the problem is very complex
Fischer, Lynch, Paterson: in asynchronous systems, it is impossible to reach a
consensus in a finite amount of time

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 87 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Formal Definition I.

Formal definition of the agreement problem in DSs:

let’s have a set of distributed processes with initial states ∈ 0, 1

the goal: all the processes have to agree on the same value

additional requirement: it must be possible to agree on both 0 or 1
states

basic assumptions:
system is asynchronous

no bounds on processes’ execution delays exist
no bounds on messages’ delivery delay exist
there are no synchronized clocks

no communication failures – every process can communicate with its
neighbors
processes fail by crashing – we do not consider byzantine failures

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 88 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Formal Definition II.

Formal definition of the agreement problem in DSs: cont’d.

implications:

⇒ there is no deterministic algorithm which resolves the consensus
problem in an asynchronous system with processes, which may fail
because it is impossible to distinguish the cases:

a process does not react, because it has failed
a process does not react, because it is slow

practically overcomed by establishing timeouts and by ignoring/killing
too slow processes

timeouts used in so-called Failure Detectors (see later)

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 89 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Fault-tolerant Broadcast

Fault-tolerant Broadcast:

if there was a proper type of fault-tolerant broadcast, the agreement
problem would be solvable

various types of broadcasts:

reliable broadcast
FIFO broadcast
casual broadcast
atomic broadcast – the broadcast, which would solve the agreement
problem in asynchronous systems

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 90 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Fault-tolerant Broadcast – Reliable Broadcast

Reliable Broadcast:

basic features:
Validity – if a correct process broadcasts m, then it eventually delivers
m
Agreement – if a correct process delivers m, then all correct processes
eventually deliver m
(Uniform) Integrity – m is delivered by a process at most once, and
only if it was previously broadcasted

possible to implement using send/receive primitives:
the process p sending the broadcast message marks the message by its
identifier and sequence number

and sends it to all its neighbors

once a message is received:
if the message has not been previously received (based in sender’s ID and
sequence number), the message is delivered
if the particular process is not message’s sender, it delivers it to all its
neighbors

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 91 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Fault-tolerant Broadcast – FIFO Broadcast

FIFO Broadcast:

the reliable broadcast cannot assure the messages’ ordering

it is possible to receive a subsequent message (from the sender’s view)
before the previous one is received

FIFO broadcast: the messages from a single sender have to be
delivered in the same order as they were sent

FIFO broadcast = Reliable broadcast + FIFO ordering

if a process p broadcasts a message m before it broadcasts a message
m′, then no correct process delivers m′ unless it has previously
delivered m
broadcastp(m)→ broadcastp(m′)⇒ deliverq(m)→ deliverq(m′)

a simple extension of the reliable broadcast

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 92 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Fault-tolerant Broadcast – Casual Broadcast

Casual Broadcast:

the FIFO broadcast is still not sufficient: it is possible to receive a
message from a third party, which is a reaction to a particular
message before receiving that particular message

⇒ Casual broadcast

Casual broadcast = Reliable broadcast + casual ordering

if the broadcast of a message m happens before the broadcast of a
message m′, then no correct process delivers m′ unless it has previously
delivered m
broadcastp(m)→ broadcastq(m′)⇒ deliverr (m)→ deliverr (m′)

can be implemented as an extension of the FIFO broadcast

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 93 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Fault-tolerant Broadcast – Atomic Broadcast

Atomic Broadcast:

even the casual broadcast is still not sufficient: sometimes, it is
necessary to guarantee the proper in-order delivery of all the replicas

two bank offices: one of them receives the information about adding an
interest before adding a particular amount of money to the account,
the second one receives these messages contrariwise

⇒ inconsistency

⇒ Atomic broadcast

Atomic broadcast = Reliable broadcast + total ordering

if correct processes p and q both deliver messages m, m′, then p
delivers m before m′ if and only if q delivers m before m′

deliverp(m)→ deliverp(m′)⇒ deliverq(m)→ deliverq(m′)

does not exist in asynchronous systems

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 94 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Fault-tolerant Broadcast – Timed Reliable Broadcast

Timed Reliable Broadcast:

a way to practical solution

introduces an upper limit (time), before which every message has to
be delivered

Timed Reliable broadcast = Reliable broadcast + timeliness

there is a known constant ∆ such that if a message is broadcasted at
real-time t, then no correct (any) process delivers m after real-time
t + ∆

feasible in asynchronous systems

A kind of “approximation” of atomic broadcast

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 95 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Failure Detectors I.

impossibility of consensus caused by inability to detect slow process
and a failed process

synchronous systems: let’s use timeouts to determine whether a
process has crashed
⇒ Failure Detectors

Failure Detectors (FDs):
a distributed oracle that provides hints about the operational status of
processes (which processes had failed)

FDs communicate via atomic/time reliable broadcast

every process maintains its own FD
and asks just it to determine, whether a process had failed

however:
hints may be incorrect
FD may give different hints to different processes
FD may change its mind (over & over) about the operational status of
a process

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 96 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
Failure Detectors II.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 97 / 100

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty Systems
(Perfect) Failure Detector

Perfect Failure Detector:
properties:

Eventual Strong Completeness – eventually every process that has
crashed is permanently suspected by all non-crashed processes
Eventual Strong Accuracy – no correct process is ever suspected

hard to implement
is perfect failure detection necessary for consensus? No.

⇒ weaker Failure Detector

weaker Failure Detector:
properties:

Strong Completeness – there is a time after which every faulty process
is suspected by every correct process
Eventual Strong Accuracy – there is a time after which no correct
process is suspected

can be used to solve the consensus
this is the weakest FD that can be used to solve the consensus

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 98 / 100

Conclusion

Lecture overview

1 Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

2 Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

3 Web Services

4 Grid Services

5 Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

6 Conclusion

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 99 / 100

Conclusion

Distributed Systems – Further Information

FI courses:
PA150: Advanced Operating Sytems Concepts (doc. Staudek)
PA053: Distributed Systems and Middleware (doc. Tůma)
IA039: Supercomputer Architecture and Intensive Computations (prof.
Matyska)
PA177: High Performance Computing (LSU, prof. Sterling)
IV100: Parallel and distributed computations (doc. Královič)
IB109: Design and Implementation of Parallel Systems (dr. Barnat)
etc.

(Used) Literature:
W. Jia and W. Zhou. Distributed Network Systems: From concepts to
implementations. Springer, 2005.
A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and
paradigms. Pearson Prencite Hall, 2007.
G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and design. Addison-Wesley publishers, 2001.
Z. Tari and O. Bukhres. Fundamentals of Distributed Object Systems: The
CORBA perspective. John Wiley & Sons, 2001.
etc.

Luděk Matyska (FI MU) 2. Distributed Systems Spring 2017 100 / 100

	Distributed Systems
	Key characteristics
	Challenges and Issues
	Distributed System Architectures
	Inter-process Communication

	Middleware
	Remote Procedure Calls (RPC)
	Remote Method Invocation (RMI)
	Common Object Request Broker Architecture (CORBA)

	Web Services
	Grid Services
	Issues Examples
	Scheduling/Load-balancing in Distributed Systems
	Fault Tolerance in Distributed Systems

	Conclusion

