Advanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

Similarity Search

Similarity search examples:

- Images, faces, motions, time series...
- + visual examples
- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space
- Examples:
- Pages with similar words
- For duplicate detection, classification by topic
- Customers who purchased similar products
- Products with similar customer sets
- Images with similar features
- Users who visited similar websites

- Given: High dimensional data points
- For example: Image is a long vector of pixel colors

- And some distance function
- Which quantifies the "distance" between and
- Goal: Find all pairs of data points that are within some distance threshold
- Note: Naïve solution would take where is the number of data points
- MAGIC: This can be done in ()!! How?

Finding Similar Items

- Goal: Find near-neighbors in high-dim. space
- We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union: $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$
- Jaccard distance: $d\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=1-\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$

3 in intersection 8 in union Jaccard similarity= $3 / 8$ Jaccard distance $=5 / 8$

- Goal: Given a large number (in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
- Mirror websites, or approximate mirrors
- Don't want to show both in search results
- Similar news articles at many news sites
- Cluster articles by "same story"
- Problems:
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

Essential Steps for Sinnilar

1. Shingling: Convert documents to sets
2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

- Candidate pairs!

The Big Picture

Step 1:
 Convert documents to sets

- Step 1: Shingling: Convert documents to sets
- Simple approaches:
- Document = set of words appearing in document
- Document = set of "important" words
- Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!
- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples
- Example: $\mathbf{k = 2 ;}$ document $\mathrm{D}_{1}=\mathrm{abcab}$ Set of 2-shingles: $\mathbf{S}\left(\mathrm{D}_{1}\right)=\{a b, b c, c a\}$
- Option: Shingles as a bag (multiset), count ab twice: $\mathbf{S}^{\prime}\left(\mathrm{D}_{1}\right)=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ca}, \mathrm{ab}\}$
- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hashvalues were shared
- Example: $\mathbf{k = 2 ;}$ document $\mathbf{D}_{1}=$ abcab Set of 2-shingles: $\mathbf{S}\left(\mathrm{D}_{1}\right)=\{a b, b c, c a\}$ Hash the singles: $\mathbf{h}\left(\mathrm{D}_{1}\right)=\{1,5,7\}$
- Document D_{1} is a set of its k-shingles $C_{1}=S\left(D_{1}\right)$
- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension
- Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$
\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|
$$

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick \boldsymbol{k} large enough, or most documents will have most shingles
- $\boldsymbol{k}=5$ is OK for short documents
- $\boldsymbol{k}=10$ is better for long documents
- Suppose we need to find near-duplicate documents among million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
$\approx 5^{* 10^{11}}$ comparisons
- At 10^{5} secs/day and 10^{6} comparisons/sec, it would take 5 days
- For million, it takes more than a year...

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

- Many similarity problems can be formalized as finding subsets that
 have significant intersection
- Encode sets using 0/1 (bit, boolean) vectors
- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $\mathbf{C}_{1}=10111 ; \mathbf{C}_{\mathbf{2}}=10011$
- Size of intersection = 3; size of union = 4,
- Jaccard similarity (not distance) = 3/4
- Distance: $d\left(C_{1}, C_{2}\right)=1$ - (Jaccard similarity) $=1 / 4$
- Rows = elements (shingles)
- Columns = sets (documents)
- 1 in row \boldsymbol{e} and column s if and only if \boldsymbol{e} is a member of \boldsymbol{s}
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!
- Each document is a column:
- Example: $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=$?
- Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) $=3 / 6$
- $d\left(C_{1}, C_{2}\right)=1$ - (Jaccard similarity) = 3/6

Documents

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	0
1	0	0	1
1	1	1	0
1	0	1	0

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
- Similarity of columns == similarity of signatures
- Next Goal: Find similar columns, Small signatures
- Naïve approach:
- 1) Signatures of columns: small summaries of columns
- 2) Examine pairs of signatures to find similar columns
- Essential: Similarities of signatures and columns are related
- 3) Optional: Check that columns with similar signatures are really similar
- Warnings:
- Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)
- Key idea: "hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)$ and $\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
- Goal: Find a hash function $h(\cdot)$ such that:
- If $\operatorname{sim}\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right)$ is high, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)=\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right) \neq \boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!
- Goal: Find a hash function $h(\cdot)$ such that:
" if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing
- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Note: Another (equivalent) way is to store row indexes:

$2^{\text {nd }}$ element of the permutation

Permutationt Input phatrix (Shingles x Documents)

0	0
0	0
1	1
0	0
0	1
1	0

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- Why?
- Let \mathbf{X} be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
- Then: $\operatorname{Pr}[\pi(\mathrm{y})=\min (\pi(\mathrm{X}))]=1 /|X|$
- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the $\boldsymbol{m i n}$ element
- Let \boldsymbol{y} be s.t. $\pi(\mathrm{y})=\min \left(\pi\left(\mathrm{C}_{1} \cup \mathrm{C}_{2}\right)\right)$
- Then either: $\pi(y)=\min \left(\pi\left(C_{1}\right)\right)$ if $y \in C_{1}$, or

$$
\pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
$$

- So the prob. that both are true is the prob. $\boldsymbol{y} \in \mathrm{C}_{1} \cap \mathrm{C}_{2}$
- $\operatorname{Pr}\left[\min \left(\pi\left(C_{1}\right)\right)=\min \left(\pi\left(C_{2}\right)\right)\right]=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- We know: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min=Hashing Example

