Seminar 9

Algorithm 1 K-means($\{\vec{x}_1, \ldots, \vec{x}_N\}, K$, stopping criterion)

1: $(\vec{s}_1, \ldots, \vec{s}_K) \leftarrow \text{SelectRandomSeeds}(\{\vec{x}_1, \ldots, \vec{x}_N\}, K)$ 2: for $k \leftarrow 1$ to K do $\vec{\mu}_k \leftarrow \vec{s}_k$ 3: 4: end for 5: repeat for $k \leftarrow 1$ to K do 6: $\omega_k \leftarrow \{\}$ 7: end for 8: 9: for $n \leftarrow 1$ to N do $j \leftarrow \operatorname{argmin}_{j'} |\vec{\mu}_{j'} - \vec{x}_n|$ 10: $\omega_j \leftarrow \omega_j \cup \{\vec{x}_n\}$ \triangleright reassigning vectors 11: end for 12:for $k \leftarrow 1$ to K do 13: $\vec{\mu}_k \leftarrow rac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x}$ end for \triangleright recomputing centroids 14: 15:16: until a stopping criterion has been met 17: **return** $\{\vec{\mu}_1, \ldots, \vec{\mu}_K\}$

Exercise 9/1

Use the K-means algorithm with Euclidean distance to cluster the following N = 8 examples into K = 3 clusters: $A_1 = (2, 10)$, $A_2 = (2, 5)$, $A_3 = (8, 4)$, $A_4 = (5, 8)$, $A_5 = (7, 5)$, $A_6 = (6, 4)$, $A_7 = (1, 2)$, $A_8 = (4, 9)$. Suppose that the initial seeds (centers of each cluster) are A_1 , A_4 and A_7 . Run the K-means algorithm for 3 epochs. After each epoch, draw a 10×10 space with all the 8 points and show the clusters with the new centroids.

d(A, B) denotes the Euclidean distance between $A = (a_1, a_2)$ and $B = (b_1, b_2)$. It is calculated as $d(A, B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$.

Take seeds $\vec{s}_1 = A_1 = (2, 10), \ \vec{s}_2 = A_4 = (5, 8), \ \vec{s}_3 = A_7 = (1, 2).$

By 1 we count the alignment for epoch 1: $A_1 \in \omega_1, A_2 \in \omega_3, A_3 \in \omega_2, A_4 \in \omega_2, A_5 \in \omega_2, A_6 \in \omega_2, A_7 \in \omega_3, A_8 \in \omega_2$; and we get the clusters: $\omega_1 = \{A_1\}, \omega_2 = \{A_3, A_4, A_5, A_6, A_8\}, \omega_3 = \{A_2, A_7\}.$

Centroids of the clusters: $\vec{\mu}_1 = (2, 10), \vec{\mu}_2 = ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6,6), \vec{\mu}_3 = ((2+1)/2, (5+2)/2) = (1.5, 3.5).$

After epoch 2 the clusters are $\omega_1 = \{A_1, A_8\}, \ \omega_2 = \{A_3, A_4, A_5, A_6\}, \ \omega_3 = \{A_2, A_7\}$ with centroids $\vec{\mu}_1 = (3, 9.5), \ \vec{\mu}_2 = (6.5, 5.25)$ and $\vec{\mu}_3 = (1.5, 3.5)$. And finally after epoch 3, the clusters are $\omega_1 = \{A_1, A_4, A_8\}, \ \omega_2 = \{A_3, A_5, A_6\}, \ \omega_3 = \{A_2, A_7\}$ with centroids $\vec{\mu}_1 = (3.66, 9), \ \vec{\mu}_2 = (7, 4.33)$ and $\vec{\mu}_3 = (1.5, 3.5)$.

Figure 1: Visualization of K-means clustering algorithm.

Exercise 9/2

Consider three points: $A_1 = [1, 1]$, $A_2 = [3, 1]$, $A_3 = [6, 1]$. Give an example of a point A_4 such that the K-means clustering algorithm with seeds $\{A_2, A_4\}$ and the agglomerative hierarchical clustering algorithm result in different clusterings of $\{A_1, A_2, A_3, A_4\}$ into 2

classes.

For example, if $A_4 = [2, 1]$, then K-means results in $\{\{A_1, A_4\}, \{A_2, A_3\}\}$ and agglomerative in $\{\{A_1, A_2, A_4\}, \{A_3\}\}$.

Exercise 9/3

What makes a good clustering? Give some clustering evaluation metrics.

Answers can vary. For official definition refer to the Manning book.