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Take-away

Basic information about the course, teachers, evaluation,
exercises

Boolean Retrieval: Design and data structures of a simple
information retrieval system

What topics will be covered in this class (overview)?
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Overview

1 Introduction

2 History of information retrieval

3 Boolean model

4 Inverted index

5 Processing Boolean queries

6 Query optimization

7 Course overview and agenda
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Definition of Information Retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).
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Prerequisites

Curiosity about how Information Retrieval works.
But seriously:

Chapters 1–5 benefit from basic course on algorithms and
data structures.

Chapters 6–7 needs in addition linear algebra, vectors and dot
products.

For Chapters 11–13 basic probability notions are needed.

Chapters 18–21 demand course in linear algebra, notions of
matrix rank, eigenvalues and eigenvectors.

Sojka, IIR Group: PV211: Boolean Retrieval 6 / 79



Introduction History Boolean model Inverted index Processing Boolean queries Query optimization Cours

Active learning features in PV211

Student activities explicitly welcomed and built as part of
classification system (10 pts).

Mentoring rather than ‘ex cathedra’ lectures: “The flipped

classroom is a pedagogical model in which the typical lecture
and homework elements of a course are reversed.”

Respect to individual learning speed and knowledge.

Questions on PV211 IS discussion forum is welcomed
especially before lectures.

Richness of materials available in advance: MOOC (Massive
open online course) becoming widespread, parts of
IIR Stanford courses being available, together with other freely
available teaching materials, including the whole IIR book.
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Teachers

Petr Sojka, sojka@fi.muni.cz

Consulting hours Spring 2017:
Tuesday 15:15–16:00 and Thursday 10:00–11:00
or write an email with other suggestions to meet.

Room C523 or C522 or A502, fifth floor, Botanická 68a.

Course web page: http://www.fi.muni.cz/~sojka/PV211/

TA: Michal Balážia
Consulting hours: Wednesday 14:00–16:00 C516
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Evaluation of students

Classification system is based on points achieved (100 pts max).
You could get 50 points during the term: 20 pts for each of 2
midterm tests, 10 pts for your activity during term (lectures or
discussion forums,. . . ), and 50 pts for the final test. Final written
exam will consist of open exercises (30 pts, similar to midterm
ones) and multiple choice questions (20 pts). In addition, one can
get additional premium points based on activities during lectures,
exercises (good answers) or negotiated related projects.
Classification scale (adjustments based on ECTS suggestions)
z/k[/E/D/C/B/A] corresponds ≈ 50/57/[64/71/78/85/92] points.
Dates of [final] exams will be announced via IS.muni.cz (at least
three terms), possibility to make midterm tests on first term for
those ill.
Questions?
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Can we proceed [Y/N]?

Questions?
Language preferences? Warm ups? Personal cards.
PA212? Bc. or Mgr.?
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History of information retrieval: gradual channel changes
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1998: google.stanford.edu

‘flipped IS’, collaborative project with Stanford faculty

on collected disks

Google 1998 ‘Anatomy paper’ (Page, Brin)
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Boolean retrieval

The Boolean model is arguably the simplest model to base an
information retrieval system on. and Brutus

The search engine returns all documents that satisfy the
Boolean expression.

Does Google use the Boolean model?
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Does Google use the Boolean model?

On Google, the default interpretation of a query [w1 w2

. . . wn] is w1 AND w2 AND . . . AND wn

Cases where you get hits that do not contain one of the wi :
anchor text
page contains variant of wi (morphology, spelling correction,
synonym)
long queries (n large)
boolean expression generates very few hits

Simple Boolean vs. Ranking of result set

Simple Boolean retrieval returns matching documents in no
particular order.
Google (and most well designed Boolean engines) rank the
result set – they rank good hits (according to some estimator
of relevance) higher than bad hits.
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Unstructured data in 1650: Shakespeare
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Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and

Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.
Why is grep not the solution?

Slow (for large collections)
grep is line-oriented, IR is document-oriented
“not Calpurnia” is non-trivial
Other operations (e.g., find the word Romans near
countryman) not feasible
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Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The

tempest.
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Incidence vectors

So we have a 0/1 vector for each term.
To answer the query Brutus and Caesar and not

Calpurnia:
Take the vectors for Brutus, Caesar, and Calpurnia

Complement the vector of Calpurnia

Do a (bitwise) and on the three vectors
110100 and 110111 and 101111 = 100100
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0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
result: 1 0 0 1 0 0
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Answers to query

Anthony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’ the

Capitol; Brutus killed me.
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Bigger collections

Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

On average 6 bytes per token, including spaces and
punctuation ⇒ size of document collection is about 6 · 109 =
6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)
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Can’t build the incidence matrix

M = 500,000× 106 = half a trillion 0s and 1s.
But the matrix has no more than one billion 1s.

Matrix is extremely sparse.

What is a better representations?
We only record the 1s: inverted index!
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Inverted index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings (výskytník in Czech)
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Inverted index construction

1 Collect the documents to be indexed:
Friends, Romans, countrymen. So let it be with Caesar . . .

2 Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3 Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms: friend roman

countryman so . . .

4 Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.
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Tokenization and preprocessing

Doc 1. I did enact Julius Caesar: I
was killed i’ the Capitol; Brutus killed
me.
Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

=⇒

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious
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Generate postings

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

=⇒

term docID

i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2
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Sort postings
term docID

i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2
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Create postings lists, determine document frequency
term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2
be 1 → 2
brutus 2 → 1 → 2
capitol 1 → 1
caesar 2 → 1 → 2
did 1 → 1
enact 1 → 1
hath 1 → 2
i 1 → 1
i’ 1 → 1
it 1 → 2
julius 1 → 1
killed 1 → 1
let 1 → 2
me 1 → 1
noble 1 → 2
so 1 → 2
the 2 → 1 → 2
told 1 → 2
you 1 → 2
was 2 → 1 → 2
with 1 → 2
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Split the result into dictionary and postings file

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings file
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Later in this course

Index construction: how can we create inverted indexes for
large collections?

How much space do we need for dictionary and index?

Index compression: how can we efficiently store and process
indexes for large collections?

Ranked retrieval: what does the inverted index look like when
we want the “best” answer?
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Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To find all matching documents using inverted index:
1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings file
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings file
5 Intersect the two postings lists
6 Return intersection to user
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Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.
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Intersecting two postings lists

Intersect(p1, p2)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer
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Query processing: Exercise

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)
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Boolean queries

The Boolean retrieval model can answer any query that is a
Boolean expression.

Boolean queries are queries that use and, or and not to join
query terms.
Views each document as a set of terms.
Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades
Many professional searchers (e.g., lawyers) still like Boolean
queries.

You know exactly what you are getting.

Many search systems you use are also Boolean: spotlight,
email, intranet etc.
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Commercially successful Boolean retrieval: Westlaw

Largest commercial legal search service in terms of the
number of paying subscribers

Over half a million subscribers performing millions of searches
a day over tens of terabytes of text data

The service was started in 1975.

In 2005, Boolean search (called “Terms and Connectors” by
Westlaw) was still the default, and used by a large percentage
of users . . .

. . . although ranked retrieval has been available since 1992.
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Westlaw: Example queries

Information need: Information on the legal theories involved in
preventing the disclosure of trade secrets by employees formerly
employed by a competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to
access a workplace

Query: disab! /p access! /s work-site work-place (employment /3
place)

Information need: Cases about a host’s responsibility for drunk
guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest
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Westlaw: Comments

Proximity operators: /3 = within 3 words, /s = within a
sentence, /p = within a paragraph

Space is disjunction, not conjunction! (This was the default in
search pre-Google.)

Long, precise queries: incrementally developed, not like web
search

Why professional searchers often like Boolean search:
precision, transparency, control

When are Boolean queries the best way of searching? Depends
on: information need, searcher, document collection, . . .
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Query optimization

Consider a query that is an and of n terms, n > 2

For each of the terms, get its postings list, then and them
together

Example query: Brutus AND Calpurnia AND Caesar

What is the best order for processing this query?

Sojka, IIR Group: PV211: Boolean Retrieval 50 / 79



Introduction History Boolean model Inverted index Processing Boolean queries Query optimization Cours

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31
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Optimized intersection algorithm for conjunctive queries

Intersect(〈t1, . . . , tn〉)
1 terms ← SortByIncreasingFrequency(〈t1, . . . , tn〉)
2 result ← postings(first(terms))
3 terms ← rest(terms)
4 while terms 6= nil and result 6= nil

5 do result ← Intersect(result, postings(first(terms)))
6 terms ← rest(terms)
7 return result
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More general optimization

Example query: (madding or crowd) and (ignoble or

strife)

Get frequencies for all terms

Estimate the size of each or by the sum of its frequencies
(conservative)

Process in increasing order of or sizes
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Exercise

Recommend a query processing order for: (tangerine OR

trees) AND (marmalade OR skies) AND (kaleidoscope

OR eyes)
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Course overview and agenda

We are done with Chapter 1 of IIR (IIR 01).

Plan for the rest of the semester: 16–18 of the 21 chapters of
IIR

In addition to experts from FI lectures by leading industry
experts from Facebook (Tomáš Mikolov on March 21st as
part of FI Informatics Colloquium), Seznam.cz (Tomáš
Vrábel) or Rare Technologies (Radim Řehůřek).

In what follows: teasers for most chapters – to give you a
sense of what will be covered.
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IIR 02: The term vocabulary and postings lists

Phrase queries: “Stanford University”

Proximity queries: Gates near Microsoft

We need an index that captures position information for
phrase queries and proximity queries.

Sojka, IIR Group: PV211: Boolean Retrieval 57 / 79



Introduction History Boolean model Inverted index Processing Boolean queries Query optimization Cours

IIR 03: Dictionaries and tolerant retrieval

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲
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IIR 04: Index construction

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z
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IIR 05: Index compression

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

log10 rank

7

lo
g

1
0
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f

Zipf’s law
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IIR 06: Scoring, term weighting and the vector space
model

Ranking search results
Boolean queries only give inclusion or exclusion of documents.
For ranked retrieval, we measure the proximity between the query and
each document.
One formalism for doing this: the vector space model

Key challenge in ranked retrieval: evidence accumulation for a term in
a document

1 vs. 0 occurrence of a query term in the document
3 vs. 2 occurrences of a query term in the document
Usually: more is better
But by how much?
Need a scoring function that translates frequency into score or weight
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IIR 07: Scoring in a complete search system

Documents

Document 
cache

Indexes

k-gram
Scoring 

parameters

MLR

training 
set

Results 
page

Indexers

Parsing 
Linguistics

user query

Free text query parser

Spell correction Scoring and ranking

Tiered inverted 
positional index

Inexact 
top K 

retrieval

Metadata in 
zone and 

field indexes
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IIR 08: Evaluation and dynamic summaries
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IIR 09: Relevance feedback & query expansion
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IIR 13: Text classification & Naive Bayes

Text classification = assigning documents automatically to
predefined classes
Examples:

Language (English vs. French)
Adult content
Region
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IIR 14: Vector classification, kNN search

X

X

X
X

X

X

X

X

X

X

X

∗
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IIR 15: Support vector machines
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IIR 16: Flat clustering
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IIR 17: Hierarchical clustering

http://news.google.com
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IIR 18: Latent Semantic Indexing

Sojka, IIR Group: PV211: Boolean Retrieval 70 / 79



Introduction History Boolean model Inverted index Processing Boolean queries Query optimization Cours

IIR 19: The web and its challenges

Unusual and diverse documents

Unusual and diverse users and information needs

Beyond terms and text: exploit link analysis, user data

How do web search engines work?

How can we make them better?
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IIR 20: Crawling

www

Fetch

DNS

Parse

URL Frontier

Content
Seen?

✓

✒

✏

✑
✒✑

Doc
FP’s ✓

✒

✏

✑
✒✑

URL
set

URL
Filter

Host
splitter

To
other
nodes

From
other
nodes

Dup

URL
Elim✲

✛

✲

✻

✛✲

❄
✻

✲ ✲ ✲ ✲

✛

✻❄ ✻❄✻✻✻

✲✲✲

Sojka, IIR Group: PV211: Boolean Retrieval 72 / 79



Introduction History Boolean model Inverted index Processing Boolean queries Query optimization Cours

IIR 21: Link analysis / PageRank
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Invited lecture: Neural Networks by Facebook (Tomáš
Mikolov)

Abstract: Artificial neural networks are currently very successful in
various machine learning tasks that involve natural language. In
this talk, I will describe how recurrent neural network language
models have been developed, as well as their most frequent
applications to speech recognition and machine translation. I will
also talk about distributed word representations, their interesting
properties, and efficient ways how to compute them. Finally, I will
describe our latest efforts to create a novel dataset that could be
used to develop machines that can truly communicate with human
users in natural language.
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Invited lecture: Image search by Seznam

Ready to deploy image search researched by Seznam team lead
(Tomáš Vrábel).

Abstract: Introduction to the Seznam.cz image search
architecture. We will talk about the system overview and basic
signals used in machine learning algorithms for relevance
computation. We will cover the effect of user feedback on quality
of results, the technology behind user query understanding and the
deep convolutional neural networks for computer vision and image
understanding.
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Gait Recognition from Motion Capture Data (Michal
Balážia)
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Gait Recognition from Motion Capture Data

Classification metrics for all implemented methods. Homogeneous setup, evaluated on the full database with
10-fold cross-validation. Methods are ordered by their CCR score.

method CCR EER AUC MAP CMC

RawJC 0.872 0.321 0.731 0.317

✁✂✄☎

✁✂☎✁

✁✂☎☎

✁✂✆✁

✁✂✆☎

✁✂✝✁

✁✂✝☎

✁✂✞✁

✁✂✞☎

✁✂✟✁

✁✂✟☎

✠✂✁✁

☞�
✌
✡
☛
✍✎
✏
✏
✑✒
✑✌
✎
✡✑
✓
✔
✕
✎
✡�

✁✂✁✁

✁✂✁☎

✁✂✠✁

✁✂✠☎

✁✂✖✁

✁✂✖☎

✁✂✗✁

✁✂✗☎

✁✂✄✁

✠ ✖ ✗ ✄ ☎ ✆ ✝ ✞ ✟ ✠✁

☛
✘
✙
✘
✍✎
✡✑
✚
�
☛
✓
☞☞

✛✜✢✣

MMCBR 0.868 0.305 0.739 0.332

RawBR 0.867 0.333 0.701 0.259

MMCJC 0.861 0.325 0.72 0.309

PCA+LDABR 0.845 0.335 0.682 0.247

KwolekB 0.823 0.367 0.711 0.296

KrzeszowskiT 0.802 0.348 0.717 0.273

PCA+LDAJC 0.79 0.417 0.634 0.189

DikovskiB 0.787 0.376 0.679 0.227

AhmedF 0.771 0.371 0.664 0.22

AnderssonVO 0.76 0.352 0.703 0.228

NareshKumarMS 0.717 0.459 0.613 0.19

JiangS 0.692 0.407 0.637 0.204

BallA 0.667 0.356 0.698 0.207

SinhaA 0.598 0.362 0.69 0.176

AhmedM 0.58 0.392 0.646 0.145

SedmidubskyJ 0.464 0.394 0.65 0.138

AliS 0.186 0.394 0.662 0.096

PreisJ 0.131 0.407 0.618 0.066

Random 0.039
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Take-away

Basic information about the course, teachers, evaluation,
exercises

Boolean Retrieval: Design and data structures of a simple
information retrieval system

What topics will be covered in this class (overview)?
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Resources

Chapter 1 of IIR
Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

course schedule and overview
information retrieval links
Shakespeare search engine
http://www.rhymezone.com/shakespeare/
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PV211: Introduction to Information Retrieval
http://www.fi.muni.cz/~sojka/PV211

IIR 2: The term vocabulary and postings lists
Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno
Center for Information and Language Processing, University of Munich

2017-02-28

Sojka, IIR Group: PV211: The term vocabulary and postings lists 1 / 58

http://www.fi.muni.cz/~sojka/PV211


Documents Terms Skip pointers Phrase queries

Overview

1 Documents

2 Terms
General + Non-English
English

3 Skip pointers

4 Phrase queries
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Take-away

Understanding of the basic unit of classical information
retrieval systems: words and documents: What is a
document, what is a term?

Tokenization: how to get from raw text to words (or tokens)

More complex indexes: skip pointers and phrases
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Major steps in inverted index construction

1 Collect the documents to be indexed.

2 Tokenize the text.

3 Do linguistic preprocessing of tokens.

4 Index the documents that each term occurs in.
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Documents

Last lecture: Simple Boolean retrieval system

Our assumptions were:

We know what a document is.
We can “machine-read” each document.

This can be complex in reality: “God is in the details.” (Mies
van der Rohe)
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Parsing a document

We need to deal with format and language of each document.

What format is it in? pdf, word, excel, html etc.

What language is it in?

What character set is in use?

Each of these is a classification problem, which we will study
later in this course (IIR 13).

Alternative: use heuristics
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Format/Language: Complications

A single index usually contains terms of several languages.

Sometimes a document or its components contain multiple
languages/formats.

French email with Spanish pdf attachment

What is the document unit for indexing?

A file?

An email?

An email with 5 attachments?

A group of files (ppt or latex in HTML)?

Upshot: Answering the question “what is a document?” is not
trivial and requires some design decisions.

Also: XML
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Definitions

Word – A delimited string of characters as it appears in the
text.

Term – A “normalized” word (case, morphology, spelling etc);
an equivalence class of words.

Token – An instance of a word or term occurring in a
document.

Type – The same as term in most cases: an equivalence class
of tokens. More informally: what we consider same in the
index, e.g. abstraction of a line in the incidence matrix.
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Normalization

Need to “normalize” words in indexed text as well as query
terms into the same form.

Example: We want to match U.S.A. and USA

We most commonly implicitly define equivalence classes of
terms.

Alternatively: do asymmetric expansion

window → window, windows
windows → Windows, windows
Windows (no expansion)

More powerful, but less efficient

Why don’t you want to put window, Window, windows, and
Windows in the same equivalence class?
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Normalization: Other languages

Normalization and language detection interact.

PETER WILL NICHT MIT. → MIT = mit

He got his PhD from MIT. → MIT 6= mit
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Recall: Inverted index construction

Input:

Friends, Romans, countrymen. So let it be with Caesar . . .

Output:

friend roman countryman so . . .

Each token is a candidate for a postings entry.

What are valid tokens to emit?
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Exercises

In June, the dog likes to chase the cat in the barn. – How many
word tokens? How many word types?

Why tokenization is difficult – even in English. Tokenize: Mr.

O’Neill thinks that the boys’ stories about Chile’s capital aren’t

amusing.
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Tokenization problems: One word or two? (or several)

Hewlett-Packard

State-of-the-art

co-education

the hold-him-back-and-drag-him-away maneuver

data base

San Francisco

Los Angeles-based company

cheap San Francisco-Los Angeles fares

York University vs. New York University
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Numbers

3/20/91

20/3/91

Mar 20, 1991

B-52

100.2.86.144

(800) 234-2333

800.234.2333

Older IR systems may not index numbers . . .

. . . but generally it’s a useful feature.

Google example (1+1)
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Chinese: No whitespace

莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。 

Sojka, IIR Group: PV211: The term vocabulary and postings lists 18 / 58



Documents Terms Skip pointers Phrase queries

Ambiguous segmentation in Chinese

和尚 
The two characters can be treated as one word meaning ‘monk’ or
as a sequence of two words meaning ‘and’ and ‘still’.
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Other cases of “no whitespace”

Compounds in Dutch, German, Swedish, Czech
(čistokapsonosoplena)

Computerlinguistik → Computer + Linguistik

Lebensversicherungsgesellschaftsangestellter

→ leben + versicherung + gesellschaft + angestellter

Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)

Many other languages with segmentation difficulties: Finnish,
Urdu, . . .
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Japanese

✁�✂✄✆☎✝✟✠✝✡✞☞☛✌✍✏✑�✎✒✔✓✕✗✖✘✙✟✛✜

✢✣✚✤✤✥✦✧✥✦✩★☛✪�☛✬✭✫✯✡✮✱✲✰✳✴✵✯✑✌

✷☛✶✸✹✻✼✽✬✱✾✺✞✿❀✿❂✟❃❁✡❄❅❇❈❆✕✰❊❉

✼✾✺✞✿❀✿❂✯●❍✮■❋✡✮✿✢❏✯❑✱▼▲◆❄❖P✢❘◗

❚�❙✟❱❯❯❳❲❨✬❬❩◆❄✯✜✱❪❫❀❴❭✱✒❵✹❛✱❝

❀❜✟❡❢✮❣❯❤✐❯✰❄❞◆❥❧♠❦♥✔✿❇♣✝✠✝♦◆✻✱

r❯sqt✉✬✇✈①✯❘②④③✐⑥✬⑦✝✕⑧⑨▲❄❅❇

4 different “alphabets”: Chinese characters, hiragana syllabary for
inflectional endings and function words, katakana syllabary for
transcription of foreign words and other uses, and latin. No spaces
(as in Chinese).
End user can express query entirely in hiragana!
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Arabic script

     ك  ِ   ت  ا   ب  ٌ      ⇐   آَِ��بٌ
             un b ā  t  i k  

/kitābun/ ‘a book’ 
 

Sojka, IIR Group: PV211: The term vocabulary and postings lists 22 / 58



Documents Terms Skip pointers Phrase queries

Arabic script: Bidirectionality

�ل ا������132 ��� 1962ا���� ا��
ا�� �� ��� ��  . #"!" !  ا�

                               ← →   ← →                   ← START 

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’ 

 
Bidirectionality is not a problem if text is coded in Unicode.
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Accents and diacritics

Accents: résumé vs. resume (simple omission of accent)

Umlauts: Universität vs. Universitaet (substitution with
special letter sequence “ae”)

Most important criterion: How are users likely to write their
queries for these words?

