# Advertising on the Web

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University http://disa.fi.muni.cz

# **Online Algorithms**

#### Classic model of algorithms

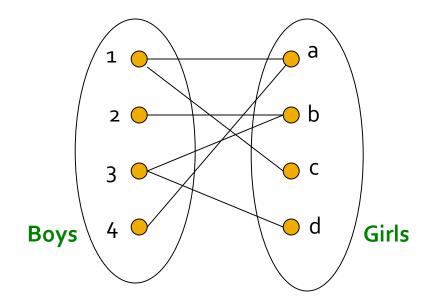
- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

#### Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Similar to the data stream model

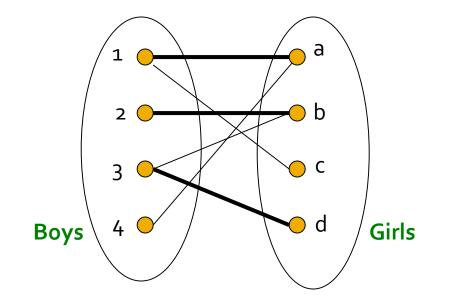
**Online Bipartite Matching** 

# **Example: Bipartite Matching**



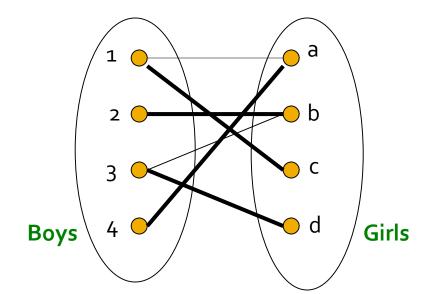
#### Nodes: Boys and Girls; Edges: Preferences Goal: Match boys to girls so that maximum number of preferences is satisfied

# **Example: Bipartite Matching**



#### M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

# **Example: Bipartite Matching**



#### M = {(1,c),(2,b),(3,d),(4,a)} is a perfect matching

**Perfect matching** ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches

# **Matching Algorithm**

# Problem: Find a maximum matching for a given bipartite graph

- A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see <u>http://en.wikipedia.org/wiki/Hopcroft-Karp\_algorithm</u>)

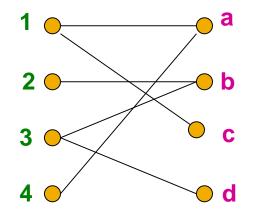
But what if we do not know the entire graph upfront?

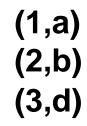
# **Online Graph Matching Problem**

- Initially, we are given the set boys
- In each round, one girl's choices are revealed
  - That is, girl's edges are revealed
- At that time, we have to decide to either:
  - Pair the girl with a boy
  - Do not pair the girl with any boy

#### Example of application: Assigning tasks to servers

# **Online Graph Matching: Example**





# **Greedy Algorithm**

# Greedy algorithm for the online graph matching problem:

- Pair the new girl with any eligible boy
  - If there is none, do not pair girl
- How good is the algorithm?

## **Competitive Ratio**

 For input *I*, suppose greedy produces matching *M<sub>greedy</sub>* while an optimal matching is *M<sub>opt</sub>*

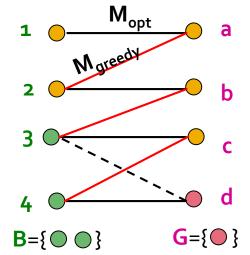
#### **Competitive ratio =**

min<sub>all possible inputs I</sub> (|M<sub>greedy</sub>|/|M<sub>opt</sub>|)

(what is greedy's worst performance over all possible inputs /)

