Mining Data Streams

Advanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
- Google queries
- Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
- We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model

Problems on Data Streams

- Types of queries one wants on answer on a data stream:
- Sampling data from a stream
- Construct a random sample
- Queries over sliding windows
- Number of items of type \boldsymbol{x} in the last \boldsymbol{k} elements of the stream
- Filtering a data stream
- Select elements with property \boldsymbol{x} from the stream
- Counting distinct elements
- Number of distinct elements in the last \boldsymbol{k} elements of the stream

Applications (1)

- Mining query streams
- Google wants to know what queries are more frequent today than yesterday
- Mining click streams
- Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
- E.g., look for trending topics on Twitter, Facebook

Applications (2)

- Sensor Networks
- Many sensors feeding into a central controller
- Telephone call records
- Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
- Gather information for optimal routing
- Detect denial-of-service attacks

Sampling from a Data Stream: Sampling a fixed proportion

As the stream grows the sample also gets bigger

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample
- Two different problems:
- (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
- (2) Maintain a random sample of fixed size over a potentially infinite stream
- At any "time" k we would like a random sample of s elements
- What is the property of the sample we want to maintain? For all time steps \boldsymbol{k}, each of \boldsymbol{k} elements seen so far has equal prob. of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
- Stream of tuples: (user, query, time)
- Answer questions such as: How often did a user run the same query in a single days
- Have space to store $\mathbf{1 / 1 0}{ }^{\text {th }}$ of query stream
- Naïve solution:
- Generate a random integer in [0..9] for each query
- Store the query if the integer is $\mathbf{0}$, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
- Suppose each user issues \boldsymbol{x} queries once and \boldsymbol{d} queries twice (total of $x+2 d$ queries)
- Correct answer: $d /(x+d)$
- Proposed solution: We keep 10\% of the queries
- Sample will contain $x / 10$ of the singleton queries and $\mathbf{2 d / 1 0}$ of the duplicate queries at least once
- But only $\boldsymbol{d} / \mathbf{1 0 0}$ pairs of duplicates
" d/100 = 1/10 • 1/10 • d
- Of d "duplicates" 18d/100 appear exactly once
= 18d/100 = ((1/10 •9/10)+(9/10 • 1/10)) • d
- So the sample-based answer is

Solution: Sample Users

Solution:

- Pick $\mathbf{1 / 1 0}{ }^{\text {th }}$ of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

- Stream of tuples with keys:
- Key is some subset of each tuple's components
- e.g., tuple is (user, search, time); key is user
- Choice of key depends on application
- To get a sample of a / b fraction of the stream:
- Hash each tuple's key uniformly into buckets
- Pick the tuple if its hash value is at most \boldsymbol{a}

Hash table with \mathbf{b} buckets, pick the tuple if its hash value is at most \mathbf{a}.
How to generate a 30\% sample?
Hash into $b=10$ buckets, take the tuple if it hashes to one of the first 3 buckets

Sampling from a Data Stream: Sampling a fixed-size sample

As the stream grows, the sample is of
fixed size

Maintaining a fixed-size sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
- E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
- Each item is in the sample S with equal prob. s / n How to think about the problem: say s=2
Stream: a x c y zkk gde g...
At $\mathrm{n}=5$, each of the first 5 tuples is included in the sample \mathbf{S} with equal prob.
At $\mathbf{n}=7$, each of the first 7 tuples is included in the sample \mathbf{S} with equal prob.
Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)

- Store all the first \boldsymbol{s} elements of the stream to \boldsymbol{S}
- Suppose we have seen \boldsymbol{n}-1 elements, and now the $\boldsymbol{n}^{\text {th }}$ element arrives ($\boldsymbol{n}>\boldsymbol{s}$)
- With probability $\boldsymbol{s} / \boldsymbol{n}$, keep the $\boldsymbol{n}^{\text {th }}$ element, else discard it
- If we picked the $\boldsymbol{n}^{\text {th }}$ element, then it replaces one of the \boldsymbol{s} elements in the sample \boldsymbol{S}, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property:
- After \boldsymbol{n} elements, the sample contains each element seen so far with probability s / n

Proof: By Induction

- We prove this by induction:
- Assume that after \boldsymbol{n} elements, the sample contains each element seen so far with probability s / n
- We need to show that after seeing element $\boldsymbol{n + 1}$ the sample maintains the property
- Sample contains each element seen so far with probability $s /(n+1)$
- Base case:
- After we see $\mathbf{n}=\mathbf{s}$ elements the sample \mathbf{S} has the desired property
- Each out of $\mathbf{n}=\mathbf{s}$ elements is in the sample with probability $s / s=1$

Proof: By Induction

- Inductive hypothesis: After \boldsymbol{n} elements, the sample S contains each element seen so far with prob. $\boldsymbol{s} / \boldsymbol{n}$
- Now element $n+1$ arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in \boldsymbol{S} is:

$$
\left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{\substack{s}}\right)=\frac{n}{n+1}
$$