Even in languages that standardly have accents, users often
do not type them. (Polish?)
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Case folding

Reduce all letters to lower case

Even though case can be semantically meaningful

capitalized words in mid-sentence
MIT vs. mit
Fed vs. fed
. . .

It’s often best to lowercase everything since users will use
lowercase regardless of correct capitalization.

Sojka, IIR Group: PV211: The term vocabulary and postings lists 26 / 58



Documents Terms Skip pointers Phrase queries

Stop words

stop words = extremely common words which would appear
to be of little value in helping to select documents matching a
user need

Examples: a, an, and, are, as, at, be, by, for, from, has, he, in,

is, it, its, of, on, that, the, to, was, were, will, with

Stop word elimination used to be standard in older IR systems.

But you need stop words for phrase queries, e.g. “King of
Denmark”.

Most web search engines index stop words.
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More equivalence classing

Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)

Thesauri: IIR 9 (semantic equivalence, car = automobile)
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Lemmatization

Reduce inflectional/variant forms to base form

Example: am, are, is → be

Example: car, cars, car’s, cars’ → car

Example: the boy’s cars are different colors → the boy car be

different color

Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).

Inflectional morphology (cutting → cut) vs. derivational
morphology (destruction → destroy)
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Stemming

Definition of stemming: Crude heuristic process that chops off
the ends of words in the hope of achieving what “principled”
lemmatization attempts to do with a lot of linguistic
knowledge.

Language dependent

Often inflectional and derivational

Example for derivational: automate, automatic, automation

all reduce to automat

Sojka, IIR Group: PV211: The term vocabulary and postings lists 30 / 58



Documents Terms Skip pointers Phrase queries

Porter algorithm

Most common algorithm for stemming English

Results suggest that it is at least as good as other stemming
options

Conventions + 5 phases of reductions

Phases are applied sequentially

Each phase consists of a set of commands.

Sample command: Delete final ement if what remains is longer
than 1 character
replacement → replac
cement → cement

Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.
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Porter stemmer: A few rules

Rule Example

SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat
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Three stemmers: A comparison

Sample text: Such an analysis can reveal features that are not easily
visible from the variations in the individual genes and can
lead to a picture of expression that is more biologically
transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to a pictur
of express that is more biolog transpar and access to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from th
vari in th individu gen and can lead to a pictur of expres that
is mor biolog transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that
is mor biolog transp and access to interpret
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Does stemming improve effectiveness?

In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others.

Queries where stemming is likely to help: [tartan sweaters],
[sightseeing tour san francisco]

(equivalence classes: {sweater,sweaters}, {tour,tours})

Porter Stemmer equivalence class oper contains all of operate

operating operates operation operative operatives operational.

Queries where stemming hurts: [operational AND research],
[operating AND system], [operative AND dentistry]
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Exercise: What does Google do?

Stop words

Normalization

Tokenization

Lowercasing

Stemming

Non-latin alphabets

Umlauts

Compounds

Numbers
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Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Linear in the length of the postings lists.

Can we do better?
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Skip pointers

Skip pointers allow us to skip postings that will not figure in
the search results.

This makes intersecting postings lists more efficient.

Some postings lists contain several million entries – so
efficiency can be an issue even if basic intersection is linear.

Where do we put skip pointers?

How do we make sure insection results are correct?
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Basic idea

Brutus

Caesar

34

2 4 8

128

34 35 64 128

8

1 2 3 5

31

8 17 21 31 75 81 84 89 92
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Skip lists: Larger example

16 28 72

5 51 98

2 4 8 16 19 23 28 43

1 2 3 5 8 41 51 60 71

Brutus

Caesar
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Intersecting with skip pointers

IntersectWithSkips(p1, p2)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer
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Where do we place skips?

Tradeoff: number of items skipped vs. frequency skip can be
taken

More skips: Each skip pointer skips only a few items, but we
can frequently use it.

Fewer skips: Each skip pointer skips many items, but we can
not use it very often.
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Where do we place skips? (cont)

Simple heuristic: for postings list of length P, use
√

P

evenly-spaced skip pointers.

This ignores the distribution of query terms.

Easy if the index is static; harder in a dynamic environment
because of updates.

How much do skip pointers help?

They used to help a lot.

With today’s fast CPUs, they don’t help that much anymore.
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Phrase queries

We want to answer a query such as [Masaryk university] – as
a phrase.

Thus The president Tomáš Garrigue Masaryk never went to

Stanford university should not be a match.

The concept of phrase query has proven easily understood by
users.

About 10% of web queries are phrase queries.

Consequence for inverted index: it no longer suffices to store
docIDs in postings lists.

Two ways of extending the inverted index:

biword index
positional index
Any ideas?
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Biword indexes

Index every consecutive pair of terms in the text as a phrase.

For example, Friends, Romans, Countrymen would generate
two biwords: “friends romans” and “romans countrymen”

Each of these biwords is now a vocabulary term.

Two-word phrases can now easily be answered.
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Longer phrase queries

A long phrase like “masaryk university brno” can be
represented as the Boolean query “masaryk university”

AND “university brno”

We need to do post-filtering of hits to identify subset that
actually contains the 3-word phrase.
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Issues with biword indexes

Why are biword indexes rarely used?

False positives, as noted above

Index blowup due to very large term vocabulary
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Positional indexes

Positional indexes are a more efficient alternative to biword
indexes.

Postings lists in a nonpositional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions
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Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

to, 993427:
〈 1: 〈7, 18, 33, 72, 86, 231〉;

2: 〈1, 17, 74, 222, 255〉;
4: 〈8, 16, 190, 429, 433〉;
5: 〈363, 367〉;
7: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1: 〈17, 25〉;

4: 〈17, 191, 291, 430, 434〉;
5: 〈14, 19, 101〉; . . . 〉

Document 4 is a match!
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Exercise

Shown below is a portion of a positional index in the format: term: doc1:
〈position1, position2, . . . 〉; doc2: 〈position1, position2, . . . 〉; etc.

angels: 2: 〈36,174,252,651〉; 4: 〈12,22,102,432〉; 7: 〈17〉;
fools: 2: 〈1,17,74,222〉; 4: 〈8,78,108,458〉; 7: 〈3,13,23,193〉;
fear: 2: 〈87,704,722,901〉; 4: 〈13,43,113,433〉; 7: 〈18,328,528〉;
in: 2: 〈3,37,76,444,851〉; 4: 〈10,20,110,470,500〉; 7: 〈5,15,25,195〉;
rush: 2: 〈2,66,194,321,702〉; 4: 〈9,69,149,429,569〉; 7: 〈4,14,404〉;
to: 2: 〈47,86,234,999〉; 4: 〈14,24,774,944〉; 7: 〈19,319,599,709〉;
tread: 2: 〈57,94,333〉; 4: 〈15,35,155〉; 7: 〈20,320〉;
where: 2: 〈67,124,393,1001〉; 4: 〈11,41,101,421,431〉; 7: 〈16,36,736〉;

Which document(s) if any match each of the following two queries, where each
expression within quotes is a phrase query?: “fools rush in”, “fools rush in” AND

“angels fear to tread”
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Proximity search

We just saw how to use a positional index for phrase searches.

We can also use it for proximity search.

For example: employment /4 place

Find all documents that contain employment and place

within 4 words of each other.

Employment agencies that place healthcare workers are seeing

growth is a hit.

Employment agencies that have learned to adapt now place

healthcare workers is not a hit.
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Proximity search

Use the positional index

Simplest algorithm: look at cross-product of positions of (i)
employment in document and (ii) place in document

Very inefficient for frequent words, especially stop words

Note that we want to return the actual matching positions,
not just a list of documents.

This is important for dynamic summaries etc.
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“Proximity” intersection

PositionalIntersect(p1, p2, k)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)
4 then l ← 〈 〉
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 6= nil

8 do while pp2 6= nil

9 do if |pos(pp1)− pos(pp2)| ≤ k

10 then Add(l , pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break

13 pp2 ← next(pp2)
14 while l 6= 〈 〉 and |l [0]− pos(pp1)| > k

15 do Delete(l [0])
16 for each ps ∈ l

17 do Add(answer , 〈docID(p1), pos(pp1), ps〉)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer
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Combination scheme

Biword indexes and positional indexes can be profitably
combined.

Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc.

For these biwords, increased speed compared to positional
postings intersection is substantial.

Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.

Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of
26% more space for index.
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“Positional” queries on Google

For web search engines, positional queries are much more
expensive than regular Boolean queries.

Let’s look at the example of phrase queries.

Why are they more expensive than regular Boolean queries?

Can you demonstrate on Google that phrase queries are more
expensive than Boolean queries?
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Take-away

Understanding of the basic unit of classical information
retrieval systems: words and documents: What is a
document, what is a term?

Tokenization: how to get from raw text to words (or tokens)

More complex indexes: skip pointers and phrases
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Resources

Chapter 2 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Porter stemmer
A fun number search on Google
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Overview

1 Dictionaries

2 Wildcard queries

3 Edit distance

4 Spelling correction

5 Soundex
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Take-away

Tolerant retrieval: What to do if there is no exact match
between query term and document term

Wildcard queries

Spelling correction
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Inverted index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings
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Dictionaries

The dictionary is the data structure for storing the term
vocabulary.

Term vocabulary: the data

Dictionary: the data structure for storing the term vocabulary
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Dictionary as array of fixed-width entries

For each term, we need to store a couple of items:

document frequency
pointer to postings list
. . .

Assume for the time being that we can store this information
in a fixed-length entry.

Assume that we store these entries in an array.
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Dictionary as array of fixed-width entries

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
. . . . . . . . .
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

How do we look up a query term qi in this array at query time?
That is: which data structure do we use to locate the entry (row)
in the array where qi is stored?
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Data structures for looking up term

Two main classes of data structures: hashes and trees

Some IR systems use hashes, some use trees.

Criteria for when to use hashes vs. trees:

Is there a fixed number of terms or will it keep growing?
What are the relative frequencies with which various keys will
be accessed?
How many terms are we likely to have?
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Hashes

Each vocabulary term is hashed into an integer, its row
number in the array.

At query time: hash query term, locate entry in fixed-width
array.

Pros: Lookup in a hash is faster than lookup in a tree.

Lookup time is constant.

Cons

no way to find minor variants (resume vs. résumé)
no prefix search (all terms starting with automat)
need to rehash everything periodically if vocabulary keeps
growing
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Trees

Trees solve the prefix problem (find all terms starting with
automat).

Simplest tree: binary tree.

Search is slightly slower than in hashes: O(log M), where M is
the size of the vocabulary.

O(log M) only holds for balanced trees.

Rebalancing binary trees is expensive.

B-trees mitigate the rebalancing problem.

B-tree definition: every internal node has a number of
children in the interval [a, b] where a, b are appropriate
positive integers, e.g., [2, 4].
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Binary tree
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B-tree
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Wildcard queries

mon*: find all docs containing any term beginning with mon

Easy with B-tree dictionary: retrieve all terms t in the range:
mon ≤ t < moo

*mon: find all docs containing any term ending with mon

Maintain an additional tree for terms backwards.
Then retrieve all terms t in the range: nom ≤ t < non

Result: A set of terms that are matches for wildcard query.

Then retrieve documents that contain any of these terms.
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Query processing

At this point, we have an enumeration of all terms in the
dictionary that match the wildcard query.

We still have to look up the postings for each enumerated
term.
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How to handle * in the middle of a term

Example: m*nchen

We could look up m* and *nchen in the B-tree and intersect
the two term sets.

Expensive

Alternative: permuterm index

Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

Store each of these rotations in the dictionary, say, in a B-tree
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Permuterm index

For term hello: add hello$, ello$h, llo$he, lo$hel, o$hell, and
$hello to the B-tree where $ is a special symbol
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Permuterm → term mapping
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Permuterm index

For hello, we’ve stored: hello$, ello$h, llo$he, lo$hel, o$hell,
$hello

Queries

For X, look up X$
For X*, look up $X*
For *X, look up X$*
For *X*, look up X*
For X*Y, look up Y$X*
Example: For hel*o, look up o$hel*

Permuterm index would better be called a permuterm tree.

But permuterm index is the more common name.
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Processing a lookup in the permuterm index

Rotate query wildcard to the right

Use B-tree lookup as before

Problem: Permuterm more than quadruples the size of the
dictionary compared to a regular B-tree. (empirical number)
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k-gram indexes

More space-efficient than permuterm index

Enumerate all character k-grams (sequence of k characters)
occurring in a term

2-grams are called bigrams.

Example: from April is the cruelest month we get the bigrams:
$a ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m
mo on nt th h$

$ is a special word boundary symbol, as before.

Maintain an inverted index from bigrams to the terms that
contain the bigram
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Postings list in a 3-gram inverted index

etr beetroot metric petrify retrieval✲ ✲ ✲ ✲
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k-gram (bigram, trigram, . . . ) indexes

Note that we now have two different types of inverted indexes

The term-document inverted index for finding documents
based on a query consisting of terms

The k-gram index for finding terms based on a query
consisting of k-grams
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Processing wildcarded terms in a bigram index

Query mon* can now be run as:
$m and mo and on

Gets us all terms with the prefix mon . . .

. . . but also many “false positives” like moon.

We must postfilter these terms against query.

Surviving terms are then looked up in the term-document
inverted index.

k-gram index vs. permuterm index

k-gram index is more space efficient.
Permuterm index doesn’t require postfiltering.
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Exercise

Google has very limited support for wildcard queries.

For example, this query doesn’t work very well on Google:
[gen* universit*]

Intention: you are looking for the University of Geneva, but
don’t know which accents to use for the French words for
university and Geneva.

According to Google search basics, 2010-04-29: “Note that
the * operator works only on whole words, not parts of words.”

But this is not entirely true. Try [pythag*] and [m*nchen]

Exercise: Why doesn’t Google fully support wildcard queries?
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Processing wildcard queries in the term-document index

Problem 1: we must potentially execute a large number of
Boolean queries.

Most straightforward semantics: Conjunction of disjunctions

For [gen* universit*]: geneva university or geneva université
or genève university or genève université or general
universities or . . .

Very expensive

Problem 2: Users hate to type.

If abbreviated queries like [pyth* theo*] for [pythagoras’
theorem] are allowed, users will use them a lot.

This would significantly increase the cost of answering queries.

Somewhat alleviated by Google Suggest
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Spelling correction

Two principal uses

Correcting documents being indexed
Correcting user queries

Two different methods for spelling correction

Isolated word spelling correction

Check each word on its own for misspelling
Will not catch typos resulting in correctly spelled words, e.g.,
an asteroid that fell form the sky

Context-sensitive spelling correction

Look at surrounding words
Can correct form/from error above
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Correcting documents

We are not interested in interactive spelling correction of
documents (e.g., MS Word) in this class.

In IR, we use document correction primarily for OCR’ed
documents. (OCR = optical character recognition)

The general philosophy in IR is: do not change the documents.
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Correcting queries

First: isolated word spelling correction

Premise 1: There is a list of “correct words” from which the
correct spellings come.

Premise 2: We have a way of computing the distance between
a misspelled word and a correct word.

Simple spelling correction algorithm: return the “correct”
word that has the smallest distance to the misspelled word.

Example: informaton → information

For the list of correct words, we can use the vocabulary of all
words that occur in our collection.

Why is this problematic?
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Alternatives to using the term vocabulary

A standard dictionary (Webster’s, OED etc.)

An industry-specific dictionary (for specialized IR systems)

The term vocabulary of the collection, appropriately weighted
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Distance between misspelled word and “correct” word

We will study several alternatives.

Edit distance and Levenshtein distance

Weighted edit distance

k-gram overlap
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Edit distance

The edit distance between string s1 and string s2 is the
minimum number of basic operations that convert s1 to s2.

Levenshtein distance: The admissible basic operations are
insert, delete, and replace

Levenshtein distance dog-do: 1

Levenshtein distance cat-cart: 1

Levenshtein distance cat-cut: 1

Levenshtein distance cat-act: 2

Damerau-Levenshtein distance cat-act: 1

Damerau-Levenshtein includes transposition as a fourth
possible operation.
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Levenshtein distance: Computation

f a s t

0 1 2 3 4

c 1 1 2 3 4

a 2 2 1 2 3

t 3 3 2 2 2

s 4 4 3 2 3
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Levenshtein distance: Algorithm

LevenshteinDistance(s1, s2)
1 for i ← 0 to |s1|
2 do m[i , 0] = i
3 for j ← 0 to |s2|
4 do m[0, j] = j
5 for i ← 1 to |s1|
6 do for j ← 1 to |s2|
7 do if s1[i ] = s2[j]
8 then m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]}
9 else m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]+1}

10 return m[|s1|, |s2|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Levenshtein distance: Algorithm

LevenshteinDistance(s1, s2)
1 for i ← 0 to |s1|
2 do m[i , 0] = i
3 for j ← 0 to |s2|
4 do m[0, j] = j
5 for i ← 1 to |s1|
6 do for j ← 1 to |s2|
7 do if s1[i ] = s2[j]
8 then m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]}
9 else m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]+1}

10 return m[|s1|, |s2|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Levenshtein distance: Algorithm

LevenshteinDistance(s1, s2)
1 for i ← 0 to |s1|
2 do m[i , 0] = i
3 for j ← 0 to |s2|
4 do m[0, j] = j
5 for i ← 1 to |s1|
6 do for j ← 1 to |s2|
7 do if s1[i ] = s2[j]
8 then m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]}
9 else m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]+1}

10 return m[|s1|, |s2|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Levenshtein distance: Algorithm

LevenshteinDistance(s1, s2)
1 for i ← 0 to |s1|
2 do m[i , 0] = i
3 for j ← 0 to |s2|
4 do m[0, j] = j
5 for i ← 1 to |s1|
6 do for j ← 1 to |s2|
7 do if s1[i ] = s2[j]
8 then m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]}
9 else m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]+1}

10 return m[|s1|, |s2|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Levenshtein distance: Algorithm

LevenshteinDistance(s1, s2)
1 for i ← 0 to |s1|
2 do m[i , 0] = i
3 for j ← 0 to |s2|
4 do m[0, j] = j
5 for i ← 1 to |s1|
6 do for j ← 1 to |s2|
7 do if s1[i ] = s2[j]
8 then m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]}
9 else m[i , j] = min{m[i-1, j]+1, m[i , j-1]+1, m[i-1, j-1]+1}

10 return m[|s1|, |s2|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Levenshtein distance: Example
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Each cell of Levenshtein matrix

cost of getting here from
my upper left neighbor
(copy or replace)

cost of getting here
from my upper neighbor
(delete)

cost of getting here from
my left neighbor (insert)

the minimum of the
three possible “move-
ments”; the cheapest
way of getting here
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Levenshtein distance: Example

f a s t
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Dynamic programming (Cormen et al.)

Optimal substructure: The optimal solution to the problem
contains within it subsolutions, i.e., optimal solutions to
subproblems.

Overlapping subsolutions: The subsolutions overlap. These
subsolutions are computed over and over again when
computing the global optimal solution in a brute-force
algorithm.

Subproblem in the case of edit distance: what is the edit
distance of two prefixes

Overlapping subsolutions: We need most distances of prefixes
3 times – this corresponds to moving right, diagonally, down.
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Weighted edit distance

As above, but weight of an operation depends on the
characters involved.

Meant to capture keyboard errors, e.g., m more likely to be
mistyped as n than as q.

Therefore, replacing m by n is a smaller edit distance than by
q.

We now require a weight matrix as input.

