You Are How You Walk: Gait Recognition from Motion Capture Data

Michal Balazia

Faculty of Informatics, Masaryk University, Brno, Czech Republic https://gait.fi.muni.cz

Human Identification by Gait

- Data captured by a system of multiple cameras or a depth camera
- Large tracking space
- Multiple samples of a single walker
- High variance in encounter conditions
- Database of large amount of biometric samples
- Identification in real time

Michal Balazia (FI MU)

Motion Capture Data (MoCap)

- Structural motion data
- Skeleton of joints and bones
- Data = 3D positions of joints in time.
- Can be collected by a system of multiple cameras (Vicon) or a depth camera (Microsoft Kinect)

- Model of human body has J joints
- Measured gait cycle has length of T video frames
- Raw MoCap gait sample is a tensor

$$\mathbf{g} = \begin{bmatrix} \gamma_1(1) & \cdots & \gamma_1(T) \\ \vdots & \ddots & \vdots \\ \gamma_J(T) & \cdots & \gamma_J(T) \end{bmatrix}$$

γ_j(t) ∈ ℝ³ are 3D coordinates of j ∈ {1,..., J} at t ∈ {1,..., T}
Dimensionality 3JT
Sample space {g}

Geometric Features

- Examples of geometric gait features:
 - joint angles (angle in shoulder-elbow-wrist)
 - inter-joint distances (feet distance)
 - joint velocity or acceleration
 - areas of joint polygons (upper body span)
 - . . .

video frames

- Examples of distance functions:
 - Dynamic Time Warping
 - Minkowski distances
 - . . .

Linearly Learned Latent Features

- Labeled learning sample space $\{(\mathbf{g}_n, \ell_n)\}_{n=1}^{N_L}$
- ℓ_n is a label of one of the **identity classes** $\{\mathcal{I}_c\}_{c=1}^{C_L}$
- \mathcal{I}_c has a priori probability p_c
- \bullet Consider an optimization criterion ${\cal J}$
- Feature extraction is given by a feature matrix $\mathbf{\Phi} \in \mathbb{R}^{D imes \widehat{D}}$
- *D*-dimensional sample space $\{\mathbf{g}_n\}_{n=1}^N$
- \widehat{D} -dimensional feature space $\{\widehat{\mathbf{g}}_n\}_{n=1}^N$
- Transform gait samples \mathbf{g}_n into gait templates $\widehat{\mathbf{g}}_n = \mathbf{\Phi}^\top \mathbf{g}_n$
- Examples of distance functions:
 - Mahalanobis distance
 - Minkowski distances
 - . . .

Learning by MMC

- Optimize class separability of the feature space
- Margin of two classes is the Euclidean distance of their means μ_c minus both their variances Σ_c
- Maximum Margin Criterion used by the Support Vector Machines

$$\mathcal{J} = \frac{1}{2} \sum_{c,c'=1}^{C_L} p_c p_{c'} \left(\left(\mu_c - \mu_{c'} \right)^\top \left(\mu_c - \mu_{c'} \right) - \operatorname{tr} \left(\boldsymbol{\Sigma}_c + \boldsymbol{\Sigma}_{c'} \right) \right)$$
$$= \dots = \operatorname{tr} \left(\boldsymbol{\Sigma}_{\mathrm{B}} - \boldsymbol{\Sigma}_{\mathrm{W}} \right)$$

- Between-class scatter matrix $\boldsymbol{\Sigma}_{\mathrm{B}}$, within-class scatter matrix $\boldsymbol{\Sigma}_{\mathrm{W}}$
- Criterion for a feature matrix Φ

$$\mathcal{J}\left(\boldsymbol{\Phi}\right) = \mathsf{tr}\left(\boldsymbol{\Phi}^{\top}\left(\boldsymbol{\Sigma}_{\mathrm{B}}-\boldsymbol{\Sigma}_{\mathrm{W}}\right)\boldsymbol{\Phi}\right)$$

• Solution: solve the generalized eigenvalue problem

$$\left(\boldsymbol{\Sigma}_{\mathrm{B}} - \boldsymbol{\Sigma}_{\mathrm{W}}
ight) \boldsymbol{\Phi} = \boldsymbol{\Lambda} \boldsymbol{\Phi}$$

