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� Classic model of algorithms

� You get to see the entire input, then compute 

some function of it

� In this context, “offline algorithm”

� Online Algorithms

� You get to see the input one piece at a time, and 

need to make irrevocable decisions along the way

� Similar to the data stream model
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Nodes: Boys and Girls; Edges: Preferences

Goal: Match boys to girls so that maximum 

number of preferences is satisfied



M = {(1,a),(2,b),(3,d)} is a matching

Cardinality of matching = |M| = 3
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M = {(1,c),(2,b),(3,d),(4,a)} is a 

perfect matching
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Perfect matching … all vertices of the graph are matched

Maximum matching …  a matching that contains the largest possible number of matches



� Problem: Find a maximum matching for a 

given bipartite graph

� A perfect one if it exists

� There is a polynomial-time offline algorithm 

based on augmenting paths (Hopcroft & Karp 1973,

see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

� But what if we do not know the entire 

graph upfront?
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� Initially, we are given the set boys

� In each round, one girl’s choices are revealed

� That is, girl’s edges are revealed

� At that time, we have to decide to either:

� Pair the girl with a boy

� Do not pair the girl with any boy

� Example of application: 

Assigning tasks to servers
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� Greedy algorithm for the online graph 

matching problem:

� Pair the new girl with any eligible boy

� If there is none, do not pair girl

� How good is the algorithm?
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� For input I, suppose greedy produces 

matching Mgreedy while an optimal 

matching is Mopt

Competitive ratio = 

minall possible inputs I (|Mgreedy|/|Mopt|)

(what is greedy’s worst performance over all possible inputs I)
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� Consider a case: Mgreedy≠ Mopt

� Consider the set G of girls 

matched in Mopt but not in Mgreedy

� Then every boy B adjacent to girls 

in G is already matched in Mgreedy:

� If there would exist such non-matched 

(by Mgreedy) boy adjacent to a non-matched 

girl then greedy would have matched them

� Since boys B are already matched in Mgreedy then 

(1) |Mgreedy|≥ |B|
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� Summary so far:

� Girls G matched in Mopt but not in Mgreedy

� (1) |Mgreedy|≥ |B|

� There are at least |G| such boys 

(|G| ≤ |B|) otherwise the optimal 

algorithm couldn’t have matched all girls in G

� So: |G| ≤ |B| ≤ |Mgreedy|

� By definition of G also: |Mopt| ≤ |Mgreedy| + |G|

� Worst case is when |G| = |B| = |Mgreedy|

� |Mopt| ≤ 2|Mgreedy| then |Mgreedy|/|Mopt| ≥≥≥≥ 1/2
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� Banner ads (1995-2001)

� Initial form of web advertising

� Popular websites charged 

X$ for every 1,000 

“impressions” of the ad

� Called “CPM” rate 

(Cost per thousand impressions)

� Modeled similar to TV, magazine ads

� From untargeted to demographically targeted

� Low click-through rates

� Low ROI for advertisers
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CPM…cost per mille

Mille…thousand in Latin



� Introduced by Overture around 2000

� Advertisers bid on search keywords

� When someone searches for that keyword, the 

highest bidder’s ad is shown

� Advertiser is charged only if the ad is clicked on

� Similar model adopted by Google with some 

changes around 2002

� Called Adwords
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� Performance-based advertising works!

� Multi-billion-dollar industry

� Interesting problem: 

What ads to show for a given query? 

� (Today’s lecture)

� If I am an advertiser, which search terms 

should I bid on and how much should I bid? 

� (Not focus of today’s lecture)
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� Given:

� 1. A set of bids by advertisers for search queries

� 2. A click-through rate for each advertiser-query pair

� 3. A budget for each advertiser (say for 1 month)

� 4. A limit on the number of ads to be displayed with 
each search query

� Respond to each search query with a set of 
advertisers such that:

� 1. The size of the set is no larger than the limit on the 
number of ads per query

� 2. Each advertiser has bid on the search query

� 3. Each advertiser has enough budget left to pay for 
the ad if it is clicked upon
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� A stream of queries arrives at the search 
engine: q1, q2, …

� Several advertisers bid on each query
� When query qi arrives, search engine must 

pick a subset of advertisers whose ads are 
shown

� Goal: Maximize search engine’s revenues

� Simple solution: Instead of raw bids, use the 

“expected revenue per click” (i.e., Bid*CTR)

� Clearly we need an online algorithm!
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� Two complications:

� Budget

� CTR of an ad is unknown

� Each advertiser has a limited budget

� Search engine guarantees that the advertiser 

will not be charged more than their daily budget
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� CTR: Each ad has a different likelihood of 

being clicked

� Advertiser 1 bids $2, click probability = 0.1

� Advertiser 2 bids $1, click probability = 0.5

� Clickthrough rate (CTR) is measured historically

� Very hard problem: Exploration vs. exploitation

Exploit: Should we keep showing an ad for which we have 

good estimates of click-through rate 

or

Explore:  Shall we show a brand new ad to get a better 

sense of its click-through rate
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� Our setting: Simplified environment

� There is 1 ad shown for each query

� All advertisers have the same budget B

� All ads are equally likely to be clicked

� Value of each ad is the same (=1)

� Simplest algorithm is greedy:

� For a query pick any advertiser who has 

bid 1 for that query

� Competitive ratio of greedy is 1/2
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� Two advertisers A and B

� A bids on query x, B bids on x and y

� Both have budgets of $4

� Query stream: x x x x y y y y

� Worst case greedy choice: B B B B _ _ _ _ 

� Optimal:  A A A A B B B B

� Competitive ratio = ½

� This is the worst case!
� Note: Greedy algorithm is deterministic – it always 

resolves draws in the same way
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� BALANCE Algorithm by Mehta, Saberi, 

Vazirani, and Vazirani

� For each query, pick the advertiser with the 

largest unspent budget

� Break ties arbitrarily (but in a deterministic way)
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� Two advertisers A and B

� A bids on query x, B bids on x and y

� Both have budgets of $4

� Query stream: x x x x y y y y

� BALANCE choice: A B A B B B _ _

� Optimal: A A A A B B B B

� In general: For BALANCE on 2 advertisers

Competitive ratio = ¾
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� Consider simple case (w.l.o.g.): 
� 2 advertisers, A1 and A2, each with budget B (≥1)

� Optimal solution exhausts both advertisers’ budgets

� BALANCE must exhaust at least one 
advertiser’s budget:
� If not, we can allocate more queries

� Whenever BALANCE makes a mistake (both advertisers bid 
on the query), advertiser’s unspent budget only decreases

� Since optimal exhausts both budgets, one will for sure get 
exhausted

� Assume BALANCE exhausts A2’s budget, 
but allocates x queries fewer than the optimal

� Revenue: BAL = 2B - x
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� In the general case with N advertisers, worst 

competitive ratio of BALANCE is 1–1/e = 

approx. 0.63

� Interestingly, no online algorithm has a better 

competitive ratio!
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� Customer X

� Buys Metallica CD

� Buys Megadeth CD

� Customer Y

� Does search on Metallica

� Recommender system 
suggests Megadeth from 
data collected about 
customer X
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Items

Search Recommendations

Products, web sites, 

blogs, news items, …
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Examples:



� Shelf space is a scarce commodity for 
traditional retailers 

� Also: TV networks, movie theaters,…

� Web enables near-zero-cost dissemination 
of information about products

� From scarcity to abundance

� More choice necessitates better filters

� Recommendation engines

� How Into Thin Air made Touching the Void
a bestseller: http://www.wired.com/wired/archive/12.10/tail.html
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Source: Chris Anderson (2004)
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� Editorial and hand curated

� List of favorites

� Lists of “essential” items

� Simple aggregates

� Top 10, Most Popular, Recent Uploads

� Tailored to individual users

� Amazon, Netflix, …
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� X = set of Customers

� S = set of Items

� Utility function u: X S � R

� R = set of ratings

� R is a totally ordered set

� e.g., 0-5 stars, real number in [0,1]
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� (1) Gathering “known” ratings for matrix

� How to collect the data in the utility matrix

� (2) Extrapolate unknown ratings from the 
known ones

� Mainly interested in high unknown ratings

� We are not interested in knowing what you don’t like 
but what you like

� (3) Evaluating extrapolation methods

� How to measure success/performance of
recommendation methods
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� Explicit

� Ask people to rate items

� Doesn’t work well in practice – people 

can’t be bothered

� Implicit

� Learn ratings from user actions

� E.g., purchase implies high rating

� What about low ratings?
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� Key problem: Utility matrix U is sparse

� Most people have not rated most items

� Cold start: 

� New items have no ratings

� New users have no history

� Three approaches to recommender systems:

� 1) Content-based

� 2) Collaborative

� 3) Latent factor based
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� Main idea: Recommend items to customer x

similar to previous items rated highly by x

Example:

� Movie recommendations

� Recommend movies with same actor(s), 

director, genre, …

� Websites, blogs, news

� Recommend other sites with “similar” content
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� User profile possibilities:

� Weighted average of rated item profiles

� Variation: weight by difference from average 

rating for item

� …

� Prediction heuristic:

� Given user profile x and item profile i, estimate 
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Harnessing quality judgments of other users



� Consider user x

� Find set N of other 

users whose ratings 

are “similar” to 

x’s ratings

� Estimate x’s ratings 

based on ratings 

of users in N
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