Modify dynamic programming to handle weights
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Using edit distance for spelling correction

Given query, first enumerate all character sequences within a
preset (possibly weighted) edit distance

Intersect this set with our list of “correct” words

Then suggest terms in the intersection to the user.

→ exercise in a few slides
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Exercise

1 Compute Levenshtein distance matrix for oslo – snow

2 What are the Levenshtein editing operations that transform
cat into catcat?
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s n o w

0 1 1 2 2 3 3 4 4

o
1

1

1 2

2 ?

s
2

2

l
3

3

o
4

4

Sojka, IIR Group: PV211: Dictionaries and tolerant retrieval 49 / 109



Dictionaries Wildcard queries Edit distance Spelling correction Soundex
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How do I read out the editing operations that transform oslo into snow?
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Spelling correction

Now that we can compute edit distance: how to use it for
isolated word spelling correction – this is the last slide in this
section.

k-gram indexes for isolated word spelling correction.

Context-sensitive spelling correction

General issues
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k-gram indexes for spelling correction

Enumerate all k-grams in the query term

Example: bigram index, misspelled word bordroom

Bigrams: bo, or, rd, dr, ro, oo, om

Use the k-gram index to retrieve “correct” words that match
query term k-grams

Threshold by number of matching k-grams

E.g., only vocabulary terms that differ by at most 3 k-grams
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k-gram indexes for spelling correction: bordroom

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲
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Context-sensitive spelling correction

Our example was: an asteroid that fell form the sky

How can we correct form here?

One idea: hit-based spelling correction

Retrieve “correct” terms close to each query term
for flew form munich: flea for flew, from for form, munch for
munich
Now try all possible resulting phrases as queries with one word
“fixed” at a time
Try query “flea form munich”
Try query “flew from munich”
Try query “flew form munch”
The correct query “flew from munich” has the most hits.

Suppose we have 7 alternatives for flew, 20 for form and 3 for
munich, how many “corrected” phrases will we enumerate?
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Context-sensitive spelling correction

The “hit-based” algorithm we just outlined is not very
efficient.

More efficient alternative: look at “collection” of queries, not
documents.
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General issues in spelling correction

User interface

automatic vs. suggested correction
Did you mean only works for one suggestion.
What about multiple possible corrections?
Tradeoff: simple vs. powerful UI

Cost

Spelling correction is potentially expensive.
Avoid running on every query?
Maybe just on queries that match few documents.
Guess: Spelling correction of major search engines is efficient
enough to be run on every query.
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Exercise: Understand Peter Norvig’s spelling corrector

import re, collections

def words(text): return re.findall(’[a-z]+’, text.lower())

def train(features):

model = collections.defaultdict(lambda: 1)

for f in features:

model[f] += 1

return model

NWORDS = train(words(file(’big.txt’).read()))

alphabet = ’abcdefghijklmnopqrstuvwxyz’

def edits1(word):

splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

deletes = [a + b[1:] for a, b in splits if b]

transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b) gt 1]

replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

inserts = [a + c + b for a, b in splits for c in alphabet]

return set(deletes + transposes + replaces + inserts)

def known_edits2(word):

return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)

def correct(word):

candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

return max(candidates, key=NWORDS.get)
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Soundex

Soundex is the basis for finding phonetic (as opposed to
orthographic) alternatives.

Example: chebyshev / tchebyscheff

Algorithm:

Turn every token to be indexed into a 4-character reduced form
Do the same with query terms
Build and search an index on the reduced forms
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Soundex algorithm

1 Retain the first letter of the term.
2 Change all occurrences of the following letters to ’0’ (zero): A, E, I,

O, U, H, W, Y
3 Change letters to digits as follows:

B, F, P, V to 1
C, G, J, K, Q, S, X, Z to 2
D,T to 3
L to 4
M, N to 5
R to 6

4 Repeatedly remove one out of each pair of consecutive identical digits
5 Remove all zeros from the resulting string; pad the resulting string

with trailing zeros and return the first four positions, which will
consist of a letter followed by three digits
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Example: Soundex of HERMAN

Retain H

ERMAN → 0RM0N

0RM0N → 06505

06505 → 06505

06505 → 655

Return H655

Note: HERMANN will generate the same code
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How useful is Soundex?

Not very – for information retrieval

Ok for “high recall” tasks in other applications (e.g., Interpol)

Zobel and Dart (1996) suggest better alternatives for phonetic
matching in IR.

Sojka, IIR Group: PV211: Dictionaries and tolerant retrieval 106 / 109



Dictionaries Wildcard queries Edit distance Spelling correction Soundex

Exercise

Compute Soundex code of your last name
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Take-away

Tolerant retrieval: What to do if there is no exact match
between query term and document term

Wildcard queries

Spelling correction
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Resources

Chapter 3 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

trie vs hash vs ternary tree
Soundex demo
Edit distance demo
Peter Norvig’s spelling corrector
Google: wild card search, spelling correction gone wrong, a
misspelling that is more frequent that the correct spelling
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Overview

1 Recap

2 Introduction

3 BSBI algorithm

4 SPIMI algorithm

5 Distributed indexing

6 Dynamic indexing
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Dictionary as array of fixed-width entries

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
. . . . . . . . .
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes
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B-tree for looking up entries in array
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Wildcard queries using a permuterm index

Queries:

For X, look up X$

For X*, look up X*$

For *X, look up X$*

For *X*, look up X*

For X*Y, look up
Y$X*
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k-gram indexes for spelling correction: bordroom

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲
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Levenshtein distance for spelling correction

LevenshteinDistance(s1, s2)
1 for i ← 0 to |s1|
2 do m[i , 0] = i
3 for j ← 0 to |s2|
4 do m[0, j] = j
5 for i ← 1 to |s1|
6 do for j ← 1 to |s2|
7 do if s1[i ] = s2[j]
8 then m[i , j] = min{m[i − 1, j] + 1, m[i , j − 1] + 1, m[i − 1, j − 1]}
9 else m[i , j] = min{m[i − 1, j] + 1, m[i , j − 1] + 1, m[i − 1, j − 1] + 1}

10 return m[|s1|, |s2|]

Operations: insert, delete, replace, copy

Sojka, IIR Group: PV211: Index construction 8 / 53



Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

Exercise: Understand Peter Norvig’s spelling corrector

import re, collections

def words(text): return re.findall(’[a-z]+’, text.lower())

def train(features):

model = collections.defaultdict(lambda: 1)

for f in features:

model[f] += 1

return model

NWORDS = train(words(file(’big.txt’).read()))

alphabet = ’abcdefghijklmnopqrstuvwxyz’

def edits1(word):

splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

deletes = [a + b[1:] for a, b in splits if b]

transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b) gt 1]

replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

inserts = [a + c + b for a, b in splits for c in alphabet]

return set(deletes + transposes + replaces + inserts)

def known_edits2(word):

return set(e2 for e1 in edits1(word) for e2 in

edits1(e1) if e2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)

def correct(word):

candidates = known([word]) or known(edits1(word)) or

known_edits2(word) or [word]

return max(candidates, key=NWORDS.get)
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Take-away

Two index construction algorithms: BSBI (simple) and SPIMI
(more realistic)

Distributed index construction: MapReduce

Dynamic index construction: how to keep the index
up-to-date as the collection changes
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Hardware basics

Many design decisions in information retrieval are based on
hardware constraints.

We begin by reviewing hardware basics that we’ll need in this
course.
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Hardware basics

Access to data is much faster in memory than on disk.
(roughly a factor of 10 SSD, 100+ for rotational disks)

Disk seeks are “idle” time: No data is transferred from disk
while the disk head is being positioned.

To optimize transfer time from disk to memory: one large
chunk is faster than many small chunks.

Disk I/O is block-based: Reading and writing of entire blocks
(as opposed to smaller chunks). Block sizes: 8KB to 256 KB

Assuming an efficient decompression algorithm, the total time
of reading and then decompressing compressed data is usually
less than reading uncompressed data.

Servers used in IR systems typically have many GBs of main
memory and TBs of disk space.

Fault tolerance is expensive: It’s cheaper to use many regular
machines than one fault tolerant machine.
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Some stats (ca. 2008)

symbol statistic value

s average seek time 5 ms = 5× 10−3 s
b transfer time per byte 0.02 µs = 2× 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation (e.g., compare & swap a word) 0.01 µs = 10−8 s
size of main memory several GB
size of disk space 1 TB or more
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RCV1 collection

Shakespeare’s collected works are not large enough for
demonstrating many of the points in this course.

As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection.

English newswire articles sent over the wire in 1995 and 1996
(one year).
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A Reuters RCV1 document
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Reuters RCV1 statistics

N documents 800,000
L tokens per document 200
M terms (= word types) 400,000

bytes per token (incl. spaces/punct.) 6
bytes per token (without spaces/punct.) 4.5
bytes per term (= word type) 7.5

T non-positional postings 100,000,000

Exercise: Average frequency of a term (how many tokens)? 4.5
bytes per word token vs. 7.5 bytes per word type: why the
difference? How many positional postings?
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Goal: construct the inverted index

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings
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Index construction in IIR 1: Sort postings in memory
term docID

I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2
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Sort-based index construction

As we build index, we parse docs one at a time.

The final postings for any term are incomplete until the end.

Can we keep all postings in memory and then do the sort
in-memory at the end?

No, not for large collections

Thus: We need to store intermediate results on disk.
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Same algorithm for disk?

Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

No: Sorting very large sets of records on disk is too slow – too
many disk seeks.

We need an external sorting algorithm.
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“External” sorting algorithm (using few disk seeks)

We must sort T = 100,000,000 non-positional postings.

Each posting has size 12 bytes (4+4+4: termID, docID, term
frequency).

Define a block to consist of 10,000,000 such postings

We can easily fit that many postings into memory.
We will have 10 such blocks for RCV1.

Basic idea of algorithm:

For each block: (i) accumulate postings, (ii) sort in memory,
(iii) write to disk
Then merge the blocks into one long sorted order.
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Merging two blocks

Block 1

brutus d3
caesar d4
noble d3
with d4

Block 2

brutus d2
caesar d1
julius d1
killed d2

postings

to be merged brutus d2
brutus d3
caesar d1
caesar d4
julius d1
killed d2
noble d3
with d4

merged

postings

disk
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Blocked Sort-Based Indexing

BSBIndexConstruction()
1 n← 0
2 while (all documents have not been processed)
3 do n← n + 1
4 block ← ParseNextBlock()
5 BSBI-Invert(block)
6 WriteBlockToDisk(block, fn)
7 MergeBlocks(f1, . . . , fn; f merged)

Sojka, IIR Group: PV211: Index construction 25 / 53



Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

Problem with sort-based algorithm

Our assumption was: we can keep the dictionary in memory.

We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

Actually, we could work with term,docID postings instead of
termID,docID postings . . .

. . . but then intermediate files become very large. (We would
end up with a scalable, but very slow index construction
method.)
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Single-pass in-memory indexing

Abbreviation: SPIMI

Key idea 1: Generate separate dictionaries for each block – no
need to maintain term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

With these two ideas we can generate a complete inverted
index for each block.

These separate indexes can then be merged into one big index.
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SPIMI-Invert

SPIMI-Invert(token_stream)
1 output_file ← NewFile()
2 dictionary ← NewHash()
3 while (free memory available)
4 do token ← next(token_stream)
5 if term(token) /∈ dictionary
6 then postings_list ← AddToDictionary(dictionary ,term(token))
7 else postings_list ← GetPostingsList(dictionary ,term(token))
8 if full(postings_list)
9 then postings_list ← DoublePostingsList(dictionary ,term(token)

10 AddToPostingsList(postings_list,docID(token))
11 sorted_terms ← SortTerms(dictionary)
12 WriteBlockToDisk(sorted_terms,dictionary ,output_file)
13 return output_file

Merging of blocks is analogous to BSBI.
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SPIMI: Compression

Compression makes SPIMI even more efficient.

Compression of terms
Compression of postings
See next lecture
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Distributed indexing

For web-scale indexing (don’t try this at home!): must use a
distributed computer cluster

Individual machines are fault-prone.

Can unpredictably slow down or fail.

How do we exploit such a pool of machines?
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Google data centers (2007 estimates; Gartner)

Google data centers mainly contain commodity machines.

Data centers are distributed all over the world.

1 million servers, 3 million processors/cores

Google installs 100,000 servers each quarter.

Based on expenditures of 200–250 million dollars per year

This would be 10% of the computing capacity of the world!

If in a non-fault-tolerant system with 1000 nodes, each node
has 99.9% uptime, what is the uptime of the system
(assuming it does not tolerate failures)?

Answer: 37%

Suppose a server will fail after 3 years. For an installation of 1
million servers, what is the interval between machine failures?

Answer: less than two minutes
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Distributed indexing

Maintain a master machine directing the indexing job –
considered “safe”

Break up indexing into sets of parallel tasks

Master machine assigns each task to an idle machine from a
pool.
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Parallel tasks

We will define two sets of parallel tasks and deploy two types
of machines to solve them:

Parsers
Inverters

Break the input document collection into splits (corresponding
to blocks in BSBI/SPIMI)

Each split is a subset of documents.
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Parsers

Master assigns a split to an idle parser machine.

Parser reads a document at a time and emits
(termID,docID)-pairs.

Parser writes pairs into j term-partitions.

Each for a range of terms’ first letters

E.g., a–f, g–p, q–z (here: j = 3)
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Inverters

An inverter collects all (termID,docID) pairs (= postings) for
one term-partition (e.g., for a–f).

Sorts and writes to postings lists
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Data flow

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z
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MapReduce

The index construction algorithm we just described is an
instance of MapReduce.

MapReduce is a robust and conceptually simple framework for
distributed computing . . .

. . . without having to write code for the distribution part.

The Google indexing system (ca. 2002) consisted of a number
of phases, each implemented in MapReduce.

Index construction was just one phase.

Another phase: transform term-partitioned into
document-partitioned index.
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Index construction in MapReduce
Schema of map and reduce functions

map: input → list(k, v)
reduce: (k,list(v)) → output

Instantiation of the schema for index construction

map: web collection → list(termID, docID)
reduce: (〈termID1, list(docID)〉, 〈termID2, list(docID)〉, . . . ) → (postings_list1, postings_list2, . . . )

Example for index construction

map: d2 : C died. d1 : C came, C c’ed. → (〈C, d2〉, 〈died,d2〉, 〈C,d1〉, 〈came,d1〉, 〈C,d1〉, 〈c’ed,d1〉)
reduce: (〈C,(d2,d1,d1)〉,〈died,(d2)〉,〈came,(d1)〉,〈c’ed,(d1)〉) → (〈C,(d1:2,d2:1)〉,〈died,(d2:1)〉,〈came,(d1:1)〉,〈c’ed,(d1:1)〉)
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Exercise

What information does the task description contain that the
master gives to a parser?

What information does the parser report back to the master
upon completion of the task?

What information does the task description contain that the
master gives to an inverter?

What information does the inverter report back to the master
upon completion of the task?
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Dynamic indexing

Up to now, we have assumed that collections are static.

They rarely are: Documents are inserted, deleted and
modified.

This means that the dictionary and postings lists have to be
dynamically modified.
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Dynamic indexing: Simplest approach

Maintain big main index on disk

New docs go into small auxiliary index in memory.

Search across both, merge results

Periodically, merge auxiliary index into big index

Deletions:

Invalidation bit-vector for deleted docs
Filter docs returned by index using this bit-vector
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Issue with auxiliary and main index

Frequent merges

Poor search performance during index merge
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Logarithmic merge

Logarithmic merging amortizes the cost of merging indexes
over time.

→ Users see smaller effect on response times.

Maintain a series of indexes, each twice as large as the
previous one.

Keep smallest (Z0) in memory

Larger ones (I0, I1, . . . ) on disk

If Z0 gets too big (> n), write to disk as I0

. . . or merge with I0 (if I0 already exists) and write merger to
I1 etc.
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LMergeAddToken(indexes, Z0, token)
1 Z0 ←Merge(Z0, {token})
2 if |Z0| = n
3 then for i ← 0 to ∞
4 do if Ii ∈ indexes
5 then Zi+1 ←Merge(Ii , Zi)
6 (Zi+1 is a temporary index on disk.)
7 indexes ← indexes − {Ii}
8 else Ii ← Zi (Zi becomes the permanent index Ii .)
9 indexes ← indexes ∪ {Ii}

10 Break

11 Z0 ← ∅

LogarithmicMerge()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes ← ∅
3 while true
4 do LMergeAddToken(indexes, Z0, getNextToken())
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Binary numbers: I3I2I1I0 = 23222120

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100
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Logarithmic merge

Number of indexes bounded by O(log T ) (T is total number
of postings read so far)

So query processing requires the merging of O(log T ) indexes

Time complexity of index construction is O(T log T ).

. . . because each of T postings is merged O(log T ) times.

Auxiliary index: index construction time is O(T 2) as each
posting is touched in each merge.

Suppose auxiliary index has size a

a + 2a + 3a + 4a + . . . + na = a n(n+1)
2 = O(n2)

So logarithmic merging is an order of magnitude more
efficient.
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Dynamic indexing at large search engines

Often a combination

Frequent incremental changes
Rotation of large parts of the index that can then be swapped
in
Occasional complete rebuild (becomes harder with increasing
size – not clear if Google can do a complete rebuild)
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Building positional indexes

Basically the same problem except that the intermediate data
structures are large.
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Take-away

Two index construction algorithms: BSBI (simple) and SPIMI
(more realistic)

Distributed index construction: MapReduce

Dynamic index construction: how to keep the index
up-to-date as the collection changes
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Resources

Chapter 4 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Original publication on MapReduce by Dean and Ghemawat
(2004)
Original publication on SPIMI by Heinz and Zobel (2003)
YouTube video: Google data centers
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Overview

1 Compression

2 Term statistics

3 Dictionary compression

4 Postings compression
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Roadmap

Today: index compression, and vector space model

Next week: the whole picture of complete search system,
scoring and ranking

In two weeks time: invited lectures (Seznam, Facebook AI) +
midterm
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Take-away today

Motivation for compression in information retrieval systems

How can we compress the dictionary component of the
inverted index?

How can we compress the postings component of the inverted
index?

Term statistics: how are terms distributed in document
collections?
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Inverted index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings file

Today:

How much space do we need for the dictionary?
How much space do we need for the postings file?
How can we compress them?
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Why compression? (in general)

Use less disk space (saves money).

Keep more stuff in memory (increases speed).

Increase speed of transferring data from disk to memory
(again, increases speed).

[read compressed data and decompress in memory]
is faster than
[read uncompressed data]

Premise: Decompression algorithms are fast.

This is true of the decompression algorithms we will use.
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Why compression in information retrieval?

First, we will consider space for dictionary:

Main motivation for dictionary compression: make it small
enough to keep in main memory.

Then for the postings file

Motivation: reduce disk space needed, decrease time needed to
read from disk.
Note: Large search engines keep significant part of postings in
memory.

We will devise various compression schemes for dictionary and
postings.
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Lossy vs. lossless compression

Lossy compression: Discard some information

Several of the preprocessing steps we frequently use can be
viewed as lossy compression:

downcasing, stop words, porter, number elimination

Lossless compression: All information is preserved.

What we mostly do in index compression
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Model collection: The Reuters collection

symbol statistic value

N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per word type 7.5

T non-positional postings 100,000,000
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Effect of preprocessing for Reuters

word types non-positional positional postings
(terms) postings (word tokens)

size of dictionary non-positional index positional index
size ∆cml size ∆ cml size ∆cml

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2 -2 100,680,242 -8 -8 179,158,204 -9 -9
case folding 391,523 -17 -19 96,969,056 -3 -12 179,158,204 -0 -9
30 stopw’s 391,493 -0 -19 83,390,443 -14 -24 121,857,825 -31 -38
150 stopw’s 391,373 -0 -19 67,001,847 -30 -39 94,516,599 -47 -52
stemming 322,383 -17 -33 63,812,300 -4 -42 94,516,599 -0 -52

Explain differences between numbers non-positional vs positional:
−3 vs 0, −14 vs −31, −30 vs −47, −4 vs 0
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How big is the term vocabulary?

That is, how many distinct words are there?

Can we assume there is an upper bound?

Not really: At least 7020 ≈ 1037 different words of length 20.

The vocabulary will keep growing with collection size.

Heaps’ law: M = kT b

M is the size of the vocabulary, T is the number of tokens in
the collection.

Typical values for the parameters k and b are: 30 ≤ k ≤ 100
and b ≈ 0.5.

Heaps’ law is linear in log-log space.

It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
Empirical law
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Heaps’ law for Reuters
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Vocabulary size M as a

function of collection size

T (number of tokens) for

Reuters-RCV1. For these

data, the dashed line

log10 M =

0.49 ∗ log10 T + 1.64 is the

best least squares fit.

