
Advanced Search Techniques for Large Scale Data Analytics 
Pavel Zezula and Jan Sedmidubsky 
Masaryk University 
http://disa.fi.muni.cz 



 Much of the course will be devoted to  
large scale computing for data mining 

 Challenges: 

 How to distribute computation? 

 Distributed/parallel programming is hard 
 

 Map-reduce addresses all of the above 

 Google’s computational/data manipulation model 

 Elegant way to work with big data 

 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 2 



Memory 

Disk 

CPU 

Machine Learning, Statistics 

“Classical” Data Mining 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 3 



 20+ billion web pages x 20KB = 400+ TB 
 1 computer reads 30-35 MB/sec from disk 

 ~4 months to read the web 

 ~1,000 hard drives to store the web 
 Takes even more to do something useful  

with the data! 
 Today, a standard architecture for such 

problems is emerging: 

 Cluster of commodity Linux nodes 

 Commodity network (ethernet) to connect them 

 
Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 4 



Mem 

Disk 

CPU 

Mem 

Disk 

CPU 

… 

Switch 

Each rack contains 16-64 nodes 

Mem 

Disk 

CPU 

Mem 

Disk 

CPU 

… 

Switch 

Switch 1 Gbps between  
any pair of nodes 
in a rack 

2-10 Gbps backbone between racks 

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO  

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 5 

http://bit.ly/Shh0RO


 Large-scale computing for data mining  
problems on commodity hardware 

 Challenges: 

 How do you distribute computation? 

 How can we make it easy to write distributed 
programs? 

 Machines fail: 

 One server may stay up 3 years (1,000 days) 

 If you have 1,000 servers, expect to loose 1/day 

 People estimated Google had ~1M machines in 2011 
 1,000 machines fail every day! 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 6 



 Issue: Copying data over a network takes time 
 Idea: 

 Bring computation close to the data 

 Store files multiple times for reliability 

 Map-reduce addresses these problems 

 Google’s computational/data manipulation model 

 Elegant way to work with big data 

 Storage Infrastructure – File system 

 Google: GFS. Hadoop: HDFS 

 Programming model 

 Map-Reduce 
Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 7 



 Problem: 

 If nodes fail, how to store data persistently?  

 Answer: 

 Distributed File System: 

 Provides global file namespace 

 Google GFS; Hadoop HDFS; 

 Typical usage pattern 

 Huge files (100s of GB to TB) 

 Data is rarely updated in place 

 Reads and appends are common 

 
Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 8 



 Chunk servers 
 File is split into contiguous chunks 
 Typically each chunk is 16-64MB 
 Each chunk replicated (usually 2x or 3x) 
 Try to keep replicas in different racks 

 Master node 
 a.k.a. Name Node in Hadoop’s HDFS 
 Stores metadata about where files are stored 
 Might be replicated 

 Client library for file access 
 Talks to master to find chunk servers  
 Connects directly to chunk servers to access data 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 9 



 Reliable distributed file system 
 Data kept in “chunks” spread across machines 
 Each chunk replicated on different machines  

 Seamless recovery from disk or machine failure 

C0 C1 

C2 C5 

Chunk server 1 

D1 

C5 

Chunk server 3 

C1 

C3 C5 

Chunk server 2 

… 
C2 D0 

D0 

Bring computation directly to the data! 

C0 C5 

Chunk server N 

C2 
D0 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 

Chunk servers also serve as compute servers 
10 



Case 1:  

 File too large for memory, but all <word, count> 
pairs fit in memory 

Case 2: 
 Count occurrences of words: 
 words(doc.txt) | sort | uniq -c 

 where words takes a file and outputs the words in it, 
one per a line 

 Case 2 captures the essence of MapReduce 

 Great thing is that it is naturally parallelizable 

 

 
 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 11 



 Sequentially read a lot of data 
 Map: 

 Extract something you care about 

 Group by key: Sort and Shuffle 
 Reduce: 

 Aggregate, summarize, filter or transform 

 Write the result 

Outline stays the same, Map and Reduce 
change to fit the problem 

Outline stays the same, Map and Reduce 
change to fit the problem 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 12 



v k 

k v 

k v 

map 
v k 

v k 

… 

k v 

map 

Input 

key-value pairs 

Intermediate 

key-value pairs 

… 

k v 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 13 



k v 

… 

k v 

k v 

k v 

Intermediate 

key-value pairs 

Group 
by key 

reduce 

reduce 

k v 

k v 

k v 

… 

k v 

… 

k v 

k v v 

v v 

Key-value groups 
Output  

key-value pairs 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 14 



 Input: a set of key-value pairs 
 Programmer specifies two methods: 

 Map(k, v)  <k’, v’>* 

 Takes a key-value pair and outputs a set of key-value pairs 
 E.g., key is the filename, value is a single line in the file 

 There is one Map call for every (k,v) pair 

 Reduce(k’, <v’>*)  <k’, v’’>* 

 All values v’ with same key k’ are reduced together  
and processed in v’ order 

 There is one Reduce function call per unique key k’ 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 15 



The crew of the space 

shuttle Endeavor recently 

returned to Earth as 

ambassadors, harbingers of 

a new era of space 

exploration. Scientists at 

NASA are saying that the 

recent assembly of the 

Dextre bot is the first step in 

a long-term space-based 

man/mache partnership. 