# **Analyzing the Greedy Algorithm**

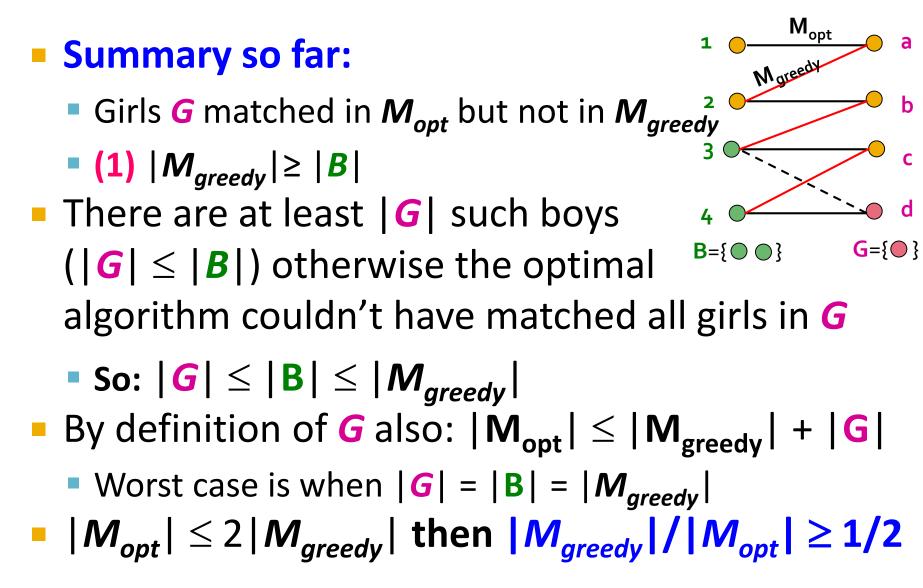
- Consider a case: M<sub>greedy</sub> ≠ M<sub>opt</sub>
- Consider the set G of girls matched in M<sub>opt</sub> but not in M<sub>greedy</sub>
- Then every boy B <u>adjacent</u> to girls in G is already matched in M<sub>areedy</sub>:



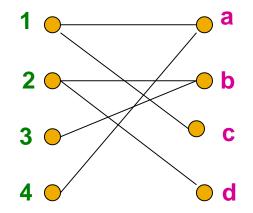
 If there would exist such non-matched (by *M<sub>greedy</sub>*) boy adjacent to a non-matched girl then greedy would have matched them

Since boys *B* are already matched in *M<sub>greedy</sub>* then
 (1)  $|M_{greedy}| \ge |B|$ 

# **Analyzing the Greedy Algorithm**



#### **Worst-case Scenario**





Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)

# Web Advertising

# **History of Web Advertising**

#### Banner ads (1995-2001)

- Initial form of web advertising
- Popular websites charged
   X\$ for every 1,000
   "impressions" of the ad
  - Called "CPM" rate (Cost per thousand impressions)



**CPM**...cost per *mille Mille...thousand in Latin* 

- Modeled similar to TV, magazine ads
- From untargeted to demographically targeted

#### Low click-through rates

Low ROI for advertisers

# **Performance-based Advertising**

- Introduced by Overture around 2000
  - Advertisers bid on search keywords
  - When someone searches for that keyword, the highest bidder's ad is shown
  - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
  - Called Adwords

### Ads vs. Search Results

#### Web

GEICO Car Insurance. Get an auto insurance quote and save today ...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company. www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance Contact Us - Make a Payment More results from www.geico.com »

#### Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords. www.clickz.com/news/article.php/3547356 - 44k - <u>Cached</u> - <u>Similar pages</u>

#### Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm **GEICO** have settled a trade mark dispute over ... Car insurance firm **GEICO** sued both Google and Yahoo! subsidiary Overture in ... www.theregister.co.uk/2005/09/09/google\_geico\_settlement/ - 21k - <u>Cached</u> - <u>Similar pages</u>

#### GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico\_google.html - 19k - Cached - Similar pages

Results 1 - 10 of about 2,230,000 for geico. (0.04 seco

Sponsored Links

<u>Great Car Insurance Rates</u> Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes. 1 Form. Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri



#### Performance-based advertising works!

Multi-billion-dollar industry

#### Interesting problem: What ads to show for a given query?

(Today's lecture)

If I am an advertiser, which search terms should I bid on and how much should I bid?

(Not focus of today's lecture)

## **Adwords Problem**

#### Given:

- **1.** A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- **3.** A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
  - 1. The size of the set is no larger than the limit on the number of ads per query
  - 2. Each advertiser has bid on the search query
  - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

### **Adwords Problem**

- A stream of queries arrives at the search engine: q<sub>1</sub>, q<sub>2</sub>, ...
- Several advertisers bid on each query
- When query q<sub>i</sub> arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
- Simple solution: Instead of raw bids, use the "expected revenue per click" (i.e., Bid\*CTR)
   Clearly we need an online algorithm!

