Frequent Itemset Mining \& Association Rules

Advanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

Association Rule Discovery

Supermarket shelf management - Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items
- A classic rule:
- If someone buys diaper and milk, then he/she is likely to buy beer
- Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

- A large set of items
- e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
- e.g., the things one customer buys on one day
- Want to discover association rules

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:

\{Milk\} --> \{Coke\}
\{Diaper, Milk\} --> \{Beer\}

- People who bought $\{x, y, z\}$ tend to buy $\{v, w\}$
- Amazon!

Applications - (1)

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
- Tells how typical customers navigate stores, lets them position tempting items
- Suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
- Need the rule to occur frequently, or no \$\$'s
- Amazon's people who bought X also bought Y

Applications - (2)

- Baskets = sentences; Items = documents containing those sentences
- Items that appear together too often could represent plagiarism
- Notice items do not have to be "in" baskets
- Baskets = patients; Items = drugs \& side-effects
- Has been used to detect combinations of drugs that result in particular side-effects
- But requires extension: Absence of an item needs to be observed as well as presence

More generally

- A general many-to-many mapping (association) between two kinds of things
- But we ask about connections among "items", not "baskets"
- For example:
- Finding communities in graphs (e.g., Twitter)

Example:

- Finding communities in graphs (e.g., Twitter)
- Baskets = nodes; Items = outgoing neighbors
- Searching for complete bipartite subgraphs $\boldsymbol{K}_{s, t}$ of a big graph
- How?

- View each node \boldsymbol{i} as a basket $\boldsymbol{B}_{\boldsymbol{i}}$ of nodes \boldsymbol{i} it points to
- $\boldsymbol{K}_{s, t}=$ a set \boldsymbol{Y} of size \boldsymbol{t} that occurs in s buckets $\boldsymbol{B}_{\boldsymbol{i}}$
- Looking for $\boldsymbol{K}_{s, t} \rightarrow$ set of support s and look at layer \boldsymbol{t} all frequent sets of size t

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets

TID	Items
$\mathbf{1}$	Bread, Coke, Milk
$\mathbf{2}$	Beer, Bread
$\mathbf{3}$	Beer, Coke, Diaper, Milk
$\mathbf{4}$	Beer, Bread, Diaper, Milk
$\mathbf{5}$	Coke, Diaper, Milk
	Support of
	$\{$ Beer, Bread $\}=2$

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in \boldsymbol{I}

TID	Items
$\mathbf{1}$	Bread, Coke, Milk
$\mathbf{2}$	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of
$\{$ Beer, Bread $\}=2$

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in \boldsymbol{I}
- Given a support threshold s, then sets of items that appear

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of
$\{$ Beer, Bread $\}=2$ in at least s baskets are called frequent itemsets

Example: Frequent Itemsets

- Items = \{milk, coke, pepsi, beer, juice $\}$
- Support threshold = 3 baskets

$$
\begin{array}{ll}
\mathbf{B}_{1}=\{m, c, b\} & \mathbf{B}_{2}=\{m, p, j\} \\
\mathbf{B}_{3}=\{m, b\} & \mathbf{B}_{4}=\{c, j\} \\
\mathbf{B}_{5}=\{m, p, b\} & \mathbf{B}_{6}=\{m, c, b, j\} \\
\mathbf{B}_{7}=\{c, b, j\} & \mathbf{B}_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{m\},\{c\},\{b\},\{j\}$,

Example: Frequent Itemsets

- Items = \{milk, coke, pepsi, beer, juice $\}$
- Support threshold = 3 baskets

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{m\},\{c\},\{b\},\{j\}$, $\{m, b\}$

Example: Frequent Itemsets

- Items = \{milk, coke, pepsi, beer, juice $\}$
- Support threshold = 3 baskets

$$
\begin{array}{rll}
\mathbf{B}_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
\mathbf{B}_{3}=\{m, b\} & B_{4}=\{c, j\} \\
\mathbf{B}_{5}=\{m, p, b\} & \mathbf{B}_{6}=\{m, c, b, j\} \\
\mathbf{B}_{7}=\{c, b, j\} & B_{8}=\{b, c\} \\
\text { Frequent itemsets: }\{m\},\{c\},\{b\},\{j\}, \\
\{m, b\},\{b, c\} &
\end{array}
$$

Example: Frequent Itemsets

- Items = \{milk, coke, pepsi, beer, juice\}
- Support threshold = 3 baskets

- Frequent itemsets: $\{m\},\{c\},\{b\},\{j\}$, $\{m, b\},\{b, c\},\{c, j\}$.