Permutation $\pi \quad$ Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

- Pick K=100 random permutations of the rows
- Think of $\operatorname{sig}(\mathbf{C})$ as a column vector
- $\operatorname{sig}(\mathrm{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C
$\boldsymbol{\operatorname { s i g }}(\mathrm{C})[\mathrm{i}]=\min \left(\boldsymbol{\pi}_{\mathrm{i}}(\mathrm{C})\right)$
- Note: The sketch (signature) of document C is small bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures
- Permuting rows even once is prohibitive
- Row hashing!
- Pick $\mathbf{K}=\mathbf{1 0 0}$ hash functions $\boldsymbol{k}_{\boldsymbol{i}}$
- Ordering under $\boldsymbol{k}_{\boldsymbol{i}}$ gives a random row permutation!
- One-pass implementation
" For each column \boldsymbol{C} and hash-func. $\boldsymbol{k}_{\boldsymbol{i}}$ keep a "slot" for the min-hash value
- Initialize all sig(C)[i] = ∞
- Scan rows looking for 1s
- Suppose row \boldsymbol{j} has 1 in column \boldsymbol{C}
- Then for each $\boldsymbol{k}_{\boldsymbol{i}}$:
- If $\boldsymbol{k}_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow \boldsymbol{k}_{i}(j)$

How to pick a random hash function $\mathrm{h}(\mathrm{x})$? Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
a,b ... random integers
p ... prime number $(p>N)$

Step 3:

Focus on pairs of signatures likely to be from similar documents

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)
- LSH - General idea: Use a function $f(x, y)$ that tells whether \boldsymbol{x} and \boldsymbol{y} is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair
- Pick a similarity threshold s(0<s<1)
- Columns \boldsymbol{x} and \boldsymbol{y} of \boldsymbol{M} are a candidate pair if their signatures agree on at least fraction s of their rows:
$\boldsymbol{M}(i, x)=\boldsymbol{M}(i, y)$ for at least frac. s values of \boldsymbol{i}
- We expect documents \boldsymbol{x} and \boldsymbol{y} to have the same (Jaccard) similarity as their signatures

Big idea: Hash columns of signature matrix M several times

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Signature matrix M

- Divide matrix \boldsymbol{M} into \boldsymbol{b} bands of \boldsymbol{r} rows
- For each band, hash its portion of each column to a hash table with \boldsymbol{k} buckets
- Make \boldsymbol{k} as large as possible
- Candidate column pairs are those that hash to the same bucket for $\geq \mathbf{1}$ band
- Tune \boldsymbol{b} and \boldsymbol{r} to catch most similar pairs, but few non-similar pairs

Hashing Bands

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Assume the following case:

- Suppose 100,000 columns of \boldsymbol{M} (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose $\boldsymbol{b}=20$ bands of $\boldsymbol{r}=5$ integers/band
- Goal: Find pairs of documents that are at least $\boldsymbol{s}=0.8$ similar
- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq \mathbf{s}$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.8)^{5}=0.328$
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ are not similar in all of the 20 bands: $(1-0.328)^{20}=0.00035$
- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965\% pairs of truly similar documents
- Find pairs of $\geq \boldsymbol{s}=0.8$ similarity, set $\mathbf{b}=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<s$ we want C_{1}, C_{2} to hash to NO common buckets (all bands should be different)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.3)^{5}=0.00243$
- Probability C_{1}, C_{2} identical in at least 1 of 20 bands: $1-(1-0.00243)^{20}=0.0474$
- In other words, approximately 4.74\% pairs of docs with similarity 0.3% end up becoming candidate pairs
- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s
- Pick:
- The number of Min-Hashes (rows of \boldsymbol{M})
- The number of bands \boldsymbol{b}, and
- The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Similarity $t=\operatorname{sim}\left(C_{1}, C_{2}\right)$ of two sets

What 1. Band of 9 Row Gives You

Similarity $t=\operatorname{sim}\left(C_{1}, C_{2}\right)$ of two sets

- Columns C_{1} and C_{2} have similarity t
- Pick any band (r rows)
- Prob. that all rows in band equal $=t^{r}$
- Prob. that some row in band unequal =1-tr
- Prob. that no band identical $=\left(1-t^{r}\right)^{b}$
- Prob. that at least 1 band identical =

$$
1-\left(1-t^{r}\right)^{b}
$$

- Similarity threshold s
- Prob. that at least 1 band is identical:

\boldsymbol{s}	$\mathbf{1 - (1 - \mathbf { s } ^ { \mathbf { r } } \mathbf { b } ^ { \mathbf { b } }}$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

- Picking r and b to get the best S-curve
- 50 hash-functions ($r=5, b=10$)

Blue area: False Negative rate Green area: False Positive rate

SHI Suinninaliy

- Tune $\boldsymbol{M}, \boldsymbol{b}, \boldsymbol{r}$ to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents
- Shingling: Convert documents to sets
- We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
- We used hashing to find candidate pairs of similarity $\geq \mathbf{s}$