- So, at time \boldsymbol{n}, tuples in \boldsymbol{S} were there with prob. \mathbf{s} / \mathbf{n}
- Time $\boldsymbol{n} \rightarrow \mathbf{n + 1}$, tuple stayed in \boldsymbol{S} with prob. $\mathbf{n} /(\mathbf{n}+\mathbf{1})$
- So prob. tuple is in \boldsymbol{S} at time $\boldsymbol{n + 1}=-$

Queries over a (long) Sliding Window

Sliding Window: 1 Stream

- Sliding window on a single stream: $\quad N=6$

$$
\begin{aligned}
& \text { qwertyuiopasdfghjkIzxcvbnm } \\
& \text { qwertyuiopasdfghjkIzxcvbnm } \\
& \text { qwertyuiopas dfghjklzxcvbnm } \\
& \text { quertyuiopasdfghjklzxcvbnm }
\end{aligned}
$$

Sliding Windows

- A useful model of stream processing is that queries are about a window of length \mathbf{N} the \boldsymbol{N} most recent elements received
- Interesting case: \boldsymbol{N} is so large that the data cannot be stored in memory, or even on disk
- Or, there are so many streams that windows for all cannot be stored
- Amazon example:
- For every product \mathbf{X} we keep $0 / 1$ stream of whether that product was sold in the \mathbf{n}-th transaction
- We want answer queries, how many times have we sold \mathbf{X} in the last \mathbf{k} sales

Counting Bits (1)

- Problem:
- Given a stream of 0s and 1s
- Be prepared to answer queries of the form How many 1s are in the last \boldsymbol{k} bits? where $\boldsymbol{k} \leq \boldsymbol{N}$
- Obvious solution:

Store the most recent \boldsymbol{N} bits

- When new bit comes in, discard the $\mathbf{N + 1}{ }^{\text {st }}$ bit
010011011101010110110110
Future $\longrightarrow$$\quad$ Pappose $\mathrm{N}=6$

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store N bits?

- E.g., we're processing 1 billion streams and
 \leftarrow Past Future \longrightarrow
- But we are happy with an approximate answer

An attempt: Simple solution

- Q : How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

$$
010011100010100100010110110111001010110011010
$$

- Maintain 2 counters:
- S : number of 1 s from the beginning of the stream
- Z: number of Os from the beginning of the stream
- How many 1s are in the last \mathbf{N} bits?
- But, what if stream is non-uniform?
- What if distribution changes over time?

DGIM Method

- DGIM solution that does not assume uniformity
- We store bits per stream
- Solution gives approximate answer, never off by more than 50\%
- Error factor can be reduced to any fraction >0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

- Solution that doesn't (quite) work:
- Summarize exponentially increasing regions of the stream, looking backward
- Drop small regions if they begin at the same point

Window of as a larger region

We can reconstruct the count of the last \mathbf{N} bits, except we are not sure how many of the last $\mathbf{6} 1 \mathrm{~s}$ are included in the \boldsymbol{N}

What's Good?

- Stores only O($\log ^{2} N$) bits
- counts of
bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1s in the "unknown" area

What's Not So Good?

- As long as the 1s are fairly evenly distributed, the error due to the unknown region is small - no more than 50\%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!

Fixup: DGIM method

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1 s :
- Let the block sizes (number of 1s) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

1001010110001011010101010101011010101010101110101010111010100010110010
\longleftarrow ـ N

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo \boldsymbol{N} (the window size), so we can represent any relevant timestamp in bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
- (A) The timestamp of its end [O(log N) bits]
- (B) The number of 1 s between its beginning and end $[O(\log \log N)$ bits]
- Constraint on buckets:

Number of 1 s must be a power of 2

- That explains the $O(\log \log N)$ in (B) above

10010101100010110101010101010110101010101110101011010100010110010

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
- Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is $\boldsymbol{>} \boldsymbol{N}$ time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to \boldsymbol{N} time units before the current time
- 2 cases: Current bit is $\mathbf{0}$ or $\mathbf{1}$
- If the current bit is 0: no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
- (1) Create a new bucket of size 1, for just this bit
- End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream: 1001010110001011010101010101011010101010101110101010111010100010110010

Bit of value 1 arrives
0010101100010110101010101010110101010101011101010101110101000101100101
Two orange buckets get merged into a yellow bucket
00101011000101101010101010101101010101010111010101011010100010100101
Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:
01011000101101010101010101101010101011101010101110101000101100101101
Buckets get merged...
0101100010110101010101010110101010101011101010101110101000101100101101
State of the buckets after merging
0101100010110101010101010110101010101011101010101110101000101100101101

How to Query?