Association Rules

- Association Rules:

If-then rules about the contents of baskets

- $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow \boldsymbol{j}$ means: "if a basket contains all of i_{1}, \ldots, i_{k} then it is likely to contain $j^{\prime \prime}$
- In practice there are many rules, want to find significant/interesting ones!
- Confidence of this association rule is the probability of \boldsymbol{j} given $\boldsymbol{I}=\left\{\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{\boldsymbol{k}}\right\}$

$$
\operatorname{conf}(I \rightarrow j)=\frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}
$$

Interesting Association Rules

- Not all high-confidence rules are interesting
- The rule $\boldsymbol{X} \rightarrow$ milk may have high confidence for many itemsets \boldsymbol{X}, because milk is just purchased very often (independent of \boldsymbol{X}) and the confidence will be high
- Interest of an association rule $\boldsymbol{I} \rightarrow \boldsymbol{j}$: difference between its confidence and the fraction of baskets that contain j

$$
\text { Interest }(I \rightarrow j)=\operatorname{conf}(I \rightarrow j)-\operatorname{Pr}[j]
$$

- Interesting rules are those with high positive or negative interest values (usually above 0.5)

Example: Confidence and Interest

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Association rule: $\{\mathrm{m}, \mathrm{b}\} \rightarrow \mathrm{c}$
- Confidence $=2 / 4=0.5$
- Interest $=|0.5-5 / 8|=1 / 8$
- Item cappears in $5 / 8$ of the baskets
- Rule is not very interesting!

Finding Association Rules

- Problem: Find all association rules with support $\geq s$ and confidence $\geq c$
- Note: Support of an association rule is the support of the set of items on the left side

$$
\operatorname{conf}(I \rightarrow j)=\frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}
$$

Finding Association Rules

- Problem: Find all association rules with support $\geq s$ and confidence $\geq c$
- Note: Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
- If $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow j$ has high support and confidence, then both $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $\left\{i_{1}, i_{2}, \ldots, i_{k}, j\right\}$ will be "frequent"

$$
\operatorname{conf}(I \rightarrow j)=\frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}
$$

Mining Association Rules

- Step 1: Find all frequent itemsets I
- (we will explain this next)
- Step 2: Rule generation
- For every subset \boldsymbol{A} of \boldsymbol{I}, generate a rule $\boldsymbol{A} \rightarrow \boldsymbol{I} \backslash \boldsymbol{A}$
- Since \boldsymbol{I} is frequent, \boldsymbol{A} is also frequent
- Variant 1: Single pass to compute the rule confidence
- confidence $(\boldsymbol{A}, \boldsymbol{B} \rightarrow \boldsymbol{C}, \boldsymbol{D})=\operatorname{support}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) / \operatorname{support}(\mathbf{A}, \mathbf{B})$
- Variant 2:
- Observation: If $\mathbf{A}, \mathbf{B}, \mathbf{C} \rightarrow \mathbf{D}$ is below confidence, so is $\mathbf{A}, \mathbf{B} \rightarrow \mathbf{C}, \mathbf{D}$
- Can generate "bigger" rules from smaller ones!
- Output the rules above the confidence threshold

Example

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, c, b, n\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Support threshold $s=3$, confidence $c=0.75$
- 1) Frequent itemsets:
- $\{b, m\}\{b, c\}\{c, m\}\{c, j\}\{m, c, b\}$