Mahalanobis distance function on templates

Learning by PCA+LDA

- 2-stage feature extraction technique
- Principal Component Analysis and Linear Discriminant Analysis
- Total scatter matrix $\pmb{\Sigma}_{\rm T} = \pmb{\Sigma}_{\rm B} + \pmb{\Sigma}_{\rm W}$
- \bullet Criterion for a feature matrix $\Phi_{\rm LDA}$

$$\mathcal{J}(\boldsymbol{\Phi}_{\text{PCA}}) = \mathsf{tr}\left(\boldsymbol{\Phi}_{\text{PCA}}^{\top}\boldsymbol{\Sigma}_{\text{T}}\boldsymbol{\Phi}_{\text{PCA}}\right)$$
$$\mathcal{J}(\boldsymbol{\Phi}_{\text{LDA}}) = \mathsf{tr}\left(\frac{\boldsymbol{\Phi}_{\text{LDA}}^{\top}\boldsymbol{\Phi}_{\text{PCA}}^{\top}\boldsymbol{\Sigma}_{\text{B}}\boldsymbol{\Phi}_{\text{PCA}}\boldsymbol{\Phi}_{\text{LDA}}}{\boldsymbol{\Phi}_{\text{LDA}}^{\top}\boldsymbol{\Phi}_{\text{PCA}}^{\top}\boldsymbol{\Sigma}_{\text{W}}\boldsymbol{\Phi}_{\text{PCA}}\boldsymbol{\Phi}_{\text{LDA}}}\right)$$

• Solution: solve the generalized eigenvalue problems

$$\boldsymbol{\Sigma}_{\mathrm{T}}\boldsymbol{\Phi}_{\mathrm{PCA}} = \boldsymbol{\Lambda}\boldsymbol{\Phi}_{\mathrm{PCA}}$$
$$\left(\boldsymbol{\Phi}_{\mathrm{PCA}}^{\top}\boldsymbol{\Sigma}_{\mathrm{W}}\boldsymbol{\Phi}_{\mathrm{PCA}}\right)^{-1}\left(\boldsymbol{\Phi}_{\mathrm{PCA}}^{\top}\boldsymbol{\Sigma}_{\mathrm{B}}\boldsymbol{\Phi}_{\mathrm{PCA}}\right)\boldsymbol{\Phi}_{\mathrm{LDA}} = \boldsymbol{\Lambda}\boldsymbol{\Phi}_{\mathrm{LDA}}$$

• Mahalanobis distance function on templates

Identity Classification Pipeline

Image: A math a math

Identity Classification Pipeline

< (T) > <

The Classification Problem

Identity: Label of a registered identity class.

3. 3

Image: A match a ma

But In Video Surveillance Environment ...

How can we represent the identity in video surveillance environment?

э

Image: A math a math

The Class Discovery Problem

Identity: Content of a discovered identity class = movement history.

- Data need to be acquired without walker's consent
- New identities can appear on the fly
- Labels for all encountered people may not always be available
- Universal gait features features of a high power in recognizing all people and not only those they were learned on
- We learn the universal gait features by MMC or by PCA+LDA on an **auxiliary dataset**
- The dataset is assumed to be rich on **covariate conditions** aspects of walk people differ in
- These features create an **unsupervised environment** particularly suitable for **uncooperative person identification**

Evaluation: Database

- ASF/AMC format of MoCap data
- CMU MoCap database obtained from the CMU Graphics Lab
- Extracted database contains only gait cycles (motions of two steps)
- Normalization: position, walk direction and skeleton
- 7 extracted databases:

# identities	# gait cycles
2	35
4	67
8	130
16	302
32	2,047
54	3,843
64	5,923

Evaluation: Data Separation

Data separation

• Evaluation of classification estimated by nested cross-validation

Michal Balazia (FI MU)

May 2nd, 2017 16 / 26

• Class separability coefficients:

- Davies-Bouldin Index (DBI)
- Dunn Index (DI)
- Silhouette Coefficient (SC)
- Fisher's Discriminant Ratio (FDR)

Classification based metrics:

- Cumulative Match Characteristic
- False Accept / Reject Rate
- Receiver Operating Characteristic (ROC)
- Recall / Precision Rate

- Correct Classification Rate (CCR)
- Equal Error Rate (EER)
- Area Under ROC Curve (AUC)
- Mean Average Precision (MAP)

