Mining Data Streams

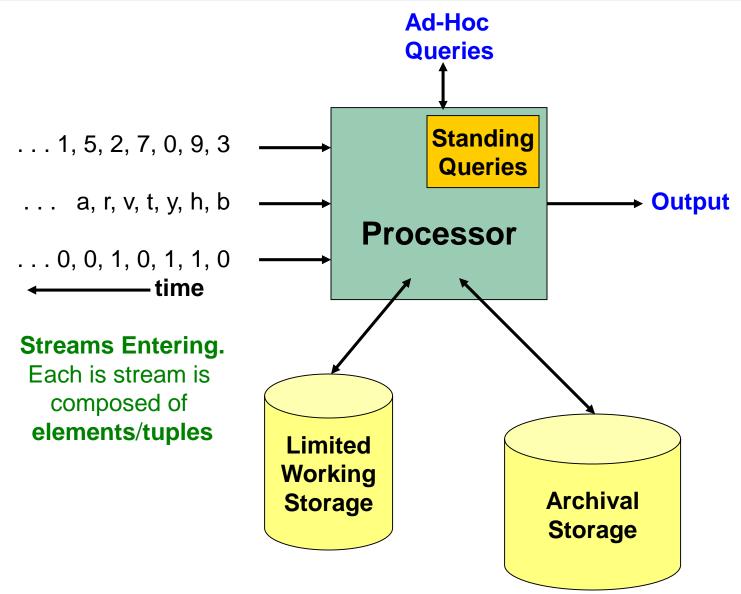
Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University http://disa.fi.muni.cz In many data mining situations, we do not know the entire data set in advance

- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model



Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)

Problems on Data Streams

- Types of queries one wants on answer on a data stream:
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream

Applications (1)

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter, Facebook

Applications (2)

Sensor Networks

Many sensors feeding into a central controller
Telephone call records

- Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

Sampling from a Data Stream: Sampling a fixed proportion

As the stream grows the sample also gets bigger

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample
 Two different problems:
 - (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k we would like a random sample of s elements
 - What is the property of the sample we want to maintain?
 For all time steps k, each of k elements seen so far has equal prob. of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the query if the integer is **0**, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)

Proposed solution: We keep 10% of the queries

- Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
- But only *d*/100 pairs of duplicates
 - d/100 = 1/10 · 1/10 · d
- Of d "duplicates" 18d/100 appear exactly once
 - 18d/100 = ((1/10 · 9/10)+(9/10 · 1/10)) · d

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

Stream of tuples with keys:

- Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

To get a sample of *a/b* fraction of the stream:

- Hash each tuple's key uniformly into b buckets
- Pick the tuple if its hash value is at most *a*

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**. **How to generate a 30% sample?** Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Sampling from a Data Stream: Sampling a fixed-size sample

As the stream grows, the sample is of fixed size

Maintaining a fixed-size sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Stream: a x c y z k c d e g...

At **n= 5**, each of the first 5 tuples is included in the sample **S** with equal prob. At **n= 7**, each of the first 7 tuples is included in the sample **S** with equal prob. **Impractical solution would be to store all the** *n* **tuples seen so far and out of them pick** *s* **at random**

Solution: Fixed Size Sample

Algorithm (a.k.a. Reservoir Sampling)

- Store all the first s elements of the stream to S
- Suppose we have seen *n-1* elements, and now the *nth* element arrives (*n > s*)
 - With probability s/n, keep the nth element, else discard it
 - If we picked the *nth* element, then it replaces one of the *s* elements in the sample *S*, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*Pavel Zezula, Jan Sedmidubsky, Advanced Search Techniques for Large Scale Data Analytics (PA212)

Proof: By Induction

We prove this by induction:

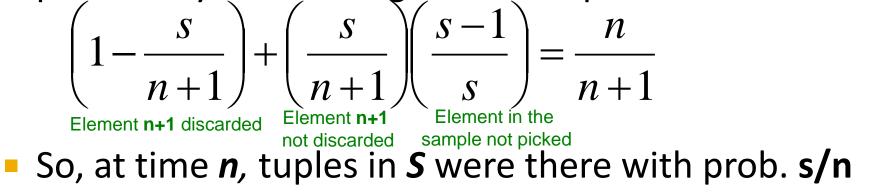
- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element *n+1* the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

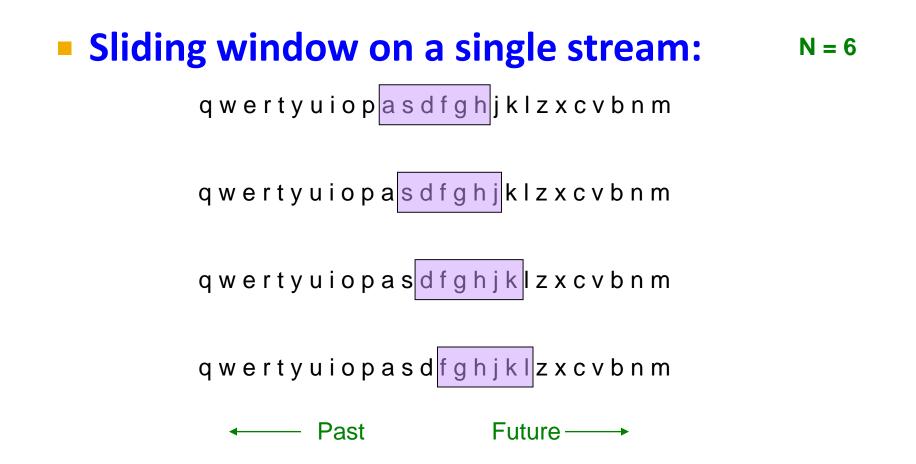
- Inductive hypothesis: After *n* elements, the sample
 S contains each element seen so far with prob. *s/n*
- Now element *n+1* arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:



- Time $n \rightarrow n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Queries over a (long) Sliding Window

Sliding Window: 1 Stream



Sliding Windows

- A useful model of stream processing is that queries are about a *window* of length *N* – the *N* most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored

Amazon example:

- For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
- We want answer queries, how many times have we sold X in the last k sales

Counting Bits (1)

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form
 How many 1s are in the last k bits? where k ≤ N

Obvious solution:

Past

Store the most recent **N** bits

When new bit comes in, discard the N+1st bit

Suppose N=6

Future

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem: What if we cannot afford to store N bits?
 - E.g., we're processing 1 billion streams and
 N = 1 billion
 01001101110101010101010

-Past

Future -

 But we are happy with an approximate answer

An attempt: Simple solution

Q: How many 1s are in the last N bits?

A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
 - S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{s}{s+z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

DGIM Method

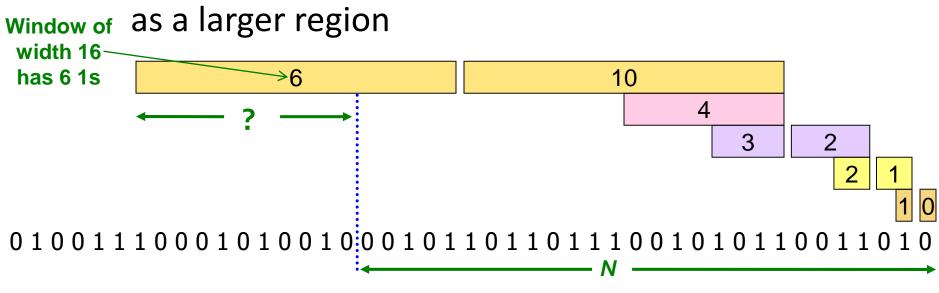
DGIM solution that does <u>not</u> assume uniformity

- We store $O(\log^2 N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

Solution that doesn't (quite) work:

- Summarize exponentially increasing regions of the stream, looking backward
- Drop small regions if they begin at the same point



We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6 1s** are included in the **N**

What's Good?