Example

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, c, b, n\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Support threshold $s=3$, confidence $c=0.75$
- 1) Frequent itemsets:
- $\{b, m\}\{b, c\}\{c, m\}\{c, j\}\{m, c, b\}$
- 2) Generate rules:
- $\mathbf{b} \rightarrow \mathbf{m}: \boldsymbol{c}=4 / 6 \quad \mathbf{b} \rightarrow \mathbf{c}: \boldsymbol{c}=5 / 6 \quad \mathbf{b}, \mathbf{c} \rightarrow \mathbf{m}: \boldsymbol{c}=3 / 5$
- $\mathbf{m} \rightarrow \mathbf{b}: c=4 / 5$

b, $\mathbf{m} \rightarrow \mathbf{c}: c=3 / 4$ $\mathrm{b} \rightarrow \mathrm{c}, \mathrm{m}: c=3 / 6$

Example

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, c, b, n\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Support threshold $s=3$, confidence $c=0.75$
- 1) Frequent itemsets:
- $\{b, m\}\{b, c\}\{c, m\}\{c, j\}\{m, c, b\}$
- 2) Generate rules:
$-\mathrm{b} \rightarrow \mathbf{m}: \boldsymbol{c}=4 / 6 \quad \mathrm{~b} \rightarrow \mathbf{c}: \boldsymbol{c}=5 / 6 \quad \mathrm{~b}, \mathbf{c} \rightarrow \mathbf{m}: \boldsymbol{c}=3 / 5$
- $\mathbf{m} \rightarrow \mathbf{b}: \boldsymbol{c}=4 / 5$

$$
\cdots \quad \begin{array}{ll}
\ldots, m \rightarrow c: c=3 / 4 \\
b \rightarrow c, m: c=3 / 6
\end{array}
$$

Compacting the Output

- To reduce the number of rules we can post-process them and only output:
- Maximal frequent itemsets:

No immediate superset is frequent

- Gives more pruning
or
- Closed itemsets:

No immediate superset has the same count (>0)

- Stores not only frequent information, but exact counts

Example: Maximal/Closed

Support Maximal(s=3) Closed
A 4

No
No
B 5
No
Yes
C 3
No
No
AB 4
AC 2
Yes
Yes
No
No
BC 3
Yes Yes
ABC 2
No Yes

Example: Maximal/Closed

Frequent, but superset BC
Support Maximal(s=3) Closed alsofrequent.
A 4
$\begin{array}{ll}\text { No } & \text { No } \\ \text { No } & \text { Yes }\end{array}$
C 3
No
No
AB 4
AC 2
BC 3
ABC 2
Yes
Yes

No
No
Yes Yes
No Yes

Example: Maximal/Closed

Frequent, but superset BC
Support Maximal(s=3) Closed- alsof frequent.

A	4	No	No	Frequent, and B
5	No	Yes	its	
ishly suerset,				
ABC, ot freq.				

Example: Maximal/Closed

Frequent, but superset BC
Support Maximal(s=3) Closed-also frequent.

A	4	No	No	Frequent, and B
B	No	Yes		
itsonly				
ABC Suest,				

Example: Maximal/Closed

Frequent, but superset BC
Support Maximal(s=3) Closed-also frequent.

A	4	No	No	Frequent, and B B

Finding Frequent Itemsets

Itemsets: Computation Model

- Back to finding frequent itemsets
- Typically, data is kept in flat files rather than in a database system:
- Stored on disk
- Stored basket-by-basket
- Baskets are small but we have many baskets and many items
- Expand baskets into pairs, triples, etc. as you read baskets
- Use k nested loops to generate all sets of size k

Item
Item
Etc.

Items are positive integers, and boundaries between baskets are -1 .

Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes - all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main-memory is the critical resource
- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster (why?)