Thus, M = 101.64T 0.49

and k = 101.64 ≈ 44 and

b = 0.49.
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Empirical fit for Reuters

Good, as we just saw in the graph.

Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44× 1,000,0200.49 ≈ 38,323

The actual number is 38,365 terms, very close to the
prediction.

Empirical observation: fit is good in general.
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Exercise

1 What is the effect of including spelling errors vs. automatically
correcting spelling errors on Heaps’ law?

2 Compute vocabulary size M

Looking at a collection of web pages, you find that there are
3,000 different terms in the first 10,000 tokens and
30,000 different terms in the first 1,000,000 tokens.
Assume a search engine indexes a total of 20,000,000,000
(2× 1010) pages, containing 200 tokens on average
What is the size of the vocabulary of the indexed collection as
predicted by Heaps’ law?
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Zipf’s law

Now we have characterized the growth of the vocabulary in
collections.

We also want to know how many frequent vs. infrequent
terms we should expect in a collection.

In natural language, there are a few very frequent terms and
very many very rare terms.

Zipf’s law: The i th most frequent term has frequency cf i

proportional to 1/i .

cf i ∝
1
i

cf i is collection frequency: the number of occurrences of the
term ti in the collection.

Sojka, IIR Group: PV211: Index compression 17 / 57



Compression Term statistics Dictionary compression Postings compression

Zipf’s law

Zipf’s law: The i th most frequent term has frequency
proportional to 1/i .

cf i ∝
1
i

cf is collection frequency: the number of occurrences of the
term in the collection.

So if the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences
cf2 = 1

2cf1 . . .

. . . and the third most frequent term (and) has a third as
many occurrences cf3 = 1

3cf1 etc.

Equivalent: cf i = cik and log cf i = log c + k log i (for k = −1)

Example of a power law
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Zipf’s law for Reuters
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Fit is not great. What
is important is the
key insight: Few fre-
quent terms, many
rare terms.
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Dictionary compression

The dictionary is small compared to the postings file.

But we want to keep it in memory.

Also: competition with other applications, cell phones,
onboard computers, fast startup time

So compressing the dictionary is important.
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Recall: Dictionary as array of fixed-width entries

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
. . . . . . . . .
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

Space for Reuters: (20+4+4)*400,000 = 11.2 MB
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Fixed-width entries are bad.

Most of the bytes in the term column are wasted.

We allot 20 bytes for terms of length 1.

We cannot handle hydrochlorofluorocarbons and
supercalifragilisticexpialidocious

Average length of a term in English: 8 characters (or a little
bit less)

How can we use on average 8 characters per term?
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Dictionary as a string

. . . sys t i l esyzyget i csyzyg i a l syzygysza ibe l y i teszec inszono. . .

freq.

9
92
5
71
12
. . .

4 bytes

postings ptr.

→
→
→
→
→
. . .

4 bytes

term ptr.

3 bytes

. . .
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Space for dictionary as a string

4 bytes per term for frequency

4 bytes per term for pointer to postings list

8 bytes (on average) for term in string

3 bytes per pointer into string (need log2 8 · 400,000 < 24 bits
to resolve 8 · 400,000 positions)

Space: 400,000 × (4 + 4 + 3 + 8) = 7.6 MB (compared to
11.2 MB for fixed-width array)
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Dictionary as a string with blocking

. . . 7 sys t i l e 9 syzyge t i c 8 syzyg i a l 6 syzygy11s za i be l y i t e 6 s zec i n . . .

freq.

9
92
5
71
12
. . .

postings ptr.

→
→
→
→
→
. . .

term ptr.

. . .
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Space for dictionary as a string with blocking

Example block size k = 4

Where we used 4× 3 bytes for term pointers without blocking
. . .

. . . we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

We save 12− (3 + 4) = 5 bytes per block.

Total savings: 400,000/4 ∗ 5 = 0.5 MB

This reduces the size of the dictionary from 7.6 MB to
7.1 MB.
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Lookup of a term without blocking

aid

box

den

ex

job

ox

pit

win
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Lookup of a term with blocking: (slightly) slower

aid box den ex

job ox pit win
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Front coding

One block in blocked compression (k = 4) . . .
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

⇓

. . . further compressed with front coding.
8 a u t o m a t ∗ a 1 ⋄ e 2 ⋄ i c 3 ⋄ i o n
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Dictionary compression for Reuters: Summary

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9

Sojka, IIR Group: PV211: Index compression 31 / 57



Compression Term statistics Dictionary compression Postings compression

Exercise

Which prefixes should be used for front coding? What are the
tradeoffs?

Input: list of terms (= the term vocabulary)

Output: list of prefixes that will be used in front coding
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Postings compression

The postings file is much larger than the dictionary, factor of
at least 10.

Key desideratum: store each posting compactly

A posting for our purposes is a docID.

For Reuters (800,000 documents), we would use 32 bits per
docID when using 4-byte integers.

Alternatively, we can use log2 800,000 ≈ 19.6 < 20 bits per
docID.

Our goal: use a lot less than 20 bits per docID.
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Key idea: Store gaps instead of docIDs

Each postings list is ordered in increasing order of docID.

Example postings list: computer: 283154, 283159,
283202, . . .

It suffices to store gaps: 283159 − 283154 = 5,
283202 − 283159 = 43

Example postings list using gaps: computer: 283154, 5,
43, . . .

Gaps for frequent terms are small.

Thus: We can encode small gaps with fewer than 20 bits.
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Gap encoding

encoding postings list

the docIDs . . . 283042 283043 283044 283045 . . .
gaps 1 1 1 . . .

computer docIDs . . . 283047 283154 283159 283202 . . .
gaps 107 5 43 . . .

arachnocentric docIDs 252000 500100
gaps 252000 248100
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Variable length encoding

Aim:

For arachnocentric and other rare terms, we will use
about 20 bits per gap (= posting).
For the and other very frequent terms, we will use only a few
bits per gap (= posting).

In order to implement this, we need to devise some form of
variable length encoding.

Variable length encoding uses few bits for small gaps and
many bits for large gaps.
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Variable byte (VB) code

Used by many commercial/research systems

Good low-tech blend of variable-length coding and sensitivity
to alignment matches (bit-level codes, see later).

Dedicate 1 bit (high bit) to be a continuation bit c .

If the gap G fits within 7 bits, binary-encode it in the 7
available bits and set c = 1.

Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

At the end set the continuation bit of the last byte to 1
(c = 1) and of the other bytes to 0 (c = 0).
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VB code examples

docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001
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VB code encoding algorithm

VBEncodeNumber(n)
1 bytes ← 〈〉
2 while true

3 do Prepend(bytes, n mod 128)
4 if n < 128
5 then Break

6 n← n div 128
7 bytes[Length(bytes)] += 128
8 return bytes

VBEncode(numbers)
1 bytestream ← 〈〉
2 for each n ∈ numbers

3 do bytes ← VBEncodeNumber(n)
4 bytestream← Extend(bytestream, bytes)
5 return bytestream
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VB code decoding algorithm

VBDecode(bytestream)
1 numbers ← 〈〉
2 n← 0
3 for i ← 1 to Length(bytestream)
4 do if bytestream[i ] < 128
5 then n← 128× n + bytestream[i ]
6 else n← 128× n + (bytestream[i ] − 128)
7 Append(numbers, n)
8 n← 0
9 return numbers
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Other variable codes

Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

Variable byte alignment wastes space if you have many small
gaps – nibbles do better on those.

There is work on word-aligned codes that efficiently “pack” a
variable number of gaps into one word – see resources at the
end
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Codes for gap encoding

You can get even more compression with another type of
variable length encoding: bitlevel code.

Gamma code is the best known of these.

First, we need unary code to be able to introduce gamma
code.

Unary code

Represent n as n 1s with a final 0.
Unary code for 3 is 1110
Unary code for 1 is 10, for 0 is 0, for 30 is
1111111111111111111111111111110
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Gamma code

Represent a gap G as a pair of length and offset.

Offset is the gap in binary, with the leading bit chopped off.

For example 13 → 1101 → 101 = offset

Length is the length of offset.

For 13 (offset 101), this is 3.

Encode length in unary code: 1110.

Gamma code of 13 is the concatenation of length and offset:
1110101.
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Another Gamma code (γ) examples

number unary code length offset γ code

0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001
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i
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The universal coding of the integers: Elias codes

☞ unary code α(N) = 11 . . . 1
︸ ︷︷ ︸

N

0. α(4) = 11110

☞ binary code β(1) = 1, β(2N + j) = β(N)j, j = 0, 1. β(4) = 100

☞ β is not uniquely decodable (it is not a prefix code).

☞ ternary τ(N) = β(N)#. τ(4) = 100#

☞ β′(1) = ǫ, β′(2N) = β′(N)0, β′(2N + 1) = β′(N)1,
τ ′(N) = β′(N)#. β′(4) = 00.

☞ γ(N) = α|β′(N)|β′(N). γ(4) = 11000

☞ alternatively, γ′: every bit β′(N) is inserted between a pair from
α(|β′(N)|). the same length as γ (bit permutation γ(N)), but less
readable

☞ example: γ′(4) = 10100

☞ Cγ = {γ(N) : N > 0} = (1{0, 1})∗0 is regular and therefore it is
decodable by finite automaton.
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Elias codes: gamma, delta, omega: formal definitions II

☞ δ(N) = γ(|β(N)|)β′(N)

☞ example: δ(4) = γ(3)00 = 11000

☞ decoder δ: δ(?) = 1001?

☞ ω:

K := 0;
while ⌊log2(N)⌋ > 0 do

begin K := β(N)K ;
N := ⌊log2(N)⌋

end.
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Exercise

Compute the variable byte code of 130

Compute the gamma code of 130

Compute δ(42)
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Length of gamma code

The length of offset is ⌊log2 G⌋ bits.

The length of length is ⌊log2 G⌋+ 1 bits,

So the length of the entire code is 2× ⌊log2 G⌋+ 1 bits.

γ codes are always of odd length.

Gamma codes are within a factor of 2 of the optimal encoding
length log2 G .

(assuming the frequency of a gap G is proportional to log2 G –
only approximately true)
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Gamma code: Properties

Gamma code is prefix-free: a valid code word is not a prefix of
any other valid code.

Encoding is optimal within a factor of 3 (and within a factor
of 2 making additional assumptions).

This result is independent of the distribution of gaps!

We can use gamma codes for any distribution. Gamma code
is universal.

Gamma code is parameter-free.
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Gamma codes: Alignment

Machines have word boundaries – 8, 16, 32 bits

Compressing and manipulating at granularity of bits can be
slow.

Variable byte encoding is aligned and thus potentially more
efficient.

Another word aligned scheme: Anh and Moffat 2005

Regardless of efficiency, variable byte is conceptually simpler
at little additional space cost.
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Compression of Reuters

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0
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Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs.
Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term does not occur.
Example: Calpurnia doesn’t occur in The tempest.
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Compression of Reuters

data structure size in MB

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0
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Summary

We can now create an index for highly efficient Boolean
retrieval that is very space efficient.

Only 4% of the total size of the collection.

Only 10–15% of the total size of the text in the collection.

However, we’ve ignored positional and frequency information.

For this reason, space savings are less in reality.
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Take-away today

Motivation for compression in information retrieval systems

How can we compress the dictionary component of the
inverted index?

How can we compress the postings component of the inverted
index?

Term statistics: how are terms distributed in document
collections?
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Resources

http://ske.fi.muni.cz

Chapter 5 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Original publication on word-aligned binary codes by Anh and
Moffat (2005); also: Anh and Moffat (2006a).
Original publication on variable byte codes by Scholer,
Williams, Yiannis and Zobel (2002).
More details on compression (including compression of
positions and frequencies) in Zobel and Moffat (2006).
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Overview

1 Why ranked retrieval?

2 Term frequency

3 tf-idf weighting

4 The vector space model
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Take-away today

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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Ranked retrieval

Thus far, our queries have been Boolean.

Documents either match or do not.

Good for expert users with precise understanding of their
needs and of the collection.

Also good for applications: Applications can easily consume
1000s of results.

Not good for the majority of users

Most users are not capable of writing Boolean queries . . .

. . . or they are, but they think it’s too much work.

Most users don’t want to wade through 1000s of results.

This is particularly true of web search.
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Problem with Boolean search: Feast or famine

Boolean queries often result in either too few (=0) or too
many (1000s) results.

Query 1 (boolean conjunction): [standard user dlink 650]

→ 200,000 hits – feast

Query 2 (boolean conjunction): [standard user dlink 650 no
card found]

→ 0 hits – famine

In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.
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Feast or famine: No problem in ranked retrieval

With ranking, large result sets are not an issue.

Just show the top 10 results

Doesn’t overwhelm the user

Premise: the ranking algorithm works: More relevant results
are ranked higher than less relevant results.
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Scoring as the basis of ranked retrieval

We wish to rank documents that are more relevant higher
than documents that are less relevant.

How can we accomplish such a ranking of the documents in
the collection with respect to a query?

Assign a score to each query-document pair, say in [0, 1].

This score measures how well document and query “match”.
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Query-document matching scores

How do we compute the score of a query-document pair?

Let’s start with a one-term query.

If the query term does not occur in the document: score
should be 0.

The more frequent the query term in the document, the
higher the score.

We will look at a number of alternatives for doing this.
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Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets

Let A and B be two sets

Jaccard coefficient:

jaccard(A, B) =
|A ∩ B|
|A ∪ B|

(A 6= ∅ or B 6= ∅)

jaccard(A, A) = 1

jaccard(A, B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.
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Jaccard coefficient: Example

What is the query-document match score that the Jaccard
coefficient computes for:

Query: “ides of March”
Document “Caesar died in March”
jaccard(q, d) = 1/6
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What’s wrong with Jaccard?

It doesn’t consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
does not consider this information.

We need a more sophisticated way of normalizing for the
length of a document.

Later in this lecture, we’ll use |A ∩ B|/
√

|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N
|V |.
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Bag of words model

We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are
represented the same way.

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

We will look at “recovering” positional information later in
this course.

For now: bag of words model
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Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

We want to use tf when computing query-document match
scores.

But how?

Raw term frequency is not what we want because:

A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.
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Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{

1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d → wt,d :
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q
and d :
tf-matching-score(q, d) =

∑

t∈q∩d(1 + log tft,d)

The score is 0 if none of the query terms is present in the
document.
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Exercise

Compute the Jaccard matching score and the tf matching
score for the following query-document pairs.

q: [information on cars] d: “all you’ve ever wanted to know
about cars”

q: [information on cars] d: “information on trucks,
information on planes, information on trains”

q: [red cars and red trucks] d: “cops stop red cars more
often”
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Frequency in document vs. frequency in collection

In addition, to term frequency (the frequency of the term in
the document) . . .

. . . we also want to use the frequency of the term in the
collection for weighting and ranking.
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Desired weight for rare terms

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection
(e.g., arachnocentric).

A document containing this term is very likely to be relevant.

→ We want high weights for rare terms like
arachnocentric.
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Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection
(e.g., good, increase, line).

A document containing this term is more likely to be relevant
than a document that doesn’t . . .

. . . but words like good, increase and line are not sure
indicators of relevance.

→ For frequent terms like good, increase, and line, we
want positive weights . . .

. . . but lower weights than for rare terms.
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Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing
the matching score.

The document frequency is the number of documents in the
collection that the term occurs in.
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idf weight

dft is the document frequency, the number of documents that
t occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10

N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

[log N/dft ] instead of [N/dft ] to “dampen” the effect of idf

Note that we use the log transformation for both term
frequency and document frequency.
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Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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Effect of idf on ranking

idf affects the ranking of documents for queries with at least
two terms.

For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of arachnocentric and
decreases the relative weight of line.

idf has little effect on ranking for one-term queries.
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Collection frequency vs. Document frequency

word collection frequency document frequency

insurance 10440 3997
try 10422 8760

Collection frequency of t: number of tokens of t in the
collection

Document frequency of t: number of documents t occurs in

Why these numbers?

Which word is a better search term (and should get a higher
weight)?

This example suggests that df (and idf) is better for weighting
than cf (and “icf”).
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

wt,d = (1 + log tft,d) · log
N

dft

tf-weight

idf-weight

Best known weighting scheme in information retrieval

Note: the “-” in tf-idf is a hyphen, not a minus sign!

Alternative names: tf.idf, tf x idf
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Summary: tf-idf

Assign a tf-idf weight for each term t in each document d :
wt,d = (1 + log tft,d) · log N

dft

The tf-idf weight . . .

. . . increases with the number of occurrences within a
document. (term frequency)
. . . increases with the rarity of the term in the collection.
(inverse document frequency)
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Exercise: Term, collection and document frequency

Quantity Symbol Definition

term frequency tft,d number of occurrences of t in
d

document frequency dft number of documents in the
collection that t occurs in

collection frequency cft total number of occurrences of
t in the collection

Relationship between df and cf?

Relationship between tf and cf?

Relationship between tf and df?
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N
|V |.
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Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf-idf weights
∈ R

|V |.
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Documents as vectors

Each document is now represented as a real-valued vector of
tf-idf weights ∈ R

|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

Each vector is very sparse - most entries are zero.
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Queries as vectors

Key idea 1: do the same for queries: represent them as
vectors in the high-dimensional space

Key idea 2: Rank documents according to their proximity to
the query

proximity = similarity

proximity ≈ negative distance

Recall: We’re doing this because we want to get away from
the you’re-either-in-or-out, feast-or-famine Boolean model.

Instead: rank relevant documents higher than nonrelevant
documents.
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How do we formalize vector space similarity?

First cut: (negative) distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.
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Why distance is a bad idea

0 1
0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of ~q and ~d2 is large although the
distribution of terms in the query q and the distribution of terms in
the document d2 are very similar.

Questions about basic vector space setup?
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Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d ′. d ′ is twice as long as d .

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . . .

. . . even though the Euclidean distance between the two
documents can be quite large.
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From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in decreasing order
Rank documents according to cosine(query,document) in
increasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]
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Cosine
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Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√

∑

i x2
i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√

∑

i x2
i = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.
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Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d

|~q||~d |
=

∑|V |
i=1 qidi

√

∑|V |
i=1 q2

i

√

∑|V |
i=1 d2

i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d . . . . . . or, equivalently,
the cosine of the angle between ~q and ~d .
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Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di

(if ~q and ~d are length-normalized).
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Cosine similarity illustrated

0 1
0

1

rich

poor

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ
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Cosine: Example

How similar are
these novels?

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice

WH: Wuthering
Heights

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38
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Cosine: Example

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don’t do idf weighting.)
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Cosine: Example

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?
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Computing the cosine score

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d ]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d ] = Scores[d ]/Length[d ]

10 return Top K components of Scores[]

Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 50 / 56



Why ranked retrieval? Term frequency tf-idf weighting The vector space model

Components of tf-idf weighting

Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none)
1

l (logarithm) 1 + log(tft,d) t (idf) log N

dft
c (cosine)

1√
w2

1 +w2
2 +...+w2

M

a (augmented) 0.5 +
0.5×tft,d

maxt(tft,d)
p (prob idf) max{0, log N−dft

dft
} u (pivoted

unique)
1/u

b (boolean)

{

1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tf t,d)

1+log(avet∈d(tf t,d))

Best known combination of weighting options

Default: no weighting
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tf-idf example

We often use different weightings for queries and documents.

Notation: ddd.qqq

Example: lnc.ltn

document: logarithmic tf, no df weighting, cosine
normalization

query: logarithmic tf, idf, no normalization

Isn’t it bad to not idf-weight the document?

Example query: “best car insurance”

Example document: “car insurance auto insurance”
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tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n’lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
√

12 + 02 + 12 + 1.32 ≈ 1.92
1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08

Questions?
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Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user
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Take-away today

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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Resources

Chapter 6 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Vector space for dummies
Exploring the similarity space (Moffat and Zobel, 2005)
Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of
IIR)
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Term frequency weight

The log frequency weight of term t in d is defined as follows

wt,d =

{

1 + log10 tft,d if tft,d > 0
0 otherwise
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idf weight

The document frequency dft is defined as the number of
documents that t occurs in.

df is an inverse measure of the informativeness of the term.

We define the idf weight of term t as follows:

idft = log10

N

dft

idf is a measure of the informativeness of the term.
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tf-idf weight

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

wt,d = (1 + log tft,d) · log
N

dft

Best known weighting scheme in information retrieval
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Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q

|~q| ·
~d

|~d |
=

|V |
∑

i=1

qi
√

∑|V |
i=1 q2

i

· di
√

∑|V |
i=1 d2

i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

~q/|~q| and ~d/|~d | are length-1 vectors (= normalized).
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Cosine similarity illustrated

0 1
0

1

rich

poor

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ
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tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-idf

tf-raw tf-wght df idf weight tf-raw tf-wght tf-wght n’lized
auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n’lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
√

12 + 02 + 12 + 1.32 ≈ 1.92
1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08
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Take-away today

The importance of ranking: User studies at Google

Length normalization: Pivot normalization

The complete search system

Implementation of ranking
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Why is ranking so important?