Stores only O(log²N) bits

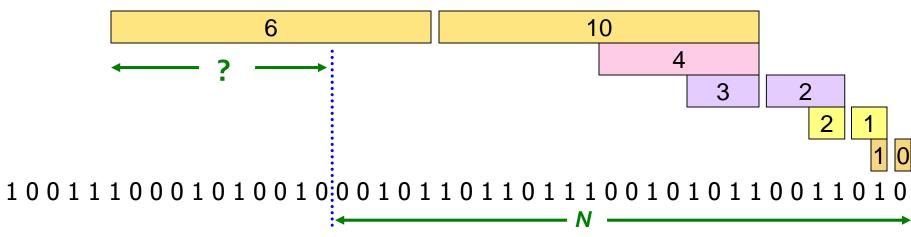
O(log N) counts of log₂N bits each

Easy update as more bits enter

Error in count no greater than the number of **1s** in the "**unknown**" area

What's Not So Good?

- As long as the **1s** are fairly evenly distributed, the error due to the unknown region is small
 – no more than 50%
- But it could be that all the **1s** are in the unknown area at the end
- In that case, the error is unbounded!



Fixup: DGIM method

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block *sizes* (number of **1s**) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

- Each bit in the stream has a *timestamp*, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in O(log₂N) bits

DGIM: Buckets

- A *bucket* in the DGIM method is a record consisting of:
- (A) The timestamp of its end [O(log N) bits]
- (B) The number of 1s between its beginning and end [O(log log N) bits]
- Constraint on buckets: Number of 1s must be a power of 2
 - That explains the O(log log N) in (B) above

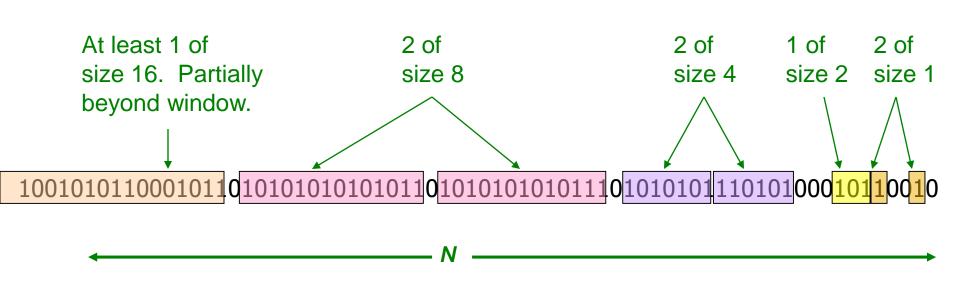
Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)

31

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

Example: Bucketized Stream



Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- **2 cases:** Current bit is **0** or **1**
- If the current bit is 0: no other changes are needed

Updating Buckets (2)

If the current bit is 1:

- (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query?

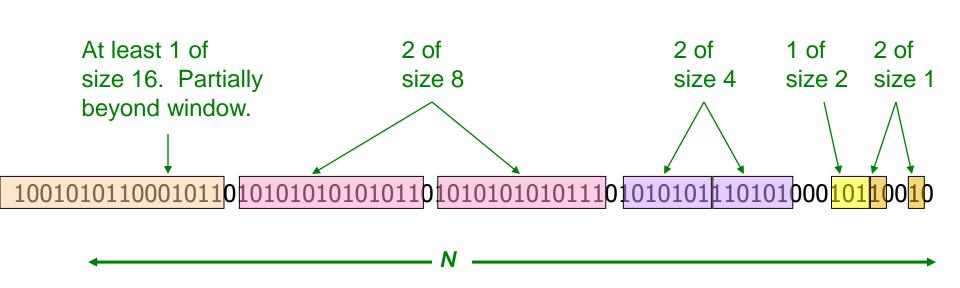
- To estimate the number of 1s in the most recent *N* bits:
- **1.** Sum the sizes of all buckets but the last

(note "size" means the number of 1s in the bucket)