#### **The Adwords Innovation**

| Advertiser | Bid    | CTR                   | Bid * CTR        |
|------------|--------|-----------------------|------------------|
| Α          | \$1.00 | 1%                    | 1 cent           |
| В          | \$0.75 | 2%                    | 1.5 cents        |
| С          | \$0.50 | 2.5%                  | 1.125 cents      |
|            |        | Click through<br>rate | Expected revenue |

# **Complications: Budget**

- Two complications:
  - Budget
  - CTR of an ad is unknown

#### Each advertiser has a limited budget

 Search engine guarantees that the advertiser will not be charged more than their daily budget

# **Complications: CTR**

- CTR: Each ad has a different likelihood of being clicked
  - Advertiser 1 bids \$2, click probability = 0.1
  - Advertiser 2 bids \$1, click probability = 0.5
  - Clickthrough rate (CTR) is measured historically
    - Very hard problem: Exploration vs. exploitation
       Exploit: Should we keep showing an ad for which we have good estimates of click-through rate

or

**Explore:** Shall we show a brand new ad to get a better sense of its click-through rate

# **Greedy Algorithm**

#### Our setting: Simplified environment

- There is 1 ad shown for each query
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- Value of each ad is the same (=1)

#### Simplest algorithm is greedy:

- For a query pick any advertiser who has bid 1 for that query
- Competitive ratio of greedy is 1/2

# **Bad Scenario for Greedy**

#### Two advertisers A and B

- A bids on query x, B bids on x and y
- Both have budgets of \$4

#### Query stream: x x x y y y y

- Worst case greedy choice: B B B B \_ \_
- Optimal: **AAAABBBB**
- Competitive ratio = ½
- This is the worst case!
  - Note: Greedy algorithm is deterministic it always resolves draws in the same way

# **BALANCE Algorithm [MSVV]**

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
  - For each query, pick the advertiser with the largest unspent budget
    - Break ties arbitrarily (but in a deterministic way)

### **Example: BALANCE**

- Two advertisers A and B
  - A bids on query x, B bids on x and y
  - Both have budgets of \$4
- Query stream: x x x y y y y
- BALANCE choice: A B A B B B \_ \_
  - Optimal: A A A A B B B B
- In general: For BALANCE on 2 advertisers
  Competitive ratio = <sup>3</sup>/<sub>4</sub>

# Analyzing BALANCE

#### Consider simple case (w.l.o.g.):

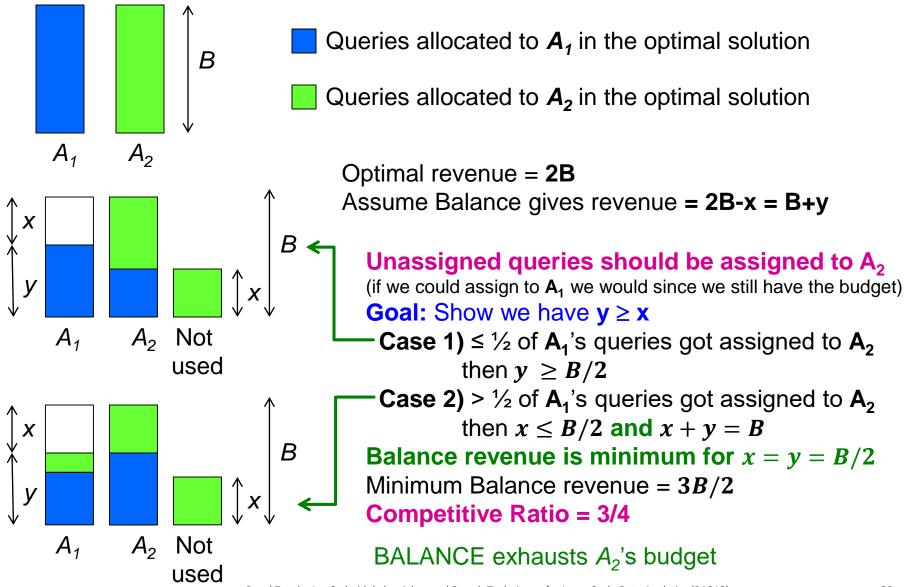
- 2 advertisers,  $A_1$  and  $A_2$ , each with budget B ( $\geq 1$ )
- Optimal solution exhausts both advertisers' budgets