Last lecture: Problems with unranked retrieval
Users want to look at a few results – not thousands.
It’s very hard to write queries that produce a few results.
Even for expert searchers
→ Ranking is important because it effectively reduces a large
set of results to a very small one.

Next: More data on “users only look at a few results”

Actually, in the vast majority of cases they only examine 1, 2,
or 3 results.
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Empirical investigation of the effect of ranking

The following slides are from Dan Russell’s JCDL talk

Dan Russell was the “Über Tech Lead for Search Quality &
User Happiness” at Google.

How can we measure how important ranking is?

Observe what searchers do when they are searching in a
controlled setting

Videotape them
Ask them to “think aloud”
Interview them
Eye-track them
Time them
Record and count their clicks
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Importance of ranking: Summary

Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (1, 2, 3, 4) than the
abstracts of the lower ranked pages (7, 8, 9, 10).

Clicking: Distribution is even more skewed for clicking

In 1 out of 2 cases, users click on the top-ranked page.

Even if the top-ranked page is not relevant, 30% of users will
click on it.

→ Getting the ranking right is very important.

→ Getting the top-ranked page right is most important.
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Exercise

Ranking is also one of the high barriers to entry for
competitors to established players in the search engine market.

Why?
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Why distance is a bad idea

0 1
0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of ~q and ~d2 is large although the
distribution of terms in the query q and the distribution of terms in
the document d2 are very similar.

That’s why we do length normalization or, equivalently, use cosine
to compute query-document matching scores.
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Exercise: A problem for cosine normalization

Query q: “anti-doping rules Beijing 2008 olympics”

Compare three documents
d1: a short document on anti-doping rules at 2008 Olympics
d2: a long document that consists of a copy of d1 and 5 other
news stories, all on topics different from Olympics/anti-doping
d3: a short document on anti-doping rules at the 2004 Athens
Olympics

What ranking do we expect in the vector space model?

What can we do about this?
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Pivot normalization

Cosine normalization produces weights that are too large for
short documents and too small for long documents (on
average).

Adjust cosine normalization by linear adjustment: “turning”
the average normalization on the pivot

Effect: Similarities of short documents with query decrease;
similarities of long documents with query increase.

This removes the unfair advantage that short documents have.
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Predicted and true probability of relevance

source:
Lillian Lee
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Pivot normalization

source:
Lillian Le
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Pivoted normalization: Amit Singhal’s experiments

(relevant documents retrieved and (change in) average precision)
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Complete search system
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Tiered indexes

Basic idea:
Create several tiers of indexes, corresponding to importance of
indexing terms
During query processing, start with highest-tier index
If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user
If we’ve only found < k hits: repeat for next index in tier
cascade

Example: two-tier system
Tier 1: Index of all titles
Tier 2: Index of the rest of documents
Pages containing the search words in the title are better hits
than pages containing the search words in the body of the text.
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Tiered index

Tier 1

Tier 2

Tier 3

auto

best

car

insurance

auto

auto

best

car

car

insurance

insurance

best

Doc2

Doc1

Doc2

Doc1

Doc3

Doc3

Doc3

Doc1

Doc2
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Tiered indexes

The use of tiered indexes is believed to be one of the reasons
that Google search quality was significantly higher initially
(2000/01) than that of competitors.

(along with PageRank, use of anchor text and proximity
constraints)
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Complete search system
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Components we have introduced thus far

Document preprocessing (linguistic and otherwise)

Positional indexes

Tiered indexes

Spelling correction

k-gram indexes for wildcard queries and spelling correction

Query processing

Document scoring
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Components we haven’t covered yet

Document cache: we need this for generating snippets (=
dynamic summaries)

Zone indexes: They separate the indexes for different zones:
the body of the document, all highlighted text in the
document, anchor text, text in metadata fields,. . .

Machine-learned ranking functions

Proximity ranking (e.g., rank documents in which the query
terms occur in the same local window higher than documents
in which the query terms occur far from each other)

Query parser
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Components we haven’t covered yet: Query parser

IR systems often guess what the user intended.

The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.

The query 100 Madison Avenue, New York may be interpreted
as a request for a map.

How do we “parse” the query and translate it into a formal
specification containing phrase operators, proximity operators,
indexes to search etc.?
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Vector space retrieval: Interactions

How do we combine phrase retrieval with vector space
retrieval?

We do not want to compute document frequency / idf for
every possible phrase. Why?

How do we combine Boolean retrieval with vector space
retrieval?

For example: “+”-constraints and “−”-constraints

Postfiltering is simple, but can be very inefficient – no easy
answer.

How do we combine wild cards with vector space retrieval?

Again, no easy answer.
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Exercise

Design criteria for tiered system
Each tier should be an order of magnitude smaller than the
next tier.
The top 100 hits for most queries should be in tier 1, the top
100 hits for most of the remaining queries in tier 2 etc.
We need a simple test for “can I stop at this tier or do I have
to go to the next one?”

There is no advantage to tiering if we have to hit most tiers

for most queries anyway.

Consider a two-tier system where the first tier indexes titles
and the second tier everything.

Question: Can you think of a better way of setting up a
multitier system? Which “zones” of a document should be
indexed in the different tiers (title, body of document,
others?)? What criterion do you want to use for including a
document in tier 1?
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Now we also need term frequencies in the index

Brutus −→ 1,2 7,3 83,1 87,2 . . .

Caesar −→ 1,1 5,1 13,1 17,1 . . .

Calpurnia −→ 7,1 8,2 40,1 97,3

term frequencies

We also need positions. Not shown here.
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Term frequencies in the inverted index

Thus: In each posting, store tft,d in addition to docID d .

As an integer frequency, not as a (log-)weighted real number
. . .

. . . because real numbers are difficult to compress.

Overall, additional space requirements are small: a byte per
posting or less
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How do we compute the top k in ranking?

We usually do not need a complete ranking.

We just need the top k for a small k (e.g., k = 100).

If we don’t need a complete ranking, is there an efficient way
of computing just the top k?

Naïve:
Compute scores for all N documents
Sort
Return the top k

Not very efficient

Alternative: min heap
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Use min heap for selecting top k ouf of N

A binary min heap is a binary tree in which each node’s value
is less than the values of its children.

Takes O(N log k) operations to construct (where N is the
number of documents) . . .

. . . then read off k winners in O(k log k) steps
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Binary min heap

0.6

0.85 0.7

0.9 0.97 0.8 0.95
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Selecting top k scoring documents in O(N log k)

Goal: Keep the top k documents seen so far

Use a binary min heap

To process a new document d ′ with score s ′:
Get current minimum hm of heap (O(1))
If s ′ ≤ hm skip to next document
If s ′ > hm heap-delete-root (O(log k))
Heap-add d ′/s ′ (O(log k))
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Even more efficient computation of top k?

Ranking has time complexity O(N) where N is the number of
documents.

Optimizations reduce the constant factor, but they are still
O(N), N > 1010

Are there sublinear algorithms?

What we’re doing in effect: solving the k-nearest neighbor
(kNN) problem for the query vector (= query point).

There are no general solutions to this problem that are
sublinear.
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More efficient computation of top k : Heuristics

Idea 1: Reorder postings lists
Instead of ordering according to docID . . .
. . . order according to some measure of “expected relevance”.

Idea 2: Heuristics to prune the search space
Not guaranteed to be correct . . .
. . . but fails rarely.
In practice, close to constant time.
For this, we’ll need the concepts of document-at-a-time
processing and term-at-a-time processing.
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Non-docID ordering of postings lists

So far: postings lists have been ordered according to docID.

Alternative: a query-independent measure of “goodness”
(credibility) of a page

Example: PageRank g(d) of page d , a measure of how many
“good” pages hyperlink to d (chapter 21)

Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

This scheme supports early termination: We do not have to
process postings lists in their entirety to find top k.
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Non-docID ordering of postings lists (2)

Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

Suppose: (i) g → [0, 1]; (ii) g(d) < 0.1 for the document d
we’re currently processing; (iii) smallest top k score we’ve
found so far is 1.2

Then all subsequent scores will be < 1.1.

So we’ve already found the top k and can stop processing the
remainder of postings lists.

Questions?
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Document-at-a-time processing

Both docID-ordering and PageRank-ordering impose a
consistent ordering on documents in postings lists.

Computing cosines in this scheme is document-at-a-time.

We complete computation of the query-document similarity
score of document di before starting to compute the
query-document similarity score of di+1.

Alternative: term-at-a-time processing

Sojka, IIR Group: PV211: Scores in a complete search system 51 / 61



Recap Why rank? More on cosine The complete search system Implementation of ranking

Weight-sorted postings lists

Idea: don’t process postings that contribute little to final score

Order documents in postings list according to weight

Simplest case: normalized tf-idf weight (rarely done: hard to
compress)

Documents in the top k are likely to occur early in these
ordered lists.

→ Early termination while processing postings lists is unlikely
to change the top k.

But:
We no longer have a consistent ordering of documents in
postings lists.
We no longer can employ document-at-a-time processing.
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Term-at-a-time processing

Simplest case: completely process the postings list of the first
query term

Create an accumulator for each docID you encounter

Then completely process the postings list of the second query
term

. . . and so forth
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Term-at-a-time processing

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d ]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d ] = Scores[d ]/Length[d ]

10 return Top k components of Scores[]

The elements of the array “Scores” are called accumulators.
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Computing cosine scores

Use inverted index

At query time use an array of accumulators A to store sum (=
the cosine score)

Aj =
∑

k

wqk · wdj k

(for document dj)

“Accumulate” scores as postings lists are being processed.
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Accumulators

For the web (20 billion documents), an array of
accumulators A in memory is infeasible.

Thus: Only create accumulators for docs occurring in postings
lists

This is equivalent to: Do not create accumulators for docs
with zero scores (i.e., docs that do not contain any of the
query terms)
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Accumulators: Example

Brutus −→ 1,2 7,3 83,1 87,2 . . .

Caesar −→ 1,1 5,1 13,1 17,1 . . .

Calpurnia −→ 7,1 8,2 40,1 97,3

For query: [Brutus Caesar]:

Only need accumulators for 1, 5, 7, 13, 17, 83, 87

Don’t need accumulators for 3, 8 etc.
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Enforcing conjunctive search

We can enforce conjunctive search (à la Google): only
consider documents (and create accumulators) if all terms
occur.

Example: just one accumulator for [Brutus Caesar] in the
example above . . .

. . . because only d1 contains both words.
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Implementation of ranking: Summary

Ranking is very expensive in applications where we have to
compute similarity scores for all documents in the collection.

In most applications, the vast majority of documents have
similarity score 0 for a given query → lots of potential for
speeding things up.

However, there is no fast nearest neighbor algorithm that is
guaranteed to be correct even in this scenario.

In practice: use heuristics to prune search space – usually
works very well.
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Take-away today

The importance of ranking: User studies at Google

Length normalization: Pivot normalization

The complete search system

Implementation of ranking
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Resources

Chapter 6 of IIR

Chapter 7 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

How Google tweaks its ranking function
Interview with Google search guru Udi Manber
Amit Singhal on Google ranking
SEO perspective: ranking factors
Yahoo Search BOSS: Opens up the search engine to
developers. For example, you can rerank search results.
Compare Google and Yahoo ranking for a query.
How Google uses eye tracking for improving search.
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Pivot normalization

source:
Lillian Lee
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Selecting k top scoring documents in O(N log k)

Goal: Keep the k top documents seen so far

Use a binary min heap

To process a new document d ′ with score s ′:

Get current minimum hm of heap (in O(1))
If s ′ ≤ hm skip to next document
If s ′ > hm heap-delete-root (in O(log k))
Heap-add d ′/s ′ (in O(1))
Reheapify (in O(log k))

Sojka, IIR Group: PV211: Evaluation & Result Summaries 6 / 67



Recap Introduction Unranked evaluation Ranked evaluation Benchmarks Result summaries

Heuristics for finding the top k even faster

Document-at-a-time processing

We complete computation of the query-document similarity
score of document di before starting to compute the
query-document similarity score of di+1.
Requires a consistent ordering of documents in the postings
lists

Term-at-a-time processing

We complete processing the postings list of query term ti

before starting to process the postings list of ti+1.
Requires an accumulator for each document “still in the
running”

The most effective heuristics switch back and forth between
term-at-a-time and document-at-a-time processing.
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Tiered index

Tier 1

Tier 2

Tier 3
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Take-away today

Introduction to evaluation: Measures of an IR system

Evaluation of unranked and ranked retrieval

Evaluation benchmarks

Result summaries
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Evaluation

How well does an IR system work?
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Measures for a search engine

How fast does it index

e.g., number of bytes per hour

How fast does it search

e.g., latency as a function of queries per second

What is the cost per query?

in dollars
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Measures for a search engine

All of the preceding criteria are measurable: we can quantify
speed / size / money

However, the key measure for a search engine is user
happiness.

What is user happiness?

Factors include:

Speed of response
Size of index
Uncluttered UI
Most important: relevance
(actually, maybe even more important: it’s free)

Note that none of these is sufficient: blindingly fast, but
useless answers won’t make a user happy.

How can we quantify user happiness?
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Who is the user?

Who is the user we are trying to make happy?

Web search engine: searcher. Success: Searcher finds what
she was looking for. Measure: rate of return to this search
engine

Web search engine: advertiser. Success: Searcher clicks on
ad. Measure: clickthrough rate

E-commerce: buyer. Success: Buyer buys something.
Measures: time to purchase, fraction of “conversions” of
searchers to buyers

E-commerce: seller. Success: Seller sells something. Measure:
profit per item sold

Enterprise: CEO. Success: Employees are more productive
(because of effective search). Measure: profit of the company
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Most common definition of user happiness: Relevance

User happiness is equated with the relevance of search results
to the query.

But how do you measure relevance?

Standard methodology in information retrieval consists of
three elements.

A benchmark document collection
A benchmark suite of queries
An assessment of the relevance of each query-document pair
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Relevance: query vs. information need

Relevance to what?

First take: relevance to the query

“Relevance to the query” is very problematic.

Information need i : “I am looking for information on whether
drinking red wine is more effective at reducing your risk of
heart attacks than white wine.”

This is an information need, not a query.

Query q: [red wine white wine heart attack]

Consider document d ′: At the heart of his speech was an

attack on the wine industry lobby for downplaying the role of

red and white wine in drunk driving.

d ′ is an excellent match for query q . . .

d ′ is not relevant to the information need i .
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Relevance: query vs. information need

User happiness can only be measured by relevance to an
information need, not by relevance to queries.

Our terminology is sloppy in these slides and in IIR: we talk
about query-document relevance judgments even though we
mean information-need-document relevance judgments.
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Precision and recall

Precision (P) is the fraction of retrieved documents that are
relevant

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)

Recall (R) is the fraction of relevant documents that are
retrieved

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)
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Precision and recall

Relevant Nonrelevant

Retrieved true positives (TP) false positives (FP)

Not retrieved false negatives (FN) true negatives (TN)

P = TP/(TP + FP)

R = TP/(TP + FN)
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Precision/recall tradeoff

You can increase recall by returning more docs.

Recall is a non-decreasing function of the number of docs
retrieved.

A system that returns all docs has 100% recall!

The converse is also true (usually): It’s easy to get high
precision for very low recall.

Suppose the document with the largest score is relevant. How
can we maximize precision?
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A combined measure: F

F allows us to trade off precision against recall.

F =
1

α 1
P

+ (1 − α) 1
R

=
(β2 + 1)PR

β2P + R
where β2 =

1 − α

α

α ∈ [0, 1] and thus β2 ∈ [0, ∞]

Most frequently used: balanced F with β = 1 or α = 0.5

This is the harmonic mean of P and R: 1
F

= 1
2 ( 1

P
+ 1

R
)

What value range of β weights recall higher than precision?

Sojka, IIR Group: PV211: Evaluation & Result Summaries 24 / 67



Recap Introduction Unranked evaluation Ranked evaluation Benchmarks Result summaries

Example for precision, recall, F1

relevant not relevant

retrieved 20 40 60
not retrieved 60 1,000,000 1,000,060

80 1,000,040 1,000,120

P = 20/(20 + 40) = 1/3

R = 20/(20 + 60) = 1/4

F1 = 2 1
1
1
3

+
1
1
4

= 2/7
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Accuracy

Why do we use complex measures like precision, recall, and F?

Why not something simple like accuracy?

Accuracy is the fraction of decisions (relevant/nonrelevant)
that are correct.

In terms of the contingency table above,
accuracy = (TP + TN)/(TP + FP + FN + TN).

Why is accuracy not a useful measure for web information
retrieval?
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Exercise

Compute precision, recall and F1 for this result set:
relevant not relevant

retrieved 18 2
not retrieved 82 1,000,000,000

The snoogle search engine below always returns 0 results (“0
matching results found”), regardless of the query. Why does
snoogle demonstrate that accuracy is not a useful measure in
IR?
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Why accuracy is a useless measure in IR

Simple trick to maximize accuracy in IR: always say no and
return nothing

You then get 99.99% accuracy on most queries.

Searchers on the web (and in IR in general) want to find
something and have a certain tolerance for junk.

It’s better to return some bad hits as long as you return
something.

→ We use precision, recall, and F for evaluation, not accuracy.
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F: Why harmonic mean?

Why don’t we use a different mean of P and R as a measure?

e.g., the arithmetic mean

The simple (arithmetic) mean is 50% for “return-everything”
search engine, which is too high.

Desideratum: Punish really bad performance on either
precision or recall.

Taking the minimum achieves this.

But minimum is not smooth and hard to weight.

F (harmonic mean) is a kind of smooth minimum.
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F1 and other averages

We can view the harmonic mean as a kind of soft minimum
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Difficulties in using precision, recall and F

We need relevance judgments for information-need-document
pairs – but they are expensive to produce.

For alternatives to using precision/recall and having to
produce relevance judgments – see end of this lecture.
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Mean Average Precision

MAP(Q) = 1
|Q|

∑|Q|
j=1

1
mj

∑mj

k=1 Precision(Rjk)

For one query it is the area under the uninterpolated
precision-recall curve,

and so the MAP is roughly the average area under the
precision-recall curve for a set of queries.
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Precision-recall curve

Precision/recall/F are measures for unranked sets.

We can easily turn set measures into measures of ranked lists.

Just compute the set measure for each “prefix”: the top 1
(P@1), top 2, top 3, top 4 etc results

Doing this for precision and recall gives you a precision-recall
curve.

Sojka, IIR Group: PV211: Evaluation & Result Summaries 34 / 67



Recap Introduction Unranked evaluation Ranked evaluation Benchmarks Result summaries

A precision-recall curve
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Each point corresponds to a result for the top k ranked hits
(k = 1, 2, 3, 4, . . .).

Interpolation (in red): Take maximum of all future points

Rationale for interpolation: The user is willing to look at more
stuff if both precision and recall get better.

Questions?
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11-point interpolated average precision

Recall Interpolated
Precision

0.0 1.00
0.1 0.67
0.2 0.63
0.3 0.55
0.4 0.45
0.5 0.41
0.6 0.36
0.7 0.29
0.8 0.13
0.9 0.10
1.0 0.08

11-point average: ≈
0.425

How can precision
at 0.0 be > 0?
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Averaged 11-point precision/recall graph
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Compute interpolated precision at recall levels 0.0, 0.1, 0.2,
. . .

Do this for each of the queries in the evaluation benchmark

Average over queries

This measure measures performance at all recall levels.

The curve is typical of performance levels at TREC.

Note that performance is not very good!
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ROC curve

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

1 − specificity

s
e

n
s
it
iv

it
y
 (

 =
 r

e
c
a

ll)

Similar to precision-recall graph

But we are only interested in the small area in the lower left
corner.

Precision-recall graph “blows up” this area.
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Variance of measures like precision/recall

For a test collection, it is usual that a system does badly on
some information needs (e.g., P = 0.2 at R = 0.1) and really
well on others (e.g., P = 0.95 at R = 0.1).

Indeed, it is usually the case that the variance of the same
system across queries is much greater than the variance of
different systems on the same query.

That is, there are easy information needs and hard ones.
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What we need for a benchmark

A collection of documents

Documents must be representative of the documents we
expect to see in reality.

A collection of information needs

. . . which we will often incorrectly refer to as queries
Information needs must be representative of the information
needs we expect to see in reality.

