Seminar 4

Definition 1 (Inverse document frequency)
Inverse document frequency of a term t is defined as

$$
i d f_{t}=\log \left(\frac{N}{d f_{t}}\right)
$$

where N is the number of all documents and $d f_{t}$ (the document frequency of t) is the number of documents that contain t.

Definition 2 (tf-idf weighting scheme)
In the tf-idf weighting scheme, a term t in a document d has weight

$$
t f-i d f_{t, d}=t f_{t, d} \cdot i d f_{t}
$$

where $t f_{t, d}$ is the number of tokens t (the term frequency of t) in a document d.
Definition 3 (ℓ^{2} (cosine) normalization)
A vector v is cosine-normalized by

$$
v_{j} \leftarrow \frac{v_{j}}{\|v\|}=\frac{v_{j}}{\sqrt{\sum_{k=1}^{|v|} v_{k}^{2}}}
$$

where v_{j} is the element at the j-th position in v.
Definition 4 (Sublinear term frequency scaling)
The weight of a term t in a document d is determined as

$$
w_{t, d}= \begin{cases}1+\log \left(t f_{t, d}\right) & \text { if } t f_{t, d}>0 \\ 0 & \text { otherwise }\end{cases}
$$

where $t f_{t, d}$ is the number of tokens t (the term frequency of t) in a document d.

Exercise 4/1

Consider the frequency table of the words of three documents $d o c_{1}, d o c_{2}, d o c_{3}$ below. Calculate the $t f$-idf weight of the terms car, auto, insurance, best for each document. idf values of terms are in the table.

	$d o c_{1}$	$d o c_{2}$	$d o c_{3}$	$i d f$
car	27	4	24	1.65
auto	3	33	0	2.08
insurance	0	33	29	1.62
best	14	0	17	1.5

Table 1: Exercise.

After counting $t f$-idf weights by Definition 2 individually for each term we get the following table

	tf-idf		
	$d o c_{1}$	$d o c_{2}$	$d o c_{3}$
car	44.55	6.6	39.6
auto	6.24	68.64	0
insurance	0	53.46	46.98
best	21	0	25.5

Table 2: Solution.

Exercise 4/2

Count document representations as normalized Euclidean weight vectors for each document from the previous exercise. Each vector has four components, one for each term.

Normalized Euclidean weight vectors are counted by Definition 3 Denominators $m_{d o c_{n}}$ for the individual documents are

$$
\begin{gathered}
m_{d o c_{1}}=\sqrt{44.55^{2}+6.24^{2}+21^{2}}=49.6451 \\
m_{d o c_{2}}=\sqrt{6.6^{2}+68.64^{2}+53.46^{2}}=87.2524 \\
m_{d o c_{3}}=\sqrt{39.6^{2}+46.98^{2}+25.5^{2}}=66.5247
\end{gathered}
$$

and the document representations are

$$
\begin{aligned}
& d_{1}=\left(\frac{44.55}{49.6451} ; \frac{6.24}{49.6451} ; \frac{0}{49.6451} ; \frac{21}{49.6451}\right)=(0.8974 ; 0.1257 ; 0 ; 0.423) \\
& d_{2}=\left(\frac{6.6}{87.2524} ; \frac{68.64}{87.2524} ; \frac{53.46}{87.2524} ; \frac{0}{87.2524}\right)=(0.0756 ; 0.7876 ; 0.6127 ; 0) \\
& d_{3}=\left(\frac{39.6}{66.5247} ; \frac{0}{66.5247} ; \frac{46.98}{66.5247} ; \frac{25.5}{66.5247}\right)=(0.5953 ; 0 ; 0.7062 ; 0.3833)
\end{aligned}
$$

Exercise 4/3

Based on the weights from the last exercise, compute the relevance scores of the three documents for the query car insurance. Use each of the two weighting schemes:
a) Term weight is 1 if the query contains the word and 0 otherwise.
b) Euclidean normalized $t f$ - $i d f$.

Please note that a document and a representation of this document are different things. Document is always fixed but the representations may vary under different settings and conditions. In this exercise we fix document representations from the last exercises and will count relevance scores for query and documents under two different representations of the query. It might be helpful to view on a query as on another document, as it is a sequence of words.