#### BALANCE must exhaust at least one advertiser's budget:

#### If not, we can allocate more queries

- Whenever BALANCE makes a mistake (both advertisers bid on the query), advertiser's unspent budget only decreases
- Since optimal exhausts both budgets, one will for sure get exhausted
- Assume BALANCE exhausts A<sub>2</sub>'s budget, but allocates x queries fewer than the optimal
- Revenue: BAL = 2B x

# **Analyzing Balance**

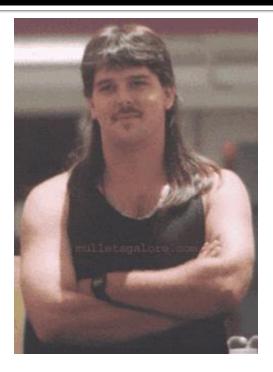


### **BALANCE: General Result**

- In the general case with N advertisers, worst competitive ratio of BALANCE is 1–1/e = approx. 0.63
  - Interestingly, no online algorithm has a better competitive ratio!

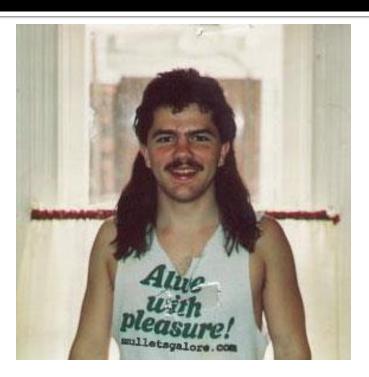
Recommender Systems: Content-based Systems & Collaborative Filtering

## **Example: Recommender Systems**



#### Customer X

- Buys Metallica CD
- Buys Megadeth CD



#### Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

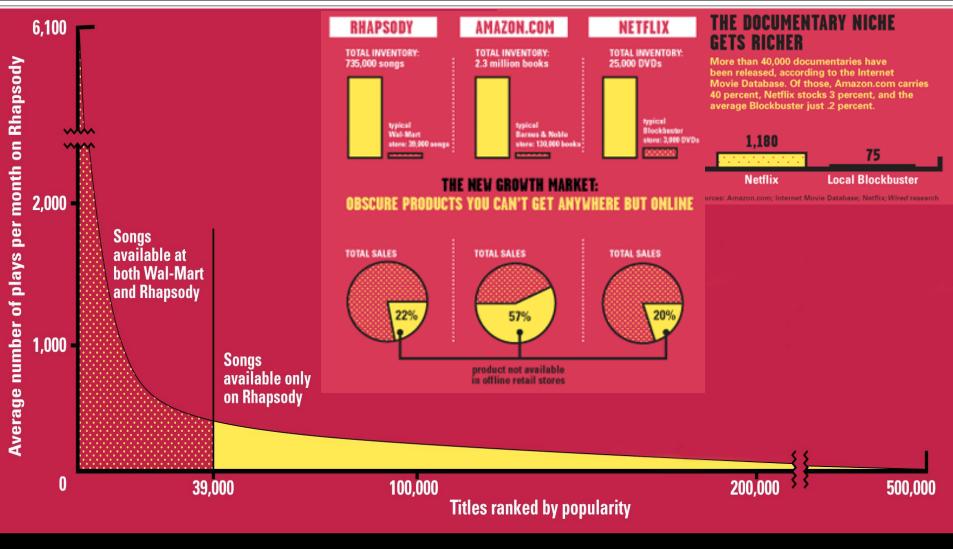
#### Recommendations



### **From Scarcity to Abundance**

- Shelf space is a scarce commodity for traditional retailers
  - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
  - From scarcity to abundance
- More choice necessitates better filters
  - Recommendation engines
  - How Into Thin Air made Touching the Void a bestseller: <u>http://www.wired.com/wired/archive/12.10/tail.html</u>

# Sidenote: The Long Tail



Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

## **Types of Recommendations**

### Editorial and hand curated

- List of favorites
- Lists of "essential" items

### Simple aggregates

Top 10, Most Popular, Recent Uploads

### Tailored to individual users

Amazon, Netflix, ...