Human relevance assessments

We need to hire/pay “judges” or assessors to do this.
Expensive, time-consuming
Judges must be representative of the users we expect to see in
reality.
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First standard relevance benchmark: Cranfield

Pioneering: first testbed allowing precise quantitative
measures of information retrieval effectiveness

Late 1950s, UK

1398 abstracts of aerodynamics journal articles, a set of 225
queries, exhaustive relevance judgments of all
query-document-pairs

Too small, too untypical for serious IR evaluation today
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Second-generation relevance benchmark: TREC

TREC = Text Retrieval Conference (TREC)

Organized by the U.S. National Institute of Standards and
Technology (NIST)

TREC is actually a set of several different relevance
benchmarks.

Best known: TREC Ad Hoc, used for first 8 TREC evaluations
between 1992 and 1999

1.89 million documents, mainly newswire articles,
450 information needs

No exhaustive relevance judgments – too expensive

Rather, NIST assessors’ relevance judgments are available
only for the documents that were among the top k returned
for some system which was entered in the TREC evaluation
for which the information need was developed.
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Standard relevance benchmarks: Others

GOV2

Another TREC/NIST collection
25 million web pages
Used to be largest collection that is easily available
But still 3 orders of magnitude smaller than what
Google/Yahoo/MSN index

NTCIR: East Asian language and cross-language information
retrieval

CLEF: Cross Language Evaluation Forum: This evaluation
series has concentrated on European languages and
cross-language information retrieval.

Many others
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Example of more recent benchmark: ClueWeb datasets

Clueweb09:

1 billion web pages, 25 terabytes (compressed: 5 terabyte)
collected during January/February 2009

crawl of pages in 10 languages

Unique URLs: 4,780,950,903 (325 GB uncompressed, 105 GB
compressed)

Total Outlinks: 7,944,351,835 (71 GB uncompressed, 24 GB
compressed)

Clueweb12:

733,019,372 docs, 27.3 TB (5.54 TB compressed)

Indexed in Sketch Engine, cf. LREC 2012 paper.

Sojka, IIR Group: PV211: Evaluation & Result Summaries 45 / 67

https://lemurproject.org/clueweb09/
https://lemurproject.org/clueweb12/specs.php
http://is.muni.cz/repo/991165/lrec2012.pdf


Recap Introduction Unranked evaluation Ranked evaluation Benchmarks Result summaries

Validity of relevance assessments

Relevance assessments are only usable if they are consistent.

If they are not consistent, then there is no “truth” and
experiments are not repeatable.

How can we measure this consistency or agreement among
judges?

→ Kappa measure
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Kappa measure

Kappa is measure of how much judges agree or disagree.

Designed for categorical judgments

Corrects for chance agreement

P(A) = proportion of time judges agree

P(E ) = what agreement would we get by chance

κ =
P(A) − P(E )

1 − P(E )

κ =? for (i) chance agreement (ii) total agreement
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Kappa measure (2)

Values of κ in the interval [2/3, 1.0] are seen as acceptable.

With smaller values: need to redesign relevance assessment
methodology used etc.
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Calculating the kappa statistic

Judge 2 Relevance
Yes No Total

Judge 1 Yes 300 20 320
Relevance No 10 70 80

Total 310 90 400

Observed proportion of the times the judges agreed
P(A) = (300 + 70)/400 = 370/400 = 0.925
Pooled marginals
P(nonrelevant) = (80 + 90)/(400 + 400) = 170/800 = 0.2125
P(relevant) = (320 + 310)/(400 + 400) = 630/800 = 0.7878
Probability that the two judges agreed by chance P(E ) =
P(nonrelevant)2 + P(relevant)2 = 0.21252 + 0.78782 = 0.665
Kappa statistic κ = (P(A) − P(E ))/(1 − P(E )) =
(0.925 − 0.665)/(1 − 0.665) = 0.776 (still in acceptable range)
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Interjudge agreement at TREC

information number of disagreements
need docs judged

51 211 6
62 400 157
67 400 68
95 400 110

127 400 106
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Impact of interjudge disagreement

Judges disagree a lot. Does that mean that the results of
information retrieval experiments are meaningless?

No.

Large impact on absolute performance numbers

Virtually no impact on ranking of systems

Supposes we want to know if algorithm A is better than
algorithm B.

An information retrieval experiment will give us a reliable
answer to this question. . .

. . . even if there is a lot of disagreement between judges.
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Evaluation at large search engines

Recall is difficult to measure on the web

Search engines often use precision at top k, e.g., k = 10 . . .

. . . or use measures that reward you more for getting rank 1
right than for getting rank 10 right.

Search engines also use non-relevance-based measures.

Example 1: clickthrough on first result
Not very reliable if you look at a single clickthrough (you may
realize after clicking that the summary was misleading and the
document is nonrelevant). . .
. . . but pretty reliable in the aggregate.
Example 2: Ongoing studies of user behavior in the lab – recall
last lecture
Example 3: A/B testing
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A/B testing

Purpose: Test a single innovation

Prerequisite: You have a large search engine up and running.

Have most users use old system

Divert a small proportion of traffic (e.g., 1%) to the new
system that includes the innovation

Evaluate with an “automatic” measure like clickthrough on
first result

Now we can directly see if the innovation does improve user
happiness.

Probably the evaluation methodology that large search
engines trust most

Variant: Give users the option to switch to new
algorithm/interface
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Critique of pure relevance

We’ve defined relevance for an isolated query-document pair.

Alternative definition: marginal relevance

The marginal relevance of a document at position k in the
result list is the additional information it contributes over and
above the information that was contained in documents
d1 . . . dk−1.

Exercise

Why is marginal relevance a more realistic measure of user
happiness?
Give an example where a non-marginal measure like precision
or recall is a misleading measure of user happiness, but
marginal relevance is a good measure.
In a practical application, what is the difficulty of using
marginal measures instead of non-marginal measures?
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How do we present results to the user?
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How do we present results to the user?

Sojka, IIR Group: PV211: Evaluation & Result Summaries 57 / 67



Recap Introduction Unranked evaluation Ranked evaluation Benchmarks Result summaries

How do we present results to the user?

Most often: as a list – aka “10 blue links”

How should each document in the list be described?

This description is crucial.

The user often can identify good hits (= relevant hits) based
on the description.

No need to actually view any document
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Doc description in result list

Most commonly: doc title, url, some metadata . . .

. . . and a summary

How do we “compute” the summary?
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Summaries

Two basic kinds: (i) static (ii) dynamic

A static summary of a document is always the same,
regardless of the query that was issued by the user.

Dynamic summaries are query-dependent. They attempt to
explain why the document was retrieved for the query at hand.
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Static summaries

In typical systems, the static summary is a subset of the
document.

Simplest heuristic: the first 50 or so words of the document

More sophisticated: extract from each document a set of
“key” sentences

Simple NLP heuristics to score each sentence
Summary is made up of top-scoring sentences.
Machine learning approach: see IIR 13

Most sophisticated: complex NLP to synthesize/generate a
summary

For most IR applications: not quite ready for prime time yet
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Dynamic summaries

Present one or more “windows” or snippets within the
document that contain several of the query terms.

Prefer snippets in which query terms occurred as a phrase

Prefer snippets in which query terms occurred jointly in a
small window

The summary that is computed this way gives the entire
content of the window – all terms, not just the query terms.
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Google dynamic summaries for [vegetarian diet running]

Good example
that snippet
selection is
non-trivial.

Criteria:
occurrence of
keywords, density
of keywords,
coherence of
snippet, number
of different
snippets in
summary, good
cutting points etc
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A dynamic summary

Query: [new guinea economic development]

Snippets (in bold) that were extracted from a document: . . . In recent years,

Papua New Guinea has faced severe economic difficulties and economic
growth has slowed, partly as a result of weak governance and civil war, and
partly as a result of external factors such as the Bougainville civil war which led
to the closure in 1989 of the Panguna mine (at that time the most important
foreign exchange earner and contributor to Government finances), the Asian
financial crisis, a decline in the prices of gold and copper, and a fall in the
production of oil. PNG’s economic development record over the past few

years is evidence that governance issues underly many of the country’s
problems. Good governance, which may be defined as the transparent and
accountable management of human, natural, economic and financial resources
for the purposes of equitable and sustainable development, flows from proper
public sector management, efficient fiscal and accounting mechanisms, and a
willingness to make service delivery a priority in practice. . . .
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Generating dynamic summaries

Where do we get these other terms in the snippet from?

We cannot construct a dynamic summary from the positional
inverted index – at least not efficiently.

We need to cache documents.

The positional index tells us: query term occurs at position
4378 in the document.

Byte offset or word offset?

Note that the cached copy can be outdated

Don’t cache very long documents – just cache a short prefix
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Dynamic summaries

Real estate on the search result page is limited → snippets
must be short . . .

. . . but snippets must be long enough to be meaningful.

Snippets should communicate whether and how the document
answers the query.

Ideally: linguistically well-formed snippets

Ideally: the snippet should answer the query, so we don’t have
to look at the document.

Dynamic summaries are a big part of user happiness because
. . .

. . . we can quickly scan them to find the relevant document we
then click on.
. . . in many cases, we don’t have to click at all and save time.
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Resources

Chapter 8 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

The TREC home page – TREC had a huge impact on
information retrieval evaluation.
Originator of F -measure: Keith van Rijsbergen
More on A/B testing
Too much A/B testing at Google?
Tombros & Sanderson 1998: one of the first papers on
dynamic summaries
Google VP of Engineering on search quality evaluation at
Google
ClueWeb12 or other datasets available in Sketch Engine
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Overview
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Take-away today

Interactive relevance feedback: improve initial retrieval results
by telling the IR system which docs are relevant / nonrelevant

Best known relevance feedback method: Rocchio feedback

Query expansion: improve retrieval results by adding
synonyms / related terms to the query

Sources for related terms: Manual thesauri, automatic
thesauri, query logs
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How can we improve recall in search?

Main topic today: two ways of improving recall: relevance
feedback and query expansion

As an example consider query q: [aircraft] . . .

. . . and document d containing “plane”, but not containing
“aircraft”

A simple IR system will not return d for q.

Even if d is the most relevant document for q!

We want to change this:

Return relevant documents even if there is no term match with
the (original) query
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Recall

Loose definition of recall in this lecture: “increasing the
number of relevant documents returned to user”

This may actually decrease recall on some measures, e.g.,
when expanding “jaguar” with “panthera”

. . . which eliminates some relevant documents, but increases
relevant documents returned on top pages
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Options for improving recall

Local: Do a “local”, on-demand analysis for a user query

Main local method: relevance feedback
Part 1

Global: Do a global analysis once (e.g., of collection) to
produce thesaurus

Use thesaurus for query expansion
Part 2
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Google examples for query expansion

One that works well

˜flights -flight

One that doesn’t work so well

˜dogs -dog
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Relevance feedback: Basic idea

The user issues a (short, simple) query.

The search engine returns a set of documents.

User marks some docs as relevant, some as non-relevant.

Search engine computes a new representation of the
information need. Hope: better than the initial query.

Search engine runs new query and returns new results.

New results have (hopefully) better recall.

We can iterate this: several rounds of relevance feedback.

We will use the term ad hoc retrieval to refer to regular
retrieval without relevance feedback.
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Relevance feedback: Examples

We will now look at three different examples of relevance
feedback that highlight different aspects of the process.
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Relevance Feedback: Example 1
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Results for initial query
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User feedback: Select what is relevant
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Results after relevance feedback
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Vector space example: query “canine” (1)

source:

Fernando Díaz
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Similarity of docs to query “canine”

source:

Fernando Díaz
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User feedback: Select relevant documents

source:

Fernando Díaz
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Results after relevance feedback

source:

Fernando Díaz
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Example 3: A real (non-image) example

Initial query: [new space satellite applications]

Results for initial query: (r = rank)

r

+ 1 0.539 NASA Hasn’t Scrapped Imaging Spectrometer
+ 2 0.533 NASA Scratches Environment Gear From Satellite Plan

3 0.528 Science Panel Backs NASA Satellite Plan, But Urges Launches
of Smaller Probes

4 0.526 A NASA Satellite Project Accomplishes Incredible Feat: Staying
Within Budget

5 0.525 Scientist Who Exposed Global Warming Proposes Satellites for
Climate Research

6 0.524 Report Provides Support for the Critics Of Using Big Satellites
to Study Climate

7 0.516 Arianespace Receives Satellite Launch Pact From Telesat
Canada

+ 8 0.509 Telecommunications Tale of Two Companies

User then marks relevant documents with “+”.
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Expanded query after relevance feedback

2.074 new 15.106 space
30.816 satellite 5.660 application
5.991 nasa 5.196 eos
4.196 launch 3.972 aster
3.516 instrument 3.446 arianespace
3.004 bundespost 2.806 ss
2.790 rocket 2.053 scientist
2.003 broadcast 1.172 earth
0.836 oil 0.646 measure

Compare to original query: [new space satellite applications]
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Results for expanded query (old ranks in parens)

r

* 1 (2) 0.513 NASA Scratches Environment Gear From Satellite
Plan

* 2 (1) 0.500 NASA Hasn’t Scrapped Imaging Spectrometer
3 0.493 When the Pentagon Launches a Secret Satellite,

Space Sleuths Do Some Spy Work of Their Own
4 0.493 NASA Uses ‘Warm’ Superconductors For Fast Cir-

cuit
* 5 (8) 0.492 Telecommunications Tale of Two Companies

6 0.491 Soviets May Adapt Parts of SS-20 Missile For Com-
mercial Use

7 0.490 Gaping Gap: Pentagon Lags in Race To Match the
Soviets In Rocket Launchers

8 0.490 Rescue of Satellite By Space Agency To Cost $90
Million
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Key concept for relevance feedback: Centroid

The centroid is the center of mass of a set of points.

Recall that we represent documents as points in a
high-dimensional space.

Thus: we can compute centroids of documents.

Definition:

~µ(D) =
1

|D|

∑

d∈D

~v(d)

where D is a set of documents and ~v(d) = ~d is the vector we
use to represent document d .
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Centroid: Examples

xx
x

x

⋄

⋄
⋄

⋄

⋄

⋄
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Rocchio algorithm

The Rocchio algorithm implements relevance feedback in the
vector space model.

Rocchio chooses the query ~qopt that maximizes

~qopt = arg max
~q

[sim(~q, µ(Dr )) − sim(~q, µ(Dnr ))]

Dr : set of relevant docs; Dnr : set of nonrelevant docs

Intent: ~qopt is the vector that separates relevant and
non-relevant docs maximally.

Making some additional assumptions, we can rewrite ~qopt as:

~qopt = µ(Dr ) + [µ(Dr ) − µ(Dnr )]
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Rocchio algorithm

The optimal query vector is:

~qopt = µ(Dr ) + [µ(Dr ) − µ(Dnr )]

=
1

|Dr |

∑

~dj ∈Dr

~dj + [
1

|Dr |

∑

~dj ∈Dr

~dj −
1

|Dnr |

∑

~dj ∈Dnr

~dj ]

We move the centroid of the relevant documents by the
difference between the two centroids.
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Exercise: Compute Rocchio vector

x

x

x

x

xx

circles: relevant documents, Xs: nonrelevant documents
compute: ~qopt = µ(Dr ) + [µ(Dr ) − µ(Dnr )]
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Rocchio illustrated

x

x

x

x

xx

~µR

~µNR

~µR − ~µNR~qopt

circles: relevant documents, Xs: nonrelevant documents ~µR :
centroid of relevant documents ~µR does not separate
relevant/nonrelevant. ~µNR : centroid of nonrelevant documents
~µR − ~µNR : difference vector Add difference vector to ~µR . . . . . . to
get ~qopt ~qopt separates relevant/nonrelevant perfectly.
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Terminology

So far, we have used the name Rocchio for the theoretically
better motivated original version of Rocchio.

The implementation that is actually used in most cases is the
SMART implementation – this SMART version of Rocchio is
what we will refer to from now on.

Sojka, IIR Group: PV211: Relevance feedback & Query expansion 30 / 1



Rocchio 1971 algorithm (SMART)

Used in practice:

~qm = α~q0 + βµ(Dr ) − γµ(Dnr )

= α~q0 + β
1

|Dr |

∑

~dj ∈Dr

~dj − γ
1

|Dnr |

∑

~dj ∈Dnr

~dj

qm: modified query vector; q0: original query vector; Dr and
Dnr : sets of known relevant and nonrelevant documents
respectively; α, β, and γ: weights

New query moves towards relevant documents and away from
nonrelevant documents.

Tradeoff α vs. β/γ: If we have a lot of judged documents, we
want a higher β/γ.

Set negative term weights to 0.

“Negative weight” for a term doesn’t make sense in the vector
space model.
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Positive vs. negative relevance feedback

Positive feedback is more valuable than negative feedback.

For example, set β = 0.75, γ = 0.25 to give higher weight to
positive feedback.

Many systems only allow positive feedback.
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Relevance feedback: Assumptions

When can relevance feedback enhance recall?

Assumption A1: The user knows the terms in the collection
well enough for an initial query.

Assumption A2: Relevant documents contain similar terms
(so I can “hop” from one relevant document to a different one
when giving relevance feedback).
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Violation of A1

Assumption A1: The user knows the terms in the collection
well enough for an initial query.

Violation: Mismatch of searcher’s vocabulary and collection
vocabulary

Example: cosmonaut / astronaut
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Violation of A2

Assumption A2: Relevant documents are similar.

Example for violation: [contradictory government policies]

Several unrelated “prototypes”

Subsidies for tobacco farmers vs. anti-smoking campaigns
Aid for developing countries vs. high tariffs on imports from
developing countries

Relevance feedback on tobacco docs will not help with finding
docs on developing countries.
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Relevance feedback: Assumptions

When can relevance feedback enhance recall?

Assumption A1: The user knows the terms in the collection
well enough for an initial query.

Assumption A2: Relevant documents contain similar terms
(so I can “hop” from one relevant document to a different one
when giving relevance feedback).
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Relevance feedback: Evaluation

Pick an evaluation measure, e.g., precision in top 10: P@10

Compute P@10 for original query q0

Compute P@10 for modified relevance feedback query q1

In most cases: q1 is spectacularly better than q0!

Is this a fair evaluation?
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Relevance feedback: Evaluation

Fair evaluation must be on “residual” collection: docs not yet
judged by user.

Studies have shown that relevance feedback is successful when
evaluated this way.

Empirically, one round of relevance feedback is often very
useful. Two rounds are marginally useful.
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Evaluation: Caveat

True evaluation of usefulness must compare to other methods
taking the same amount of time.

Alternative to relevance feedback: User revises and resubmits
query.

Users may prefer revision/resubmission to having to judge
relevance of documents.

There is no clear evidence that relevance feedback is the “best
use” of the user’s time.
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Exercise

Do search engines use relevance feedback?

Why?
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Relevance feedback: Problems

Relevance feedback is expensive.

Relevance feedback creates long modified queries.
Long queries are expensive to process.

Users are reluctant to provide explicit feedback.

It’s often hard to understand why a particular document was
retrieved after applying relevance feedback.

The search engine Excite had full relevance feedback at one
point, but abandoned it later.
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Pseudo-relevance feedback

Pseudo-relevance feedback automates the “manual” part of
true relevance feedback.

Pseudo-relevance feedback algorithm:

Retrieve a ranked list of hits for the user’s query
Assume that the top k documents are relevant.
Do relevance feedback (e.g., Rocchio)

Works very well on average

But can go horribly wrong for some queries.

Because of query drift
If you do several iterations of pseudo-relevance feedback, then
you will get query drift for a large proportion of queries.

Sojka, IIR Group: PV211: Relevance feedback & Query expansion 42 / 1



Pseudo-relevance feedback at TREC4

Cornell SMART system

Results show number of relevant documents out of top 100
for 50 queries (so total number of documents is 5000):

method number of relevant documents

lnc.ltc 3210
lnc.ltc-PsRF 3634
Lnu.ltu 3709
Lnu.ltu-PsRF 4350

Results contrast two length normalization schemes (L vs. l)
and pseudo-relevance feedback (PsRF).

The pseudo-relevance feedback method used added only 20
terms to the query. (Rocchio will add many more.)

This demonstrates that pseudo-relevance feedback is effective
on average.
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Query expansion: Example
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Types of user feedback

User gives feedback on documents.

More common in relevance feedback

User gives feedback on words or phrases.

More common in query expansion
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Query expansion

Query expansion is another method for increasing recall.

We use “global query expansion” to refer to “global methods
for query reformulation”.

In global query expansion, the query is modified based on
some global resource, i.e. a resource that is not
query-dependent.

Main information we use: (near-)synonymy
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“Global” resources used for query expansion

A publication or database that collects (near-)synonyms is
called a thesaurus.