- To estimate the number of 1 s in the most recent N bits:

1. Sum the sizes of all buckets but the last
(note "size" means the number of 1 s in the bucket)
2. Add half the size of the last bucket

- Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

(1) Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
- But suppose we do not have enough memory to store all of \boldsymbol{S} in a hash table
- E.g., we might be processing millions of filters on the same stream

Applications

- Example: Email spam filtering
- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam
- Publish-subscribe systems
- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a bit array B of \boldsymbol{n} bits, initially all 0 s
- Choose a hash function h with range [0,n)
- Hash each member of $s \in S$ to one of
n buckets, and set that bit to 1, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to 1
- Output \boldsymbol{a} if $\mathrm{B}[\mathrm{h}(\mathrm{a})]==1$

First Cut Solution (2)

Drop the item.
It hashes to a bucket set to $\mathbf{0}$ so it is surely not in S.

- Creates false positives but no false negatives
- If the item is in \boldsymbol{S} we surely output it, if not we may still output it

First Cut Solution (3)

- |S| = 1 billion email addresses
$|B|=1 \mathrm{~GB}=8$ billion bits
- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
- Approximately $1 / 8$ of the bits are set to 1 , so about $1 / 8^{\text {th }}$ of the addresses not in \boldsymbol{S} get through to the output (false positives)
- Actually, less than $1 / 8^{\text {th }}$, because more than one address might hash to the same bit

Bloom Filter

- Consider: $|\mathbf{S |}|=\boldsymbol{m},|\mathrm{B}|=n$
- Use \boldsymbol{k} independent hash functions $\boldsymbol{h}_{\boldsymbol{1}}, \ldots, \boldsymbol{h}_{\boldsymbol{k}}$
- Initialization:
- Set B to all Os
- Hash each element $\boldsymbol{s} \in \boldsymbol{S}$ using each hash function $\boldsymbol{h}_{\boldsymbol{i}}$, set $\mathrm{B}\left[h_{i}(s)\right]=1 \quad($ for each $\boldsymbol{i}=\mathbf{1}, . ., \boldsymbol{k})$ (note: we have a single array $B!$)
- Run-time:
- When a stream element with key \boldsymbol{x} arrives
- If $\mathrm{B}\left[h_{i}(x)\right]=\mathbf{1}$ for all $i=1, \ldots, k$ then declare that \boldsymbol{x} is in S
- That is, \boldsymbol{x} hashes to a bucket set to $\mathbf{1}$ for every hash function $\boldsymbol{h}_{\boldsymbol{i}}(\boldsymbol{x})$
- Otherwise discard the element \boldsymbol{x}

Bloom Filter - Analysis

- $m=1$ billion, $n=8$ billion
- $\mathbf{k}=1:\left(1-\mathrm{e}^{-1 / 8}\right)=0.1175$
- $\mathbf{k}=\mathbf{2}:\left(1-e^{-1 / 4}\right)^{2}=0.0493$
- What happens as we keep increasing k ?

- "Optimal" value of $k: n / m \ln (2)$
- In our case: Optimal $k=8 \ln (2)=5.54 \approx 6$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
- Great for pre-processing before more expensive checks
- Suitable for hardware implementation
- Hash function computations can be parallelized
- Is it better to have $\mathbf{1}$ big \mathbf{B} or \boldsymbol{k} small Bs?
- It is the same: $\left(1-e^{-k m / n}\right)^{k}$ vs. $\left(1-e^{-m /(n / k)}\right)^{k}$
- But keeping $\mathbf{1}$ big \mathbf{B} is simpler

(2) Counting Distinct Elements

Counting Distinct Elements

- Problem:
- Data stream consists of a universe of elements chosen from a set of size \boldsymbol{N}
- Maintain a count of the number of distinct elements seen so far
- Obvious approach: Maintain the set of elements seen so far
- That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
- Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function \boldsymbol{h} that maps each of the \mathbf{N} elements to at least $\log _{2} \mathbf{N}$ bits
- For each stream element \boldsymbol{a}, let $\boldsymbol{r}(\boldsymbol{a})$ be the number of trailing $\mathbf{0 s}$ in $\boldsymbol{h (a)}$
- $r(a)=$ position of first 1 counting from the right
- E.g., say $h(a)=12$, then $\mathbf{1 2}$ is $\mathbf{1 1 0 0}$ in binary, so $r(a)=2$
- Record $R=$ the maximum $r(a)$ seen
- $\mathbf{R}=\max _{\mathrm{a}} \mathbf{r}(\mathrm{a})$, over all the items \boldsymbol{a} seen so far
- Estimated number of distinct elements $=\mathbf{2}^{R}$

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
- $\boldsymbol{h}(\boldsymbol{a})$ hashes \boldsymbol{a} with equal prob. to any of \boldsymbol{N} values
- Then $\boldsymbol{h}(\boldsymbol{a})$ is a sequence of $\log _{2} \mathbf{N}$ bits, where 2^{-r} fraction of all as have a tail of r zeros
- About 50\% of as hash to ***0
- About 25% of as hash to **00
- So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
- So, it takes to hash about 2^{r} items before we see one with zero-suffix of length r

