Seminar 9

```
Algorithm 1 K-means \(\left(\left\{\vec{x}_{1}, \ldots, \vec{x}_{N}\right\}, K\right.\), stopping criterion)
    \(\left(\vec{s}_{1}, \ldots, \vec{s}_{K}\right) \leftarrow\) SelectRandomSeeds \(\left(\left\{\vec{x}_{1}, \ldots, \vec{x}_{N}\right\}, K\right)\)
    for \(k \leftarrow 1\) to \(K\) do
        \(\vec{\mu}_{k} \leftarrow \vec{s}_{k}\)
    end for
    repeat
        for \(k \leftarrow 1\) to \(K\) do
            \(\omega_{k} \leftarrow\{ \}\)
        end for
        for \(n \leftarrow 1\) to \(N\) do
            \(j \leftarrow \operatorname{argmin}_{j^{\prime}}\left|\vec{\mu}_{j^{\prime}}-\vec{x}_{n}\right|\)
            \(\omega_{j} \leftarrow \omega_{j} \cup\left\{\vec{x}_{n}\right\} \quad \triangleright\) reassigning vectors
        end for
        for \(k \leftarrow 1\) to \(K\) do
            \(\vec{\mu}_{k} \leftarrow \frac{1}{\left|\omega_{k}\right|} \sum_{\vec{x} \in \omega_{k}} \vec{x} \quad \triangleright\) recomputing centroids
        end for
    until a stopping criterion has been met
    return \(\left\{\vec{\mu}_{1}, \ldots, \vec{\mu}_{K}\right\}\)
```


Exercise 9/1

Use the K-means algorithm with Euclidean distance to cluster the following $N=8$ examples into $K=3$ clusters: $A_{1}=(2,10), A_{2}=(2,5), A_{3}=(8,4), A_{4}=(5,8)$, $A_{5}=(7,5), A_{6}=(6,4), A_{7}=(1,2), A_{8}=(4,9)$. Suppose that the initial seeds (centers of each cluster) are A_{1}, A_{4} and A_{7}. Run the K-means algorithm for 3 epochs. After each epoch, draw a 10×10 space with all the 8 points and show the clusters with the new centroids.
$d(A, B)$ denotes the Euclidean distance between $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$. It is calculated as $d(A, B)=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}}$.

Take seeds $\vec{s}_{1}=A_{1}=(2,10), \vec{s}_{2}=A_{4}=(5,8), \vec{s}_{3}=A_{7}=(1,2)$.
By 1 we count the alignment for epoch 1: $A_{1} \in \omega_{1}, A_{2} \in \omega_{3}, A_{3} \in \omega_{2}, A_{4} \in \omega_{2}$, $A_{5} \in \omega_{2}, A_{6} \in \omega_{2}, A_{7} \in \omega_{3}, A_{8} \in \omega_{2}$; and we get the clusters: $\omega_{1}=\left\{A_{1}\right\}$, $\omega_{2}=\left\{A_{3}, A_{4}, A_{5}, A_{6}, A_{8}\right\}, \omega_{3}=\left\{A_{2}, A_{7}\right\}$.

Centroids of the clusters: $\vec{\mu}_{1}=(2,10), \vec{\mu}_{2}=((8+5+7+6+4) / 5,(4+8+5+4+9) / 5)=$ $(6,6), \vec{\mu}_{3}=((2+1) / 2,(5+2) / 2)=(1.5,3.5)$.

After epoch 2 the clusters are $\omega_{1}=\left\{A_{1}, A_{8}\right\}, \omega_{2}=\left\{A_{3}, A_{4}, A_{5}, A_{6}\right\}, \omega_{3}=\left\{A_{2}, A_{7}\right\}$ with centroids $\vec{\mu}_{1}=(3,9.5), \vec{\mu}_{2}=(6.5,5.25)$ and $\vec{\mu}_{3}=(1.5,3.5)$. And finally after epoch 3 , the clusters are $\omega_{1}=\left\{A_{1}, A_{4}, A_{8}\right\}, \omega_{2}=\left\{A_{3}, A_{5}, A_{6}\right\}, \omega_{3}=\left\{A_{2}, A_{7}\right\}$ with centroids $\vec{\mu}_{1}=(3.66,9), \vec{\mu}_{2}=(7,4.33)$ and $\vec{\mu}_{3}=(1.5,3.5)$.

Figure 1: Visualization of K-means clustering algorithm.

Exercise 9/2

Consider three points: $A_{1}=[1,1], A_{2}=[3,1], A_{3}=[6,1]$. Give an example of a point A_{4} such that the K-means clustering algorithm with seeds $\left\{A_{2}, A_{4}\right\}$ and the agglomerative hierarchical clustering algorithm result in different clusterings of $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ into 2
classes.

For example, if $A_{4}=[2,1]$, then K-means results in $\left\{\left\{A_{1}, A_{4}\right\},\left\{A_{2}, A_{3}\right\}\right\}$ and agglomerative in $\left\{\left\{A_{1}, A_{2}, A_{4}\right\},\left\{A_{3}\right\}\right\}$.

Exercise 9/3

What makes a good clustering? Give some clustering evaluation metrics.

Answers can vary. For official definition refer to the Manning book.