We count the relevance scores for a) as the scalar products of the representation of the query $q=(1,0,1,0)$ with representations of the documents d_{n} from the last exercise:

$$
q \cdot d_{1}=1 \cdot 0.8974+0 \cdot 0.1257+1 \cdot 0+0 \cdot 0.423=0.8974
$$

$$
\begin{aligned}
& q \cdot d_{2}=1 \cdot 0.0756+0 \cdot 0.7876+1 \cdot 0.6127+0 \cdot 0=0.6883 \\
& q \cdot d_{3}=1 \cdot 0.5953+0 \cdot 0+1 \cdot 0.7062+0 \cdot 0.3833=1.3015
\end{aligned}
$$

For b) we first need the normalized t - $i d f$ vector q, which is obtained by dividing each component of the query by the length of $i d f$ vector $\sqrt{1.65^{2}+0^{2}+1.62^{2}+0^{2}}=2.3123$

	$t f$	$i d f$	$t f-i d f$	q
car	1	1.65	1.65	0.7136
auto	0	2.08	0	0
insurance	1	1.62	1.62	0.7006
best	0	1.5	0	0

Table 3: Process of finding the Euclidean normalized $t f-i d f$.
Now we multiply q with the document vectors and we obtain the relevance scores:

$$
\begin{aligned}
& q \cdot d_{1}=0.7136 \cdot 0.8974+0 \cdot 0.1257+0.7006 \cdot 0+0 \cdot 0.423=0.6404 \\
& q \cdot d_{2}=0.7136 \cdot 0.0756+0 \cdot 0.7876+0.7006 \cdot 0.6127+0 \cdot 0=0.4832 \\
& q \cdot d_{3}=0.7136 \cdot 0.5953+0 \cdot 0+0.7006 \cdot 0.7062+0 \cdot 0.3833=0.9196
\end{aligned}
$$

Exercise 4/4

Consider a collection of documents and the terms dog, cat and food that occur in $10^{-3 x}$, $10^{-2 x}$ and 10^{-x} of the documents, respectively. Now document doc1 contains the words $2 y, y$ and $3 y$ times and $\operatorname{doc} 22 z, 3 z$ and z times. Order these two documents based on vector space similarity with the query dog food.

Intuitively, $d o c_{1}$ is more relevant than $d o c_{2}$ because $d o c_{2}$ is relatively too much about cats and too little about food, which is a satisfactory answer. But precisely:

	doc $_{1}$	doc $_{2}$	q
dog	$2 y \cdot 3 x$	$2 z \cdot 3 x$	$3 x$
cat	$y \cdot 2 x$	$3 z \cdot 2 x$	0
food	$3 y \cdot x$	$z \cdot x$	x

Table 4: tf-idf.

	doc $_{1}$	doc $_{2}$	q
dog	$6 x y / 7 x y=6 / 7$	$6 x z / 8.5 x z=12 / 17$	$3 x / 3.2 x=15 / 16$
cat	$2 x y / 7 x y=2 / 7$	$6 x z / 8.5 x z={ }^{12} / 17$	0
food	$3 x y / 7 x y=3 / 7$	$x z / 8.5 x z=1 / 17$	$x / 3.2 x=5 / 16$

Table 5: Representations.

	$q \cdot$ doc $_{1}$	$q \cdot$ doc $_{2}$
dog	$6 / 7 \cdot 15 / 16 \sim 0.8$	$12 / 17 \cdot 15 / 16 \sim 0.66$
cat	0	0
food	$3 / 7 \cdot 5 / 16 \sim 0.13$	$1 / 17 \cdot 5 / 16 \sim 0.02$

Table 6: Relevance.
Here $0.8+0.13>0.66+0.02$ and therefore $d o c_{1}$ is more relevant than $d o c_{2}$.

Exercise 4/5

Calculate the vector-space similarity between the query digital cameras and a document containing digital cameras and video cameras by filling in the blank columns in the table below. Assume $N=10000000$, sublinear term frequency scaling from Definition 4 (columns w) for both query and documents, idf weighting only for the query and cosine normalization only for the document. and is a STOP word.

		Query				Document			relevance
	$d f$	$t f$	w	$i d f$	q	$t f$	w	d	$q \cdot d$
digital	10000								
video	100000								
cameras	50000								

Table 7: Exercise.

The $t f$ value is filled according to the occurrences of the terms in both query and document.

$$
\begin{array}{rll}
\mathrm{tf}_{q} & =\text { digital cameras } & =(1,0,1) \\
\mathrm{tf}_{d} & =\text { digital cameras and video cameras } & =(1,1,2)
\end{array}
$$

Sublinear term frequency scaling uses the Definition 4. For the query the values are

$$
\begin{aligned}
w_{\text {digital }} & =1+\log (1)=1+0=1 \\
w_{\text {video }} & =0 \\
w_{\text {cameras }} & =1+\log (1)=1+0=1
\end{aligned}
$$

and for the document

$$
\begin{array}{rlll}
w_{\text {digital }} & =1+\log (1) & =1+0 & \\
w_{\text {video }} & =1+\log (1) & =1+0 & \\
w_{\text {cameras }} & =1+\log (2) & =1+0.301 & =1.301
\end{array}
$$