### Formal Model

- X = set of Customers
- S = set of Items
- Utility function  $u: X \times S \rightarrow R$ 
  - **R** = set of ratings
  - **R** is a totally ordered set
  - e.g., **0-5** stars, real number in **[0,1]**

# **Utility Matrix**

|       | Avatar | LOTR | Matrix | Pirates |
|-------|--------|------|--------|---------|
| Alice | 1      |      | 0.2    |         |
| Bob   |        | 0.5  |        | 0.3     |
| Carol | 0.2    |      | 1      |         |
| David |        |      |        | 0.4     |

## **Key Problems**

### • (1) Gathering "known" ratings for matrix

- How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
  - Mainly interested in high unknown ratings
    - We are not interested in knowing what you don't like but what you like

### (3) Evaluating extrapolation methods

 How to measure success/performance of recommendation methods

# (1) Gathering Ratings

### Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

### Implicit

- Learn ratings from user actions
  - E.g., purchase implies high rating
- What about low ratings?

## (2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
  - Most people have not rated most items
  - Cold start:
    - New items have no ratings
    - New users have no history

#### Three approaches to recommender systems:

- 1) Content-based
- 2) Collaborative
- 3) Latent factor based

# Content-based Recommender Systems

### **Content-based Recommendations**

Main idea: Recommend items to customer x similar to previous items rated highly by x

#### Example:

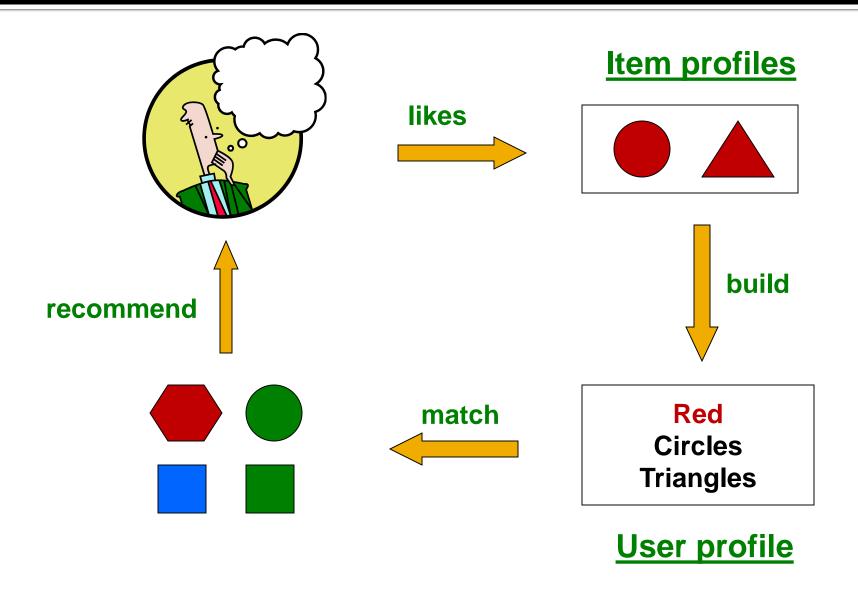
### Movie recommendations

 Recommend movies with same actor(s), director, genre, ...

### Websites, blogs, news

Recommend other sites with "similar" content

### **Plan of Action**



### **User Profiles and Prediction**

#### User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item

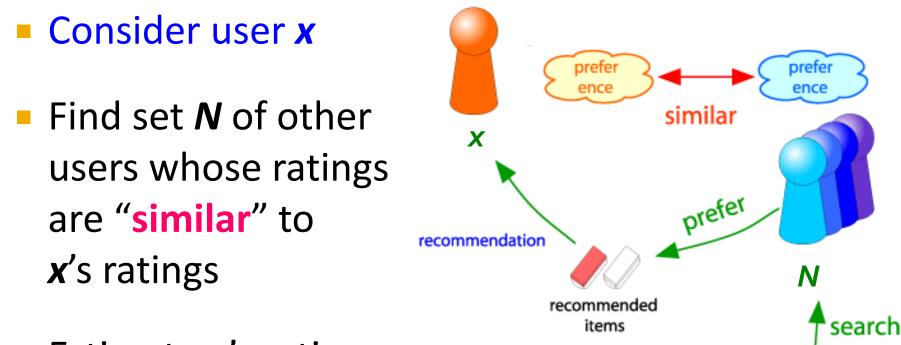
### Prediction heuristic:

• Given user profile **x** and item profile **i**, estimate  $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$ 

# **Collaborative Filtering**

#### Harnessing quality judgments of other users

## **Collaborative Filtering**



 Estimate x's ratings based on ratings of users in N

database