	class s	eparabi	lity coeffic	ients	classification		based metrics		scalability	
method	DBI	DI	SC	FDR	CCR	EER	AUC	MAP	DCT	ID
Ahmed	216.2	0.842	-0.246	0.954	0.657	0.38	0.659	0.165	0.01	24
Ali	501.5	0.26	-0.463	1.175	0.225	0.384	0.679	0.111	0.01	2
Andersson	142.3	1.297	-0.102	1.127	0.84	0.343	0.715	0.251	0.01	68
Ball	161	1.458	-0.163	1.117	0.75	0.346	0.711	0.231	0.01	18
Dikovski	144.5	1.817	-0.135	1.227	0.881	0.363	0.695	0.254	0.01	71
Gavrilova	185.8	1.708	-0.164	0.77	0.891	0.374	0.677	0.254	44.78	5,254
Jiang	206.6	1.802	-0.249	0.85	0.811	0.395	0.657	0.242	8.17	584
Krzeszowski	154.1	1.982	-0.147	0.874	0.915	0.392	0.662	0.275	35.32	3,795
Kumar	118.6	1.618	-0.086	1.09	0.801	0.459	0.631	0.217	7.87	13,950
Kwolek	150.9	1.348	-0.084	1.175	0.896	0.358	0.723	0.323	0.06	660
Preis	1,980.6	0.055	-0.512	1.067	0.143	0.401	0.626	0.067	0.01	13
Sedmidubsky	398.1	1.35	-0.425	0.811	0.543	0.388	0.657	0.149	5.79	292
Sinha	214.8	1.112	-0.215	1.101	0.674	0.356	0.697	0.191	0.01	45
_MMC _{BR}	154.2	1.638	0.062	1.173	0.925	0.297	0.748	0.353	0.01	53
_MMCJC	130.3	1.891	0.051	1.106	0.918	0.378	0.721	0.315	0.01	51
_PCALDA _{BR}	182	1.596	-0.015	0.984	0.918	0.361	0.695	0.276	0.01	54
_PCALDA _{JC}	174.4	1.309	-0.091	0.827	0.863	0.44	0.643	0.201	0.01	54
_Random					0.042					0
_RawBR	163.7	2.092	0.011	0.948	0.966	0.315	0.743	0.358	70.27	8,229
_RawJC	155.1	1.954	-0.12	0.897	0.926	0.377	0.679	0.283	160.64	13,574
Michal Balazia	(ELMII)		Coit Reco	anition fro	m MoCan	Data		May	and 2017	18 / 26

May 2nd, 2017 19 / 26

3. 3

Image: A match a ma

- Homogeneous set-up with $C_L = C_E \in \{2, \ldots, 27\}$
- Heterogeneous set-up with $C_L = C_E \in \{2, \dots, 27\}$

- Heterogeneous set-up with $C_L \in \{2, \ldots, 27\}$ and $C_E = 27$
- Heterogeneous set-up with $C_L \in \{2, \dots, 52\}$ and $C_E = 54 C_L$

method	CCR	EER	AUC	MAP	CMC			
Raw _{IC}	0.872	0.321	0.731	0.317			1.00	
MMC _{BR}	0.868	0.305	0.739	0.332			0.95	
Raw_{BR}	0.867	0.333	0.701	0.259			0.90	
MMC _{JC}	0.861	0.325	0.72	0.309	—		0.85	
PCA+LDA _{BR}	0.845	0.335	0.682	0.247		late	0.75	
KwolekB	0.823	0.367	0.711	0.296		nF	0.70	
KrzeszowskiT	0.802	0.348	0.717	0.273		atic	0.65	
PCA+LDA _{JC}	0.79	0.417	0.634	0.189		sific	0.60	
DikovskiB	0.787	0.376	0.679	0.227		las	0.55	
AhmedF	0.771	0.371	0.664	0.22		t	0.50	
AnderssonVO	0.76	0.352	0.703	0.228		orre	0.45	
NareshKumarMS	0.717	0.459	0.613	0.19		ŭ	0.40	
JiangS	0.692	0.407	0.637	0.204		Itiv	0.30	
BallA	0.667	0.356	0.698	0.207		nula	0.25	
SinhaA	0.598	0.362	0.69	0.176		Cun	0.20	
AhmedM	0.58	0.392	0.646	0.145		Ŭ	0.15	
SedmidubskyJ	0.464	0.394	0.65	0.138			0.10	
AliS	0.186	0.394	0.662	0.096			0.05	
PreisJ	0.131	0.407	0.618	0.066			0.00	1 2 2 4 5 6 7 8 9 10
Random	0.039							$ = \mathbf{A} + \mathbf{A}$

Michal Balazia (FI MU)

Gait Recognition from MoCap Data

May 2nd, 2017 22 / 26

(c) AUC

(d) MAP

ም.

- Available online at https://gait.fi.muni.cz
- Database extraction drive
- Implementations of all 20 methods
- Classifier learning and classification mechanism
- Evaluation mechanism and 12 performance metrics

Summary

- Universal gait features learned on an auxiliary dataset
- Our approach based on MMC and PCA+LDA
- Broad evaluation on normal and cross-identity setups
- MMC learned on 17 identities recognizes 37 identities with 95% CCR
- MMC learned yet on 7 identities best recognizes 57 identities
- Evaluation framework and database

https://gait.fi.muni.cz

Thank you for attention. Questions?