Now we need to count the $i d f$ weights for the query. These are counted by Definition 1.

$$
\begin{array}{rll}
i d f_{\text {digital }} & =\log \left(\frac{10^{7}}{10^{4}}\right) & =\log \left(10^{3}\right)=3 \\
i d f_{\text {video }} & =\log \left(\frac{10^{7}}{10^{5}}\right) & =\log \left(10^{2}\right)=2 \\
i d f_{\text {cameras }} & =\log \left(\frac{10^{7}}{5 \times 10^{4}}\right) & =\log (200)=2.301
\end{array}
$$

and $q=w \cdot i d f$. Cosine normalization for the document is counted similarly as in the last exercises by Definition 3 using w.

$$
\begin{aligned}
& d_{\text {digital }}=\frac{1}{\sqrt{1^{2}+1^{2}+1.301^{2}}}=0.5204 \\
& d_{\text {video }}=\frac{1}{\sqrt{1^{2}+1^{2}+1.301^{2}}}=0.5204 \\
& d_{\text {cameras }}=\frac{1.301}{\sqrt{1^{2}+1^{2}+1.301^{2}}}=0.677
\end{aligned}
$$

The score is the scalar multiple of q and d. The final table is

		Query				Document			relevance
	$d f$	$t f$	w	$i d f$	q	$t f$	w	d	$q \cdot d$
digital	10000	1	1	3	3	1	1	0.5204	1.5612
video	100000	0	0	2	0	1	1	0.5204	0
cameras	50000	1	1	2.301	2.301	2	1.301	0.677	1.5578

Table 8: Solution.
and the similarity score is

$$
\operatorname{score}(d, q)=\sum_{i=1}^{3}\left(d_{i} \cdot q_{i}\right)=3.119 .
$$

Exercise 4/6

Show that for the query $q_{1}=$ affection the documents in the table below are sorted by relevance in the opposite order as for the query $q_{2}=$ jealous gossip. Query is $t f$ weight normalized.

	SaS	PaP	WH
affection	0.996	0.993	0.847
jealous	0.087	0.120	0.466
gossip	0.017	0	0.254

Table 9: Exercise.

We add queries to the original table:

	SaS	PaP	WH	q_{1}	q_{2}
affection	0.996	0.993	0.847	1	0
jealous	0.087	0.120	0.466	0	1
gossip	0.017	0	0.254	0	1

Table 10: Exercise with queries.

Now we normalize the vectors q_{i} by Definition 3 and get

	SaS	PaP	WH	q_{1}	q_{2}	$q_{1 n}$	$q_{2 n}$
affection	0.996	0.993	0.847	1	0	1	0
jealous	0.087	0.120	0.466	0	1	0	0.7071
gossip	0.017	0	0.254	0	1	0	0.7071

Table 11: Exercise with queries after normalization.

In the last step we count the similarity score between the queries and documents by
$\operatorname{score}(d, q)=\sum_{i=1}^{|d|}\left(d_{i} \cdot q_{i}\right)$

$$
\begin{array}{rlrl}
\operatorname{score}\left(S a S, q_{1}\right) & =0.9961 \cdot 1+0.087 \cdot 0+0.017 \cdot 0 & & =0.9961 \\
\operatorname{score}\left(P a P, q_{1}\right) & =0.993 \cdot 1+0.120 \cdot 0+0 \cdot 0 & & =0.993 \\
\operatorname{score}\left(W H, q_{1}\right) & =0.847 \cdot 1+0.466 \cdot 0+0.254 \cdot 0 & & =0.847 \\
& & & \\
\operatorname{score}\left(S a S, q_{2}\right) & =0.9961 \cdot 0+0.087 \cdot 0.7071+0.017 \cdot 0.7071 & =0.0735 \\
\operatorname{score}\left(P a P, q_{2}\right) & =0.993 \cdot 0+0.120 \cdot 0.7071+0 \cdot 0.7071 & & =0.0849 \\
\operatorname{score}\left(W H, q_{2}\right) & =0.847 \cdot 0+0.466 \cdot 0.7071+0.254 \cdot 0.7071 & & =0.5091
\end{array}
$$

The ordering for q_{1} is $\mathrm{SaS}>\mathrm{PaP}>\mathrm{WH}$ and for q_{2} is $\mathrm{WH}>\mathrm{PaP}>\mathrm{SaS}$, and we see that they are opposite.