Manual thesaurus (maintained by editors, e.g., PubMed)

Automatically derived thesaurus (e.g., based on co-occurrence
statistics)

Query-equivalence based on query log mining (common on the
web as in the “palm” example)
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Thesaurus-based query expansion

For each term t in the query, expand the query with words the
thesaurus lists as semantically related with t.

Example from earlier: hospital → medical

Generally increases recall

May significantly decrease precision, particularly with
ambiguous terms

interest rate → interest rate fascinate

Widely used in specialized search engines for science and
engineering

It’s very expensive to create a manual thesaurus and to
maintain it over time.
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Example for manual thesaurus: PubMed
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Automatic thesaurus generation

Attempt to generate a thesaurus automatically by analyzing
the distribution of words in documents

Fundamental notion: similarity between two words

Definition 1: Two words are similar if they co-occur with
similar words.

“car” ≈ “motorcycle” because both occur with “road”, “gas”
and “license”, so they must be similar.

Definition 2: Two words are similar if they occur in a given
grammatical relation with the same words.

You can harvest, peel, eat, prepare, etc. apples and pears, so
apples and pears must be similar.

Co-occurrence is more robust, grammatical relations are more
accurate.
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Co-occurence-based thesaurus: Examples

Word Nearest neighbors

absolutely absurd whatsoever totally exactly nothing
bottomed dip copper drops topped slide trimmed
captivating shimmer stunningly superbly plucky witty
doghouse dog porch crawling beside downstairs
makeup repellent lotion glossy sunscreen skin gel
mediating reconciliation negotiate case conciliation
keeping hoping bring wiping could some would
lithographs drawings Picasso Dali sculptures Gauguin
pathogens toxins bacteria organisms bacterial parasite
senses grasp psyche truly clumsy naive innate

WordSpace demo on web
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Query expansion at search engines

Main source of query expansion at search engines: query logs

Example 1: After issuing the query [herbs], users frequently
search for [herbal remedies].

→ “herbal remedies” is potential expansion of “herb”.

Example 2: Users searching for [flower pix] frequently click on
the URL photobucket.com/flower. Users searching for [flower
clipart] frequently click on the same URL.

→ “flower clipart” and “flower pix” are potential expansions of
each other.
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Take-away today

Interactive relevance feedback: improve initial retrieval results
by telling the IR system which docs are relevant / nonrelevant

Best known relevance feedback method: Rocchio feedback

Query expansion: improve retrieval results by adding
synonyms / related terms to the query

Sources for related terms: Manual thesauri, automatic
thesauri, query logs
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Resources

Chapter 9 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Daniel Tunkelang’s articles on query understanding, namely on
query relaxation and query expansion.
Salton and Buckley 1990 (original relevance feedback paper)
Spink, Jansen, Ozmultu 2000: Relevance feedback at Excite
Justin Bieber: related searches fail
Word Space
Schütze 1998: Automatic word sense discrimination (describes
a simple method for automatic thesaurus generation)
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IR and relational databases

IR systems are often contrasted with relational databases (RDB).

Traditionally, IR systems retrieve information from
unstructured text (“raw” text without markup).

RDB systems are used for querying relational data: sets of
records that have values for predefined attributes such as
employee number, title and salary.

RDB search unstructured IR

objects records unstructured docs

main data structure table inverted index

model relational model vector space & others

queries SQL free text queries

Some structured data sources containing text are best modeled as
structured documents rather than relational data (Structured
retrieval).
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Structured retrieval

Basic setting: queries are structured or unstructured; documents
are structured.

Applications of structured retrieval

Digital libraries, patent databases, blogs, tagged text with entities
like persons and locations (named entity tagging).

Example

Digital libraries: give me a full-length article on fast Fourier
transforms

Patents: give me patents whose claims mention RSA public
key encryption and that cite US patent 4,405,829

Entity-tagged text: give me articles about sightseeing tours of
the Vatican and the Coliseum
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Why RDB is not suitable in this case

Three main problems
1 An unranked system (DB) would return a potentially large

number of articles that mention the Vatican, the Coliseum
and sightseeing tours without ranking them by relevance to
the query.

2 Difficult for users to precisely state structural
constraints—may not know which structured elements are
supported by the system.
tours AND (COUNTRY: Vatican OR LANDMARK:

Coliseum) ?
tours AND (STATE: Vatican OR BUILDING: Coliseum)
?

3 Users may be completely unfamiliar with structured search
and advanced search interfaces or unwilling to use them.

Solution: adapt ranked retrieval to structured documents to
address these problems.
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Structured Retrieval

RDB search, Unstructured IR, Structured IR

RDB search unstructured retrieval structured retrieval

objects records unstructured docs trees with text at leaves

main data table inverted index ?
structure

model relational model vector space & others ?

queries SQL free text queries ?

Standard for encoding structured documents: Extensible Markup
Language (XML)

structured IR → XML IR

also applicable to other types of markup (HTML, SGML,. . . )
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XML document

Ordered, labeled tree

Each node of the tree is
an XML element, written
with an opening and
closing XML tag (e.g.
<title...>, </title...>)

An element can have one
or more XML attributes
(e.g. number)

Attributes can have
values (e.g. vii)

Attributes can have child
elements (e.g. title,
verse)

<play>
<author>Shakespeare</author>
<title>Macbeth</title>
<act number="I">
<scene number="vii">
<title>Macbeth’s
castle</title>
<verse>Will I with wine
...</verse>
</scene>
</act>
</play>
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XML document

root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number="I"

element

scene

attribute

number="vii"

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle
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XML document

The leaf nodes consist of text

root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number="I"

element

scene

attribute

number="vii"

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle
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XML document

The internal nodes encode document structure or metadata functions

root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number="I"

element

scene

attribute

number="vii"

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle
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XML basics

XML Document Object Model (XML DOM): standard for
accessing and processing XML documents

The DOM represents elements, attributes and text within
elements as nodes in a tree.
With a DOM API, we can process an XML document by
starting at the root element and then descending down the
tree from parents to children.

XPath: standard for enumerating paths in an XML document
collection.

We will also refer to paths as XML contexts or simply contexts

Schema: puts constraints on the structure of allowable XML
documents. E.g. a schema for Shakespeare’s plays: scenes can
only occur as children of acts.

Two standards for schemas for XML documents are: XML
DTD (document type definition) and XML Schema.
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First challenge: document parts to retrieve

Structured or XML retrieval: users want us to return parts of
documents (i.e., XML elements), not entire documents as IR
systems usually do in unstructured retrieval.

Example

If we query Shakespeare’s plays for Macbeth’s castle, should we
return the scene, the act or the entire play?

In this case, the user is probably looking for the scene.

However, an otherwise unspecified search for Macbeth should
return the play of this name, not a subunit.

Solution: structured document retrieval principle
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Structured document retrieval principle

Structured document retrieval principle

One criterion for selecting the most appropriate part of a
document:

A system should always retrieve the most specific part of
a document answering the query.

Motivates a retrieval strategy that returns the smallest unit
that contains the information sought, but does not go below
this level.

Hard to implement this principle algorithmically. E.g. query:
title:Macbeth can match both the title of the tragedy,
Macbeth, and the title of Act I, Scene vii, Macbeth’s castle.

But in this case, the title of the tragedy (higher node) is
preferred.
Difficult to decide which level of the tree satisfies the query.
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Second challenge: document parts to index

Central notion for indexing and ranking in IR: document unit or
indexing unit.

In unstructured retrieval, usually straightforward: files on your
desktop, email messages, web pages on the web etc.

In structured retrieval, there are four main different
approaches to defining the indexing unit.

1 non-overlapping pseudodocuments
2 top down
3 bottom up
4 all
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XML indexing unit: approach 1

Group nodes into non-overlapping pseudodocuments.

Indexing units: books, chapters, sections, but without overlap.
Disadvantage: pseudodocuments may not make sense to the user
because they are not coherent units.
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XML indexing unit: approach 2

Top down (2-stage process):

1 start with one of the largest elements as the indexing unit,
e.g. the book element in a collection of books

2 then, postprocess search results to find for each book the
subelement that is the best hit.

This two-stage retrieval process often fails to return the best
subelement because the relevance of a whole book is often not a
good predictor of the relevance of small subelements within it.
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XML indexing unit: approach 3

Bottom up:
Instead of retrieving large units and identifying subelements (top
down), we can search all leaves, select the most relevant ones and
then extend them to larger units in postprocessing.
Similar problem as top down: the relevance of a leaf element is

often not a good predictor of the relevance of elements it is
contained in.
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XML indexing unit: approach 4

Index all elements: the least restrictive approach.
Also problematic:

many XML elements are not meaningful search results, e.g.,
an ISBN number.

indexing all elements means that search results will be highly
redundant.

Example

For the query Macbeth’s castle we would return all of the play,
act, scene and title elements on the path between the root node
and Macbeth’s castle. The leaf node would then occur 4 times in
the result set: 1 directly and 3 as part of other elements.

We call elements that are contained within each other nested
elements. Returning redundant nested elements in a list of
returned hits is not very user-friendly.
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Third challenge: nested elements

Because of the redundancy caused by nested elements it is
common to restrict the set of elements eligible for retrieval.
Restriction strategies include:

discard all small elements

discard all element types that users do not look at (working
XML retrieval system logs)

discard all element types that assessors generally do not judge
to be relevant (if relevance assessments are available)

only keep element types that a system designer or librarian
has deemed to be useful search results

In most of these approaches, result sets will still contain nested
elements.
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Third challenge: nested elements

Further techniques:

remove nested elements in a postprocessing step to reduce
redundancy.

collapse several nested elements in the results list and use
highlighting of query terms to draw the user’s attention to
the relevant passages.

Highlighting

Gain 1: enables users to scan medium-sized elements (e.g., a
section); thus, if the section and the paragraph both occur in
the results list, it is sufficient to show the section.

Gain 2: paragraphs are presented in-context (i.e., their
embedding section). This context may be helpful in
interpreting the paragraph.
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Nested elements and term statistics

Further challenge related to nesting: we may need to distinguish
different contexts of a term when we compute term statistics for
ranking, in particular inverse document frequency (idfi).

Example

The term Gates under the node author is unrelated to an
occurrence under a content node like section if used to refer to the
plural of gate. It makes little sense to compute a single document
frequency for Gates in this example.

Solution: compute idf for XML-context term pairs.

sparse data problems (many XML-context pairs occur too
rarely to reliably estimate df )

compromise: consider the parent node x of the term and not
the rest of the path from the root to x to distinguish contexts.
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Main idea: lexicalised subtrees

Aim: to have each dimension of the vector space encode a word
together with its position within the XML tree.
How: Map XML documents to lexicalised subtrees.
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Main idea: lexicalised subtrees

1 Take each text node (leaf) and break it into multiple nodes,
one for each word. E.g. split Bill Gates into Bill and Gates.

2 Define the dimensions of the vector space to be lexicalized
subtrees of documents – subtrees that contain at least one
vocabulary term.
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Lexicalised subtrees

We can now represent queries and documents as vectors in this
space of lexicalized subtrees and compute matches between them,
e.g. using the vector space formalism.

Vector space formalism in unstructured VS. structured IR

The main difference is that the dimensions of vector space in
unstructured retrieval are vocabulary terms whereas they are
lexicalized subtrees in XML retrieval.
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Structural term

There is a tradeoff between the dimensionality of the space and
accuracy of query results.

If we restrict dimensions to vocabulary terms, then we have a
standard vector space retrieval system that will retrieve many
documents that do not match the structure of the query (e.g.,
Gates in the title as opposed to the author element).

If we create a separate dimension for each lexicalized subtree
occurring in the collection, the dimensionality of the space
becomes too large.

Compromise: index all paths that end in a single vocabulary term,
in other words, all XML-context term pairs. We call such an
XML-context term pair a structural term and denote it by 〈c , t〉: a
pair of XML-context c and vocabulary term t.
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Context resemblance

A simple measure of the similarity of a path cq in a query and a
path cd in a document is the following context resemblance
function Cr:

Cr(cq, cd) =

{

1+|cq |
1+|cd | if cq matches cd

0 if cq does not match cd

(1)

|cq| and |cd | are the number of nodes in the query path and
document path, resp.

cq matches cd iff we can transform cq into cd by inserting
additional nodes.
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Context resemblance example

Gates

book

Gates

author

book

Gates

creator

book

Gates

lastname

Bill

firstname

author

book

q3 q4 d2 d3

Cr(cq, cd) =

{

1+|cq |
1+|cd | if cq matches cd

0 if cq does not match cd

Cr(cq4 , cd2) = 3/4 = 0.75. The value of Cr(cq, cd) is 1.0 if q
and d are identical.
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Context resemblance exercise

Gates

book

Gates

author

book

Gates

creator

book

Gates

lastname

Bill

firstname

author

book

q3 q4 d2 d3

Cr(cq, cd) =

{

1+|cq |
1+|cd | if cq matches cd

0 if cq does not match cd

Cr(cq4 , cd3) =?
Cr(cq4 , cd3) = 3/5 = 0.6.
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Document similarity measure

The final score for a document is computed as a variant of the
cosine measure, which we call SimNoMerge.
SimNoMerge(q, d) =

∑

ck∈B

∑

cl ∈B

Cr(ck , cl)
∑

t∈V

weight(q, t, ck)
weight(d , t, cl)

√

∑

c∈B,t∈V weight2(d , t, c)

V is the vocabulary of non-structural terms

B is the set of all XML contexts

weight(q, t, c), weight(d , t, c) are the weights of term t in
XML context c in query q and document d , resp. (standard
weighting e.g. idft · wft,d , where idft depends on which
elements we use to compute dft . )

SimNoMerge(q, d) is not a true cosine measure since its value
can be larger than 1.0.
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SimNoMerge algorithm

ScoreDocumentsWithSimNoMerge(q, B, V , N, normalizer)
1 for n← 1 to N
2 do score[n]← 0
3 for each 〈cq, t〉 ∈ q
4 do wq ←Weight(q, t, cq)
5 for each c ∈ B
6 do if Cr(cq, c) > 0
7 then postings ← GetPostings(〈c , t〉)
8 for each posting ∈ postings
9 do x ← Cr(cq, c) ∗ wq ∗ weight(posting)

10 score[docID(posting)]+ = x
11 for n← 1 to N
12 do score[n]← score[n]/normalizer [n]
13 return score
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Initiative for the Evaluation of XML Retrieval (INEX)

INEX: standard benchmark evaluation (yearly) that has produced
test collections (documents, sets of queries, and relevance
judgments).
Based on IEEE journal collection (since 2006 INEX uses the much
larger English Wikipedia as a test collection).
The relevance of documents is judged by human assessors.

INEX 2002 collection statistics

12,107 number of documents
494 MB size
1995–2002 time of publication of articles
1,532 average number of XML nodes per document
6.9 average depth of a node
30 number of CAS topics
30 number of CO topics
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INEX topics

Two types:

1 content-only or CO topics: regular keyword queries as in
unstructured information retrieval

2 content-and-structure or CAS topics: have structural
constraints in addition to keywords

Since CAS queries have both structural and content criteria,
relevance assessments are more complicated than in unstructured
retrieval.
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INEX relevance assessments

INEX 2002 defined component coverage and topical relevance as
orthogonal dimensions of relevance.

Component coverage

Evaluates whether the element retrieved is “structurally” correct, i.e.,
neither too low nor too high in the tree.

We distinguish four cases:

1 Exact coverage (E): The information sought is the main topic of
the component and the component is a meaningful unit of
information.

2 Too small (S): The information sought is the main topic of the
component, but the component is not a meaningful
(self-contained) unit of information.

3 Too large (L): The information sought is present in the
component, but is not the main topic.

4 No coverage (N): The information sought is not a topic of the
component.
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INEX relevance assessments

The topical relevance dimension also has four levels: highly
relevant (3), fairly relevant (2), marginally relevant (1) and
nonrelevant (0).

Combining the relevance dimensions

Components are judged on both dimensions and the judgments are
then combined into a digit-letter code, e.g. 2S is a fairly relevant
component that is too small. In theory, there are 16 combinations
of coverage and relevance, but many cannot occur. For example, a
nonrelevant component cannot have exact coverage, so the
combination 3N is not possible.
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INEX relevance assessments

The relevance-coverage combinations are quantized as follows:

Q(rel , cov) =



























1.00 if (rel , cov) = 3E
0.75 if (rel , cov) ∈ {2E, 3L}
0.50 if (rel , cov) ∈ {1E, 2L, 2S}
0.25 if (rel , cov) ∈ {1S, 1L}
0.00 if (rel , cov) = 0N

This evaluation scheme takes account of the fact that binary
relevance judgments, which are standard in unstructured IR, are
not appropriate for XML retrieval. The quantization function Q
does not impose a binary choice relevant/nonrelevant and instead
allows us to grade the component as partially relevant. The
number of relevant components in a retrieved set A of components
can then be computed as:

#(relevant items retrieved) =
∑

c∈A

Q(rel(c), cov(c))
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INEX evaluation measures

As an approximation, the standard definitions of precision and
recall can be applied to this modified definition of relevant items
retrieved, with some subtleties because we sum graded as opposed
to binary relevance assessments.

Drawback

Overlap is not accounted for. Accentuated by the problem of
multiple nested elements occurring in a search result.

Recent INEX focus: develop algorithms and evaluation measures
that return non-redundant results lists and evaluate them properly.
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MIaS: Math Indexer and Searcher

https://mir.fi.muni.cz
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Recap

Structured or XML IR: effort to port unstructured (standard)
IR know-how onto a scenario that uses structured (DB-like)
data

Specialised applications (e.g. patents, digital libraries)

A decade old, unsolved problem

http://inex.is.informatik.uniduisburg.de/
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Relevance feedback: Basic idea

The user issues a (short, simple) query.

The search engine returns a set of documents.

User marks some docs as relevant, some as irrelevant.

Search engine computes a new representation of the
information need – should be better than the initial query.

Search engine runs new query and returns new results.

New results have (hopefully) better recall.
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Rocchio illustrated

x

x

x

x

xx

~µR

~µNR

~µR − ~µNR~qopt
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Types of query expansion

Manual thesaurus (maintained by editors, e.g., PubMed)

Automatically derived thesaurus (e.g., based on co-occurrence
statistics)

Query-equivalence based on query log mining (common on the
web as in the “palm” example)
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Query expansion at search engines

Main source of query expansion at search engines: query logs

Example 1: After issuing the query [herbs], users frequently
search for [herbal remedies].

→ “herbal remedies” is potential expansion of “herb”.

Example 2: Users searching for [flower pix] frequently click on
the URL photobucket.com/flower. Users searching for [flower
clipart] frequently click on the same URL.

→ “flower clipart” and “flower pix” are potential expansions of
each other.
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Take-away today

Probabilistically grounded approach to IR

Probability Ranking Principle

Models: BIM, BM25

Assumptions these models make
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Relevance feedback from last lecture

Previous lecture: in relevance feedback, the user marks
documents as relevant/irrelevant

Given some known relevant and irrelevant documents, we
compute weights for non-query terms that indicate how likely
they will occur in relevant documents.

Today: develop a probabilistic approach for relevance
feedback and also a general probabilistic model for IR.
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Probabilistic Approach to Retrieval

Given a user information need (represented as a query) and a
collection of documents (transformed into document
representations), a system must determine how well the
documents satisfy the query

An IR system has an uncertain understanding of the user
query, and makes an uncertain guess of whether a document
satisfies the query

Probability theory provides a principled foundation for such
reasoning under uncertainty

Probabilistic models exploit this foundation to estimate how
likely it is that a document is relevant to a query
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Probabilistic IR Models at a Glance

Classical probabilistic retrieval model
Probability ranking principle

Binary Independence Model, BestMatch25 (Okapi)

Bayesian networks for text retrieval

Language model approach to IR

Important recent work, will be covered in the next lecture

Probabilistic methods are one of the oldest but also one of the
currently hottest topics in IR
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Exercise: Probabilistic model vs. other models

Boolean model

Probabilistic models support ranking and thus are better than
the simple Boolean model.

Vector space model

The vector space model is also a formally defined model that
supports ranking.
Why would we want to look for an alternative to the vector
space model?
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Probabilistic vs. vector space model

Vector space model: rank documents according to similarity
to query.

The notion of similarity does not translate directly into an
assessment of “is the document a good document to give to
the user or not?”

The most similar document can be highly relevant or
completely irrelevant.