2. Add half the size of the last bucket

Remember: We do not know how many **1s** of the last bucket are still within the wanted window

Example: Bucketized Stream



(1) Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S

Obvious solution: Hash table

- But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Example: Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam

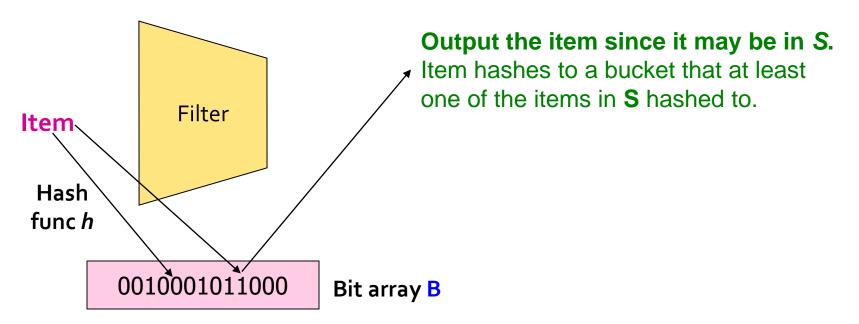
Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n]
- Hash each member of s ∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element *a* of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] == 1

First Cut Solution (2)



Drop the item. It hashes to a bucket set to **0** so it is surely not in **S**.

Creates false positives but no false negatives

If the item is in S we surely output it, if not we may still output it

First Cut Solution (3)

|S| = 1 billion email addresses |B| = 1GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
- Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through to the output (*false positives*)
 - Actually, less than 1/8th, because more than one address might hash to the same bit

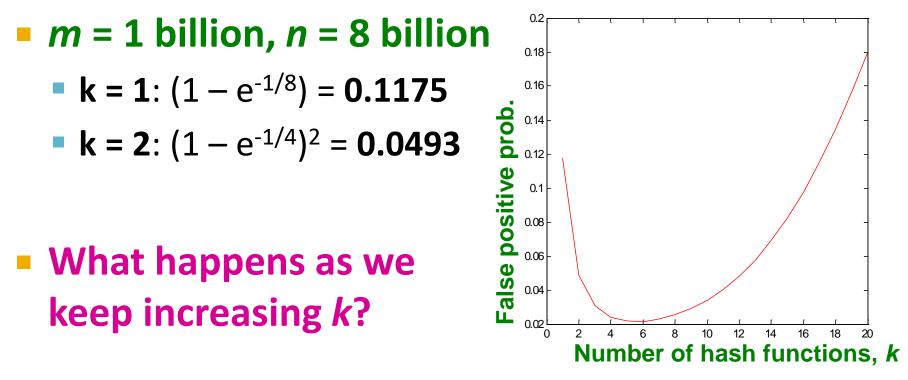
Bloom Filter

- Consider: |S| = m, |B| = n
- Use k independent hash functions h₁,..., h_k
- Initialization:
 - Set B to all Os
 - Hash each element s ∈ S using each hash function h_i, set B[h_i(s)] = 1 (for each i = 1,.., k) (note: we have a single array B!)

Run-time:

- When a stream element with key x arrives
 - If B[h_i(x)] = 1 for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function h_i(x)
 - Otherwise discard the element x

Bloom Filter – Analysis



"Optimal" value of k: n/m ln(2)

In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: (1 e^{-km/n})^k vs. (1 e^{-m/(n/k)})^k
 - But keeping 1 big B is simpler

(2) Counting Distinct Elements

Counting Distinct Elements

Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far
- Obvious approach:

Maintain the set of elements seen so far

That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?

How many distinct products have we sold in the last week?

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function *h* that maps each of the
 N elements to at least log₂ *N* bits
- For each stream element *a*, let *r(a)* be the number of trailing **0s** in *h(a)*
 - r(a) = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - R = max_a r(a), over all the items a seen so far

Estimated number of distinct elements = 2^R

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of *a*s hash to ***0
 - About 25% of *a*s hash to ****00**
 - So, if we saw the longest tail of *r=2* (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r