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items $\left\{i_{1}, i_{2}\right\}$
- Why? Freq. pairs are common, freq. triples are rare
- Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items $\left\{i_{1}, i_{2}\right\}$
- Why? Freq. pairs are common, freq. triples are rare
- Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let's first concentrate on pairs, then extend to larger sets
- The approach:
- We always need to generate all the itemsets
- But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
- From each basket of \boldsymbol{n} items, generate its $n(n-1) / 2$ pairs by two nested loops

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
- From each basket of \boldsymbol{n} items, generate its $n(n-1) / 2$ pairs by two nested loops
- Fails if (\#items) ${ }^{2}$ exceeds main memory
- Remember: \#items can be 100K (Wal-Mart) or 10B (Web pages)
- Suppose 10^{5} items, counts are 4-byte integers
- Number of pairs of items: $10^{5}\left(10^{5}-1\right) / 2=5 * 10^{9}$
- Therefore, 2*10 ${ }^{10}$ (20 gigabytes) of memory needed

Counting Pairs in Memory

Two approaches:

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples $[i, j, c]=$ "the count of the pair of items $\{i, j\}$ is c."
- If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
- Plus some additional overhead for the hashtable

Note:

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count >0)

Comparing the 2 Approaches

Triangular Matrix

Triples

Comparing the two approaches

- Approach 1: Triangular Matrix
- $\mathbf{n}=$ total number items
- Count pair of items $\{i, j\}$ only if $i<j$
- Keep pair counts in lexicographic order:
- $\{1,2\},\{1,3\}, \ldots,\{1, n\},\{2,3\},\{2,4\}, \ldots,\{2, n\},\{3,4\}, \ldots$
- Pair $\{i, j\}$ is at position $(i-1)(n-i / 2)+j-1$
- Total number of pairs $\boldsymbol{n}(\boldsymbol{n} \mathbf{- 1}) / \mathbf{2}$; total bytes= $\mathbf{2 n ^ { 2 }}$
- Triangular Matrix requires 4 bytes per pair

Comparing the two approaches

- Approach 1: Triangular Matrix
- $\mathbf{n}=$ total number items
- Count pair of items $\{i, j\}$ only if $i<j$
- Keep pair counts in lexicographic order:
- $\{1,2\},\{1,3\}, \ldots,\{1, n\},\{2,3\},\{2,4\}, \ldots,\{2, n\},\{3,4\}, \ldots$
- Pair $\{i, j\}$ is at position $(i-1)(n-i / 2)+j-1$
- Total number of pairs $\boldsymbol{n}(\boldsymbol{n} \mathbf{- 1}) / \mathbf{2}$; total bytes= $\mathbf{2 n ^ { 2 }}$
- Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count >0)
- Beats Approach 1 if less than $\mathbf{1 / 3}$ of possible pairs actually occur

Comparing the two approaches

- Approach 1: Triangular Matrix
- $\mathrm{n}=$ total number items
- Problem is if we have too
- p many items so the pairs
" 7 do not fit into memory.
$2 n^{2}$

Can we do better?

- Beats approacn Imess tnan 1/3 or possible pairs actually occur

A-Priori Algorithm

A-Priori Algorithm - (1)

- A two-pass approach called A-Priori limits the need for main memory
- Key idea: monotonicity
- If a set of items \boldsymbol{I} appears at
 least s times, so does every subset J of \boldsymbol{I}
- Contrapositive for pairs:

If item \boldsymbol{i} does not appear in s baskets, then no pair including i can appear in s baskets

- So, how does A-Priori find freq. pairs?

A-Priori Algorithm - (2)

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
- Requires only memory proportional to \#items
- Items that appear $\geq s$ times are the frequent items
- Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
- Requires memory proportional to square of frequent items only (for counts)
- Plus a list of the frequent items (so you know what must be counted)

Main-Memory: Picture of A-Priori

Pass 1

Pass 2

Detail for A-Priori

- You can use the triangular matrix method with $n=$ number of frequent items
- May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

Pass 2

Frequent Triples, Etc.

- For each k, we construct two sets of
k-tuples (sets of size k):
- $\boldsymbol{C}_{\boldsymbol{k}}=$ candidate \boldsymbol{k}-tuples = those that might be frequent sets (support $\geq \mathbf{s}$) based on information from the pass for $\boldsymbol{k}-\mathbf{1}$
- $\boldsymbol{L}_{\boldsymbol{k}}=$ the set of truly frequent \boldsymbol{k}-tuples

Frequent Triples, Etc.