'"The work we're doing now 

-- the robotics we're doing -

- is what we're going to 

need …………………….. 

Big document 

(The, 1) 
(crew, 1) 

(of, 1) 
(the, 1) 

(space, 1) 
(shuttle, 1) 

(Endeavor, 1) 
(recently, 1) 

…. 

(crew, 1) 
(crew, 1) 

(space, 1) 
(the, 1) 
(the, 1) 
(the, 1) 

(shuttle, 1) 
(recently, 1) 

… 

(crew, 2) 
(space, 1) 

(the, 3) 
(shuttle, 1) 

(recently, 1) 
… 

MAP: 
Read input and 

produces a set of 
key-value pairs 

Group by key: 
Collect all pairs 
with same key 

Reduce: 
Collect all values 
belonging to the 
key and output 

(key, value) 

Provided by the 

programmer 

Provided by the 

programmer 

(key, value) (key, value) 

S
eq

u
en

ti
al

ly
 r

ea
d

 t
h

e 
d

at
a

 
O

n
ly

   
 s

eq
u

en
ti

al
   

 r
ea

d
s 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 16 



map(key, value): 

// key: document name; value: text of the document 

 for each word w in value: 

  emit(w, 1) 

 

reduce(key, values): 

// key: a word; value: an iterator over counts 

 result = 0 

 for each count v in values: 

  result += v 

 emit(key, result) 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 17 



Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 

Big document 

MAP: 
Read input and 

produces a set of 
key-value pairs 

Group by key: 
Collect all pairs with 

same key 
(Hash merge, Shuffle, 

Sort, Partition) 

Reduce: 
Collect all values 
belonging to the 
key and output 

18 



Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 

All phases are distributed with many tasks doing the work 
19 



 Programmer specifies: 
 Map and Reduce and input files 

 Workflow: 
 Read inputs as a set of key-value-

pairs 
 Map transforms input kv-pairs into a 

new set of k'v'-pairs 
 Sorts & Shuffles the k'v'-pairs to 

output nodes 
 All k’v’-pairs with a given k’ are sent 

to the same reduce 
 Reduce processes all k'v'-pairs 

grouped by key into new k''v''-pairs 
 Write the resulting pairs to files 

 

 All phases are distributed with 
many tasks doing the work 
 

Input 0 

Map 0 

Input 1 

Map 1 

Input 2 

Map 2 

Reduce 0 Reduce 1 

Out 0 Out 1 

Shuffle 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 20 



 Input and final output are stored on a 
distributed file system (FS): 

 Scheduler tries to schedule map tasks “close” to 
physical storage location of input data 

 

 Intermediate results are stored on local FS  
of Map and Reduce workers 

 

 Output is often input to another  
MapReduce task 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 21 



 Master node takes care of coordination: 

 Task status: (idle, in-progress, completed) 

 Idle tasks get scheduled as workers become 
available 

 When a map task completes, it sends the master 
the location and sizes of its R intermediate files, 
one for each reducer 

 Master pushes this info to reducers 
 

 Master pings workers periodically to detect 
failures 

 Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 22 



 Map worker failure 

 Map tasks completed or in-progress at  
worker are reset to idle 

 Reduce workers are notified when task is 
rescheduled on another worker 

 Reduce worker failure 

 Only in-progress tasks are reset to idle  

 Reduce task is restarted 

 Master failure 

 MapReduce task is aborted and client is notified 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 23 



 M map tasks, R reduce tasks 
 Rule of a thumb: 

 Make M much larger than the number of nodes 
in the cluster 

 One DFS chunk per map is common 

 Improves dynamic load balancing and speeds up 
recovery from worker failures 

 Usually R is smaller than M 

 Because output is spread across R files 

 

 
Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 24 



 Fine granularity tasks:  map tasks >> machines 

 Minimizes time for fault recovery 

 Can do pipeline shuffling with map execution 

 Better dynamic load balancing  

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 25 



 Problem 
 Slow workers significantly lengthen the job 

completion time: 
 Other jobs on the machine 

 Bad disks 

 Weird things 

 Solution 
 Near end of phase, spawn backup copies of tasks 
 Whichever one finishes first “wins” 

 Effect 
 Dramatically shortens job completion time 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 26 



 Often a Map task will produce many pairs of 
the form (k,v1), (k,v2), … for the same key k 
 E.g., popular words in the word count example 

 Can save network time by  
pre-aggregating values in  
the mapper: 
 combine(k, list(v1))  v2 

 Combiner is usually same  
as the reduce function 

 Works only if reduce  
function is commutative and associative 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 27 



 Back to our word counting example: 

