Exercises on Block2:

 Finding Frequent Item Sets Finding Similar Items Searching in Data StreamsAdvanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

Frequent Item Sets (1) - 15min

- Suppose 100 items (numbered 1 to 100) and 100 baskets (numbered 1 to 100)
- Item i is in basket b if and only if i divides b with no remainder, i.e., item 1 is in all the baskets, item 2 is in all fifty of the even-numbered baskets, etc.
- Consider that the support threshold is 5:

1) Identify the frequent items
2) Compute the confidence of these association rules
a) $\{5,7\} \rightarrow 2$
b) $\{2,3,4\} \rightarrow 5$

Frequent Item Sets (2) - 20min

- Consider the following twelve baskets, each of them contains 3 of 6 items (1 through 6):

$$
\left.\begin{array}{r}
=\{1,2,3\} \\
=\{1,3,5\}, 4\}
\end{array} \begin{array}{l}
\{3,4,5\}
\end{array}\right\}
$$

- Suppose the support threshold is 4 . On the first pass of the PCY algorithm, a hash table with 11 buckets is used, and the set $\{i, j\}$ is hashed to bucket $i \times j$ mod 11:

1) Compute the support for each item and each pair of items
2) Which pairs hash to which buckets?
3) Which buckets are frequent?
4) Which pairs are counted on the second pass?

Shingling (1) -5 min

- Consider two documents A and B
- If their 3 -shingle resemblance is 1 (using Jaccard similarity), does that mean that A and B are identical?
- If so, prove it. If not, give a counterexample.

Shingling (2) - 10min

- Consider two documents A and B
- Each document's number of token is $O(n)$
- What is the runtime complexity of computing A and B's k-shingle resemblance (using Jaccard similarity)?
- Assume that comparison of two k-shingles to assess their equivalence is $O(k)$
- Express your answer in terms of n and k, where $n \gg k$

Finding Similar Items (1) - 5min

Compute the Jaccard similarities of each pair of the following three sets:

- A = $\{1,2,3,4\}$
- $B=\{2,3,5,7\}$
- $C=\{2,4,6\}$

Finding Similar Items (2) - 25min

- For the matrix

Element	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

1) Compute the minhash signature for each column using the following hash functions:

- $h_{1}(x)=2 x+1 \bmod 6$
- $h_{2}(x)=3 x+2 \bmod 6$
- $h_{3}(x)=5 x+2 \bmod 6$

2) Which of these hash functions are true permutations?
3) How close are the estimated Jaccard similarities for the six pairs of columns to the true Jaccard similarities?

Data Streams (1) - 20min

- Suppose we are maintaining a count of 1 s using the DGIM method
- Each bucket is represented by (i, t)
- i - the number of 1 s in the bucket
- t - the bucket timestamp (time of the most recent 1)
- Consider the following properties:
- Current time is 200
- Window size is 60
- Current buckets are:
- $(16,148)(8,162)(8,177)(4,183)(2,192)(1,197)(1,200)$
- At the next ten clocks (201 through 210), the stream has 0101010101
- What will the sequence of buckets be at the end of these ten inputs?