- For each k, we construct two sets of
k-tuples (sets of size k):
- $\boldsymbol{C}_{\boldsymbol{k}}=$ candidate \boldsymbol{k}-tuples = those that might be frequent sets (support $\geq \mathbf{s}$) based on information from the pass for $\boldsymbol{k} \mathbf{- 1}$
- $\boldsymbol{L}_{\boldsymbol{k}}=$ the set of truly frequent \boldsymbol{k}-tuples

All

items
$\mathrm{C}_{1} \rightarrow$ Filter $\rightarrow \mathrm{L}_{1} \rightarrow$ Construct $\rightarrow \mathrm{C}_{2} \rightarrow$ Filter $\rightarrow \mathrm{L}_{2} \rightarrow$ Construct $\rightarrow \mathrm{C}_{3} \rightarrow$

Frequent Triples, Etc.

- For each k, we construct two sets of
k-tuples (sets of size k):
- $\boldsymbol{C}_{\boldsymbol{k}}=$ candidate \boldsymbol{k}-tuples = those that might be frequent sets (support $\geq \mathbf{s}$) based on information from the pass for $\boldsymbol{k} \mathbf{- 1}$
- $\boldsymbol{L}_{\boldsymbol{k}}=$ the set of truly frequent \boldsymbol{k}-tuples

Frequent Triples, Etc.

- For each k, we construct two sets of
k-tuples (sets of size k):
- $\boldsymbol{C}_{\boldsymbol{k}}=$ candidate \boldsymbol{k}-tuples = those that might be frequent sets (support $\geq \mathbf{s}$) based on information from the pass for $\boldsymbol{k} \mathbf{- 1}$
- $\boldsymbol{L}_{\boldsymbol{k}}=$ the set of truly frequent \boldsymbol{k}-tuples

Frequent Triples, Etc.

- For each k, we construct two sets of
k-tuples (sets of size k):
- $\boldsymbol{C}_{\boldsymbol{k}}=$ candidate \boldsymbol{k}-tuples = those that might be frequent sets (support $\geq \mathbf{s}$) based on information from the pass for $\boldsymbol{k} \mathbf{- 1}$
- $\boldsymbol{L}_{\boldsymbol{k}}=$ the set of truly frequent \boldsymbol{k}-tuples

Frequent Triples, Etc.

- For each k, we construct two sets of
k-tuples (sets of size k):
- $\boldsymbol{C}_{\boldsymbol{k}}=$ candidate \boldsymbol{k}-tuples = those that might be frequent sets (support $\geq \mathbf{s}$) based on information from the pass for $\boldsymbol{k} \mathbf{- 1}$
- $\boldsymbol{L}_{\boldsymbol{k}}=$ the set of truly frequent \boldsymbol{k}-tuples

Example

- Hypothetical steps of the A-Priori algorithm
- $\mathrm{C}_{1}=\{\{b\}\{c\}\{j\}\{m\}\{n\}\{p\}\}$
- Count the support of itemsets in C_{1}
- Prune non-frequent: $L_{1}=\{b, c, j, m\}$
- Generate $C_{2}=\{\{b, c\}\{b, j\}\{b, m\}\{c, j\}\{c, m\}\{j, m\}\}$
- Count the support of itemsets in C_{2}
- Prune non-frequent: $L_{2}=\{\{b, m\}\{b, c\}\{c, m\}\{c, j\}\}$
- Generate $C_{3}=\{\{b, c, m\}\{b, c, j\}\{b, m, j\}\{c, m, j\}\}$
- Count the support of itemsets in C_{3}
- Prune non-frequent: $L_{3}=\{\{b, c, m\}\}$

A-Priori for All Frequent Itemsets

- One pass for each \boldsymbol{k} (itemset size)
- Needs room in main memory to count each candidate \boldsymbol{k}-tuple
- For typical market-basket data and reasonable support (e.g., 1\%), $\boldsymbol{k}=\mathbf{2}$ requires the most memory
- Many possible extensions:
- Association rules with intervals:
- For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
- Bread, Butter \rightarrow FruitJam
- BakedGoods, MilkProduct \rightarrow PreservedGoods
- Lower the support s as itemset gets bigger

PCY (Park-Chen-Yu) Algorithm

PCY (Park-Chen-Yu) Algorithm

- Observation:

In pass 1 of A-Priori, most memory is idle

- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?