 Combiner combines the values of all keys of a 
single mapper (single machine): 

 

 

 

 

 

 

 Much less data needs to be copied and shuffled! 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 28 



 Want to control how keys get partitioned 
 Inputs to map tasks are created by contiguous 

splits of input file 

 Reduce needs to ensure that records with the 
same intermediate key end up at the same worker 

 System uses a default partition function: 
 hash(key) mod R 

 

 Sometimes useful to override the hash 
function: 
 E.g., hash(hostname(URL)) mod R ensures URLs 

from a host end up in the same output file 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 29 





 Suppose we have a large web corpus 
 Look at the metadata file 

 Lines of the form: (URL, size, date, …) 

 For each host, find the total number of bytes 

 That is, the sum of the page sizes for all URLs from 
that particular host 

 

 Other examples:  

 Link analysis and graph processing 

 Machine Learning algorithms 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 31 



 Statistical machine translation: 

 Need to count number of times every 5-word 
sequence occurs in a large corpus of documents 

 

 Very easy with MapReduce: 

 Map:  

 Extract (5-word sequence, count) from document 

 Reduce:  

 Combine the counts 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 32 



 Compute the natural join R(A,B) ⋈ S(B,C) 
 R and S are each stored in files 
 Tuples are pairs (a,b) or (b,c) 

 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 

A B 

a1 b1 

a2 b1 

a3 b2 

a4 b3 

B C 

b2 c1 

b2 c2 

b3 c3 

⋈ 
A C 

a3 c1 

a3 c2 

a4 c3 

= 

R 

S 

33 



 Use a hash function h from B-values to 1...k 
 A Map process turns: 

 Each input tuple R(a,b) into key-value pair (b,(a,R)) 

 Each input tuple S(b,c) into (b,(c,S)) 
 

 Map processes send each key-value pair with 
key b to Reduce process h(b) 

 Hadoop does this automatically; just tell it what k is. 

 Each Reduce process matches all the pairs 
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c). 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 34 



 In MapReduce we quantify the cost of an 
algorithm using  

1. Communication cost  = total I/O of all 
processes 

2. Elapsed communication cost = max of I/O 
along any path 

3. (Elapsed) computation cost analogous, but 
count only running time of processes 
 
 
 
 

Note that here the big-O notation is not the most useful  

(adding more machines is always an option) 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 35 



 For a map-reduce algorithm: 

 Communication cost = input file size + 2  (sum of 
the sizes of all files passed from Map processes to 
Reduce processes) + the sum of the output sizes of 
the Reduce processes. 

 Elapsed communication cost is the sum of the 
largest input + output for any map process, plus 
the same for any reduce process 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 36 



 Either the I/O (communication) or processing 
(computation) cost dominates 

 Ignore one or the other 

 
 Total cost tells what you pay in rent from  

your friendly neighborhood cloud 
 

 Elapsed cost is wall-clock time using 
parallelism 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 37 



 Total communication cost  
= O(|R|+|S|+|R ⋈ S|) 

 Elapsed communication cost = O(s) 
 We’re going to pick k and the number of Map 

processes so that the I/O limit s is respected 

 We put a limit s on the amount of input or output 
that any one process can have. s could be: 
 What fits in main memory 

 What fits on local disk 

 With proper indexes, computation cost is 
linear in the input + output size 
 So computation cost is like comm. cost 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 38 





 Google 
 Not available outside Google 

 Hadoop 
 An open-source implementation in Java 

 Uses HDFS for stable storage 

 Download: http://lucene.apache.org/hadoop/ 

 Aster Data 

 Cluster-optimized SQL Database that also 
implements MapReduce 

 

 
 

 
 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 40 

http://lucene.apache.org/hadoop/


 Hadoop Wiki 
  Introduction 
  http://wiki.apache.org/lucene-hadoop/ 

  Getting Started 
  http://wiki.apache.org/lucene-

hadoop/GettingStartedWithHadoop 

  Map/Reduce Overview  
  http://wiki.apache.org/lucene-hadoop/HadoopMapReduce 
  http://wiki.apache.org/lucene-

hadoop/HadoopMapRedClasses 

  Eclipse Environment 
 http://wiki.apache.org/lucene-hadoop/EclipseEnvironment 

  Javadoc 
  http://lucene.apache.org/hadoop/docs/api/  

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 41 

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/
http://lucene.apache.org/hadoop/docs/api/


  Releases from Apache download mirrors 

 http://www.apache.org/dyn/closer.cgi/lucene/had
oop/ 

  Nightly builds of source 

 http://people.apache.org/dist/lucene/hadoop/nig
htly/ 

  Source code from subversion 

 http://lucene.apache.org/hadoop/version_control
.html 

 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 42 

http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://people.apache.org/dist/lucene/hadoop/nightly/
http://people.apache.org/dist/lucene/hadoop/nightly/
http://lucene.apache.org/hadoop/version_control.html
http://lucene.apache.org/hadoop/version_control.html