PCY (Park-Chen-Yu) Algorithm

- Observation:

In pass 1 of A-Priori, most memory is idle

- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?
- Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a count for each bucket into which pairs of items are hashed
- For each bucket just keep the count, not the actual pairs that hash to the bucket!

PCY Algorithm - First Pass

FOR (each basket) :
FOR (each item in the basket) :
add 1 to item's count;
New
in
PCY $\left\{\begin{array}{l}\text { FOR (each pair of items) : } \\ \text { hash the pair to a bucket; } \\ \text { add } 1 \text { to the count for that bucket; }\end{array}\right.$

- Few things to note:
- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times

Observations about Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent $:-$
- So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent :)
- Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2:

Only count pairs that hash to frequent buckets

PCY Algorithm - Between Passes

- Replace the buckets by a bit-vector:
- 1 means the bucket count exceeded the support s (call it a frequent bucket); $\mathbf{0}$ means it did not
- 4-byte integer counts are replaced by bits, so the bit-vector requires $1 / 32$ of memory
- Also, decide which items are frequent and list them for the second pass

PCY Algorithm - Pass 2

- Count all pairs $\{i, j\}$ that meet the conditions for being a candidate pair:

1. Both \boldsymbol{i} and \boldsymbol{j} are frequent items
2. The pair $\{\boldsymbol{i}, \boldsymbol{j}\}$ hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

Both conditions are necessary for the pair to have a chance of being frequent

Main-Memory: Picture of PCY

Main-Memory Details

- Buckets require a few bytes each:
- Note: we do not have to count past s
- \#buckets is O(main-memory size)
- On second pass, a table of (item, item, count) triples is essential (we cannot use triangular matrix approach, why?)
- Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat A-Priori

Refinement: Multistage Algorithm

- Limit the number of candidates to be counted
- Remember: Memory is the bottleneck
- Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent
- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
- \boldsymbol{i} and \boldsymbol{j} are frequent, and
- $\{i, j\}$ hashes to a frequent bucket from Pass 1
- On middle pass, fewer pairs contribute to buckets, so fewer false positives
- Requires 3 passes over the data

Main-Memory: Multistage

Pass 1

Count items Hash pairs $\{i, j\}$

Pass 2

Hash pairs $\{i, j\}$ into Hash2 iff: i,j are frequent, $\{i, j\}$ hashes to freq. bucket in B1

Freq. items
Bitmap 1
Bitmap 2
Counts of candidate pairs

Pass 3

Count pairs $\{i, j\}$ iff:
i,j are frequent, $\{i, j\}$ hashes to freq. bucket in B1
$\{i, j\}$ hashes to freq. bucket in B2

Multistage - Pass 3

Count only those pairs $\{i, j\}$ that satisfy these candidate pair conditions:

1. Both \boldsymbol{i} and \boldsymbol{j} are frequent items
2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1
3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1

Important Points

1. The two hash functions have to be independent
2. We need to check both hashes on the third pass

- If not, we would end up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket

Refinement: Multihash

- Key idea: Use several independent hash tables on the first pass
- Risk: Halving the number of buckets doubles the average count
- We have to be sure most buckets will still not reach count s
- If so, we can get a benefit like multistage, but in only 2 passes

Main-Memory: Multihash

Pass 1

Pass 2

PCY: Extensions

- Either multistage or multihash can use more than two hash functions
- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory
- For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq \boldsymbol{s}$

Frequent ltemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k
- Can we use fewer passes?
- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets
- Random sampling
- SON (Savasere, Omiecinski, and Navathe)
- Toivonen (see textbook)