Probability theory is arguably a cleaner formalization of what
we really want an IR system to do: give relevant documents
to the user.
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Basic Probability Theory

For events A and B
Joint probability P(A ∩ B) of both events occurring
Conditional probability P(A|B) of event A occurring given that
event B has occurred

Chain rule gives fundamental relationship between joint and
conditional probabilities:

P(AB) = P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

Similarly for the complement of an event P(A):

P(AB) = P(B|A)P(A)

Partition rule: if B can be divided into an exhaustive set of
disjoint subcases, then P(B) is the sum of the probabilities of
the subcases. A special case of this rule gives:

P(B) = P(AB) + P(AB)
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Basic Probability Theory

Bayes’ Rule for inverting conditional probabilities:

P(A|B) =
P(B|A)P(A)

P(B)
=

[

P(B|A)
∑

X∈{A,A} P(B|X )P(X )

]

P(A)

Can be thought of as a way of updating probabilities:

Start off with prior probability P(A) (initial estimate of how
likely event A is in the absence of any other information)

Derive a posterior probability P(A|B) after having seen the
evidence B, based on the likelihood of B occurring in the two
cases that A does or does not hold

Odds of an event provide a kind of multiplier for how probabilities
change:

Odds: O(A) =
P(A)

P(A)
=

P(A)

1 − P(A)
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The Document Ranking Problem

Ranked retrieval setup: given a collection of documents, the
user issues a query, and an ordered list of documents is
returned

Assume binary notion of relevance: Rd,q is a random
dichotomous variable, such that

Rd,q = 1 if document d is relevant w.r.t query q

Rd,q = 0 otherwise

Probabilistic ranking orders documents decreasingly by their
estimated probability of relevance w.r.t. query: P(R = 1|d , q)

Assume that the relevance of each document is independent
of the relevance of other documents
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Probability Ranking Principle (PRP)

PRP in brief

If the retrieved documents (w.r.t a query) are ranked
decreasingly on their probability of relevance, then the
effectiveness of the system will be the best that is obtainable

PRP in full

If [the IR] system’s response to each [query] is a ranking of the
documents [...] in order of decreasing probability of relevance
to the [query], where the probabilities are estimated as
accurately as possible on the basis of whatever data have been
made available to the system for this purpose, the overall
effectiveness of the system to its user will be the best that is
obtainable on the basis of those data
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Binary Independence Model (BIM)

Traditionally used with the PRP

Assumptions:

‘Binary’ (equivalent to Boolean): documents and queries
represented as binary term incidence vectors

E.g., document d represented by vector ~x = (x1, . . . , xM),
where xt = 1 if term t occurs in d and xt = 0 otherwise
Different documents may have the same vector representation

‘Independence’: no association between terms (not true, but
practically works - ‘naive’ assumption of Naive Bayes models)
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Binary Independence Model

To make a probabilistic retrieval strategy precise, need to estimate
how terms in documents contribute to relevance

Find measurable statistics (term frequency, document
frequency, document length) that affect judgments about
document relevance

Combine these statistics to estimate the probability P(R|d , q)
of document relevance

Next: how exactly we can do this
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Binary Independence Model

P(R|d , q) is modeled using term incidence vectors as P(R|~x , ~q)

P(R = 1|~x , ~q) =
P(~x |R = 1, ~q)P(R = 1|~q)

P(~x |~q)

P(R = 0|~x , ~q) =
P(~x |R = 0, ~q)P(R = 0|~q)

P(~x |~q)

P(~x |R = 1, ~q) and P(~x |R = 0, ~q): probability that if a
relevant or irrelevant document is retrieved, then that
document’s representation is ~x

Use statistics about the document collection to estimate these
probabilities
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Binary Independence Model

P(R|d , q) is modeled using term incidence vectors as P(R|~x , ~q)

P(R = 1|~x , ~q) =
P(~x |R = 1, ~q)P(R = 1|~q)

P(~x |~q)

P(R = 0|~x , ~q) =
P(~x |R = 0, ~q)P(R = 0|~q)

P(~x |~q)

P(R = 1|~q) and P(R = 0|~q): prior probability of retrieving a
relevant or irrelevant document for a query ~q

Estimate P(R = 1|~q) and P(R = 0|~q) from percentage of
relevant documents in the collection

Since a document is either relevant or irrelevant to a query,
we must have that:

P(R = 1|~x , ~q) + P(R = 0|~x , ~q) = 1
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Deriving a Ranking Function for Query Terms (1)

Given a query q, ranking documents by P(R = 1|d , q) is
modeled under BIM as ranking them by P(R = 1|~x , ~q)

Easier: rank documents by their odds of relevance (gives same
ranking)

O(R|~x , ~q) =
P(R = 1|~x , ~q)

P(R = 0|~x , ~q)
=

P(R=1|~q)P(~x |R=1,~q)
P(~x |~q)

P(R=0|~q)P(~x |R=0,~q)
P(~x |~q)

=
P(R = 1|~q)

P(R = 0|~q)
·

P(~x |R = 1, ~q)

P(~x |R = 0, ~q)

P(R=1|~q)
P(R=0|~q) is a constant for a given query - can be ignored
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Deriving a Ranking Function for Query Terms (2)

It is at this point that we make the Naive Bayes conditional
independence assumption that the presence or absence of a word in
a document is independent of the presence or absence of any other
word (given the query):

P(~x |R = 1, ~q)

P(~x |R = 0, ~q)
=

M
∏

t=1

P(xt |R = 1, ~q)

P(xt |R = 0, ~q)

So:

O(R|~x , ~q) = O(R|~q) ·
M
∏

t=1

P(xt |R = 1, ~q)

P(xt |R = 0, ~q)
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Exercise

Naive Bayes conditional independence assumption: the presence or
absence of a word in a document is independent of the presence or
absence of any other word (given the query).
Why is this wrong? Good example?
PRP assumes that the relevance of each document is independent
of the relevance of other documents.
Why is this wrong? Good example?
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Deriving a Ranking Function for Query Terms (3)

Since each xt is either 0 or 1, we can separate the terms:

O(R|~x , ~q) = O(R|~q)·
∏

t:xt=1

P(xt = 1|R = 1, ~q)

P(xt = 1|R = 0, ~q)
·

∏

t:xt=0

P(xt = 0|R = 1, ~q)

P(xt = 0|R = 0, ~q)
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Deriving a Ranking Function for Query Terms (4)

Let pt = P(xt = 1|R = 1, ~q) be the probability of a term
appearing in relevant document

Let ut = P(xt = 1|R = 0, ~q) be the probability of a term
appearing in a irrelevant document

Can be displayed as contingency table:

document relevant (R = 1) irrelevant (R = 0)

Term present xt = 1 pt ut

Term absent xt = 0 1 − pt 1 − ut

Sojka, IIR Group: PV211: Probabilistic Information Retrieval 30 / 51



Recap Probabilistic Approach to IR Basic Probability Theory Probability Ranking Principle Appraisal&Extensions

Deriving a Ranking Function for Query Terms

Additional simplifying assumption: terms not occurring in the
query are equally likely to occur in relevant and irrelevant
documents

If qt = 0, then pt = ut

Now we need only to consider terms in the products that appear in
the query:

O(R|~x , ~q) = O(R|~q) ·
∏

t:xt=qt =1

pt

ut

·
∏

t:xt=0,qt =1

1 − pt

1 − ut

The left product is over query terms found in the document
and the right product is over query terms not found in the
document
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Deriving a Ranking Function for Query Terms

Including the query terms found in the document into the right
product, but simultaneously dividing by them in the left product,
gives:

O(R|~x , ~q) = O(R|~q) ·
∏

t:xt=qt=1

pt(1 − ut)

ut(1 − pt)
·

∏

t:qt=1

1 − pt

1 − ut

The left product is still over query terms found in the
document, but the right product is now over all query terms,
hence constant for a particular query and can be ignored.

→ The only quantity that needs to be estimated to rank
documents w.r.t a query is the left product

Hence the Retrieval Status Value (RSV) in this model:

RSVd = log
∏

t:xt=qt=1

pt(1 − ut)

ut(1 − pt)
=

∑

t:xt=qt=1

log
pt(1 − ut)

ut(1 − pt)
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Deriving a Ranking Function for Query Terms

Equivalent: rank documents using the log odds ratios for the terms
in the query ct :

ct = log
pt(1 − ut)

ut(1 − pt)
= log

pt

(1 − pt)
− log

ut

1 − ut

The odds ratio is the ratio of two odds: (i) the odds of the
term appearing if the document is relevant (pt/(1 − pt)), and
(ii) the odds of the term appearing if the document is
irrelevant (ut/(1 − ut))

ct = 0: term has equal odds of appearing in relevant and
irrelevant docs

ct positive: higher odds to appear in relevant documents

ct negative: higher odds to appear in irrelevant documents
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Term weight ct in BIM

ct = log pt

(1−pt ) − log ut

1−ut
functions as a term weight.

Retrieval status value for document d : RSVd =
∑

xt=qt=1 ct .

So BIM and vector space model are identical on an
operational level . . .

. . . except that the term weights are different.

In particular: we can use the same data structures (inverted
index etc) for the two models.

Sojka, IIR Group: PV211: Probabilistic Information Retrieval 34 / 51



Recap Probabilistic Approach to IR Basic Probability Theory Probability Ranking Principle Appraisal&Extensions

How to compute probability estimates

For each term t in a query, estimate ct in the whole collection
using a contingency table of counts of documents in the collection,
where dft is the number of documents that contain term t:

documents relevant irrelevant Total

Term present xt = 1 s dft − s dft

Term absent xt = 0 S − s (N − dft) − (S − s) N − dft

Total S N − S N

pt = s/S

ut = (dft − s)/(N − S)

ct = K (N, df t , S, s) = log
s/(S − s)

(dft − s)/((N − dft) − (S − s))
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Avoiding zeros

If any of the counts is a zero, then the term weight is not
well-defined.

Maximum likelihood estimates do not work for rare events.

To avoid zeros: add 0.5 to each count (expected likelihood
estimation = ELE)

For example, use S − s + 0.5 in formula for S − s
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Exercise

Query: Obama health plan

Doc1: Obama rejects allegations about his own bad

health

Doc2: The plan is to visit Obama

Doc3: Obama raises concerns with US health plan

reforms

Estimate the probability that the above documents are relevant to
the query. Use a contingency table. These are the only three
documents in the collection
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Simplifying assumption

Assuming that relevant documents are a very small
percentage of the collection, approximate statistics for
irrelevant documents by statistics from the whole collection

Hence, ut (the probability of term occurrence in irrelevant
documents for a query) is dft/N and

log[(1 − ut)/ut ] = log[(N − dft)/dft ] ≈ log N/dft

This should look familiar to you . . .

The above approximation cannot easily be extended to
relevant documents
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Probability estimates in relevance feedback

Statistics of relevant documents (pt) in relevance feedback
can be estimated using maximum likelihood estimation or ELE
(add 0.5).

Use the frequency of term occurrence in known relevant
documents.

This is the basis of probabilistic approaches to relevance
feedback weighting in a feedback loop

The exercise we just did was a probabilistic relevance feedback
exercise since we were assuming the availability of relevance
judgments.
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Probability estimates in adhoc retrieval

Ad-hoc retrieval: no user-supplied relevance judgments
available

In this case: assume that pt is constant over all terms xt in
the query and that pt = 0.5

Each term is equally likely to occur in a relevant document,
and so the pt and (1 − pt) factors cancel out in the expression
for RSV

Weak estimate, but doesn’t disagree violently with
expectation that query terms appear in many but not all
relevant documents

Combining this method with the earlier approximation for ut ,
the document ranking is determined simply by which query
terms occur in documents scaled by their idf weighting

For short documents (titles or abstracts) in one-pass retrieval
situations, this estimate can be quite satisfactory
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History and summary of assumptions

Among the oldest formal models in IR

Maron & Kuhns, 1960: Since an IR system cannot predict with
certainty which document is relevant, we should deal with
probabilities

Assumptions for getting reasonable approximations of the
needed probabilities (in the BIM):

Boolean representation of documents/queries/relevance
Term independence
Out-of-query terms do not affect retrieval
Document relevance values are independent
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How different are vector space and BIM?

They are not that different.

In either case you build an information retrieval scheme in the
exact same way.

For probabilistic IR, at the end, you score queries not by
cosine similarity and tf-idf in a vector space, but by a slightly
different formula motivated by probability theory.

Next: how to add term frequency and length normalization to
the probabilistic model.
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Okapi BM25: Overview

Okapi BM25 is a probabilistic model that incorporates term
frequency (i.e., it’s nonbinary) and length normalization.

BIM was originally designed for short catalog records of fairly
consistent length, and it works reasonably in these contexts

For modern full-text search collections, a model should pay
attention to term frequency and document length

BestMatch25 (a.k.a BM25 or Okapi) is sensitive to these
quantities

BM25 is one of the most widely used and robust retrieval
models
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Okapi BM25: Starting point

The simplest score for document d is just idf weighting of the
query terms present in the document:

RSVd =
∑

t∈q

log
N

dft
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Okapi BM25 basic weighting

Improve idf term [log N/df] by factoring in term frequency
and document length.

RSVd =
∑

t∈q

log

[

N

dft

]

·
(k1 + 1)tf td

k1((1 − b) + b × (Ld/Lave)) + tf td

tftd : term frequency in document d

Ld (Lave): length of document d (average document length in
the whole collection)

k1: tuning parameter controlling the document term
frequency scaling

b: tuning parameter controlling the scaling by document
length
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Exercise

Interpret BM25 weighting formula for k1 = 0

Interpret BM25 weighting formula for k1 = 1 and b = 0

Interpret BM25 weighting formula for k1 7→ ∞ and b = 0

Interpret BM25 weighting formula for k1 7→ ∞ and b = 1
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Okapi BM25 weighting for long queries

For long queries, use similar weighting for query terms

RSVd =
∑

t∈q

[

log
N

dft

]

·
(k1 + 1)tf td

k1((1 − b) + b × (Ld/Lave)) + tftd

·
(k3 + 1)tf tq

k3 + tftq

tftq: term frequency in the query q

k3: tuning parameter controlling term frequency scaling of the
query

No length normalization of queries (because retrieval is being
done with respect to a single fixed query)

The above tuning parameters should ideally be set to optimize
performance on a development test collection. In the absence
of such optimization, experiments have shown reasonable
values are to set k1 and k3 to a value between 1.2 and 2 and
b = 0.75
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Which ranking model should I use?

I want something basic and simple → use vector space with
tf-idf weighting.

I want to use a state-of-the-art ranking model with excellent
performance → use language models or BM25 with tuned
parameters

In between: BM25 or language models with no or just one
tuned parameter
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Take-away today

Probabilistically grounded approach to IR

Probability Ranking Principle

Models: BIM, BM25

Assumptions these models make
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Resources

Chapter 11 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library
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Naive Bayes classification rule

cmap = arg max
c∈C

[ log P̂(c) +
∑

1≤k≤nd

log P̂(tk |c)]

Each conditional parameter log P̂(tk |c) is a weight that
indicates how good an indicator tk is for c .

The prior log P̂(c) is a weight that indicates the relative
frequency of c .

The sum of log prior and term weights is then a measure of
how much evidence there is for the document being in the
class.

We select the class with the most evidence.
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Parameter estimation

Prior:

P̂(c) =
Nc

N

where Nc is the number of docs in class c and N the total
number of docs

Conditional probabilities:

P̂(t|c) =
Tct + 1

∑
t′∈V (Tct′ + 1)

where Tct is the number of tokens of t in training documents
from class c (includes multiple occurrences)
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Add-one smoothing to avoid zeros

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

Without add-one smoothing: if there are no occurrences of WTO in
documents in class China, we get a zero estimate for the corresponding
parameter:

P̂(WTO|China) =
TChina,WTO∑

t′∈V TChina,t′

= 0

With this estimate: [d contains WTO] → [P(China|d) = 0].
We must smooth to get a better estimate P(China|d) > 0.
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Naive Bayes Generative Model

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

P(c |d) ∝ P(c)
∏

1≤k≤nd
P(tk |c)

Generate a class with probability P(c)
Generate each of the words (in their respective positions), conditional
on the class, but independent of each other, with probability P(tk |c)
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Take-away today

Feature selection for text classification: How to select a subset
of available dimensions

Statistical language models: Introduction

Statistical language models in IR

Discussion: Properties of different probabilistic models in use
in IR
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Feature selection

In text classification, we usually represent documents in a
high-dimensional space, with each dimension corresponding to
a term.

In this lecture: axis = dimension = word = term = feature

Many dimensions correspond to rare words.

Rare words can mislead the classifier.

Rare misleading features are called noise features.

Eliminating noise features from the representation increases
efficiency and effectiveness of text classification.

Eliminating features is called feature selection.
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Example for a noise feature

Let’s say we’re doing text classification for the class China.

Suppose a rare term, say arachnocentric, has no
information about China . . .

. . . but all instances of arachnocentric happen to occur in
China documents in our training set.

Then we may learn a classifier that incorrectly interprets
arachnocentric as evidence for the class China.

Such an incorrect generalization from an accidental property
of the training set is called overfitting.

Feature selection reduces overfitting and improves the
accuracy of the classifier.
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Basic feature selection algorithm

SelectFeatures(D, c , k)
1 V ← ExtractVocabulary(D)
2 L← []
3 for each t ∈ V

4 do A(t, c)← ComputeFeatureUtility(D, t, c)
5 Append(L, 〈A(t, c), t〉)
6 return FeaturesWithLargestValues(L, k)

How do we compute A, the feature utility?
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Different feature selection methods

A feature selection method is mainly defined by the feature
utility measure it employs

Feature utility measures:

Frequency – select the most frequent terms
Mutual information – select the terms with the highest mutual
information
Mutual information is also called information gain in this
context.
Chi-square (see book)
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Mutual information

Compute the feature utility A(t, c) as the mutual information
(MI) of term t and class c .

MI tells us “how much information” the term contains about
the class and vice versa.

For example, if a term’s occurrence is independent of the class
(same proportion of docs within/without class contain the
term), then MI is 0.

Definition:

I(U; C)=
∑

et ∈{1,0}

∑

ec ∈{1,0}

P(U =et , C =ec) log2

P(U =et , C =ec)

P(U =et)P(C =ec)
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How to compute MI values

Based on maximum likelihood estimates, the formula we
actually use is:

I(U; C) =
N11

N
log2

NN11

N1.
N

.1
+

N01

N
log2

NN01

N0.
N

.1

+
N10

N
log2

NN10

N1.
N

.0
+

N00

N
log2

NN00

N0.
N

.0

N10: number of documents that contain t (et = 1) and are
not in c (ec = 0); N11: number of documents that contain t

(et = 1) and are in c (ec = 1); N01: number of documents
that do not contain t (et = 1) and are in c (ec = 1); N00:
number of documents that do not contain t (et = 1) and are
not in c (ec = 1); N = N00 + N01 + N10 + N11.
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How to compute MI values (2)

Alternative way of computing MI:

I(U; C)=
∑

et ∈{1,0}

∑

ec ∈{1,0}

P(U =et , C =ec) log2

N(U =et , C =ec)

E (U =et)E (C =ec)

N(U =et , C =ec) is the count of documents with values et

and ec .

E (U =et , C =ec) is the expected count of documents with
values et and ec if we assume that the two random variables
are independent.
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MI example for poultry/export in Reuters

ec = epoultry = 1 ec = epoultry = 0
et = eexport = 1 N11 = 49 N10 = 27,652
et = eexport = 0 N01 = 141 N00 = 774,106

Plug these values into formula:

I(U; C) =
49

801,948
log2

801,948 · 49

(49+27,652)(49+141)

+
141

801,948
log2

801,948 · 141

(141+774,106)(49+141)

+
27,652

801,948
log2

801,948 · 27,652

(49+27,652)(27,652+774,106)

+
774,106

801,948
log2

801,948 · 774,106

(141+774,106)(27,652+774,106)

≈ 0.000105
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MI feature selection on Reuters

Class: coffee

term MI

coffee 0.0111
bags 0.0042
growers 0.0025
kg 0.0019
colombia 0.0018
brazil 0.0016
export 0.0014
exporters 0.0013
exports 0.0013
crop 0.0012

Class: sports

term MI

soccer 0.0681
cup 0.0515
match 0.0441
matches 0.0408
played 0.0388
league 0.0386
beat 0.0301
game 0.0299
games 0.0284
team 0.0264
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Naive Bayes: Effect of feature selection
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Feature selection for Naive Bayes

In general, feature selection is necessary for Naive Bayes to
get decent performance.

Also true for many other learning methods in text
classification: you need feature selection for optimal
performance.
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Exercise

(i) Compute the “export”/POULTRY contingency table for the
“Kyoto”/JAPAN in the collection given below. (ii) Make up a
contingency table for which MI is 0 – that is, term and class are
independent of each other.

“export”/POULTRY table:

ec = epoultry = 1 ec = epoultry = 0
et = eexport = 1 N11 = 49 N10 = 27,652
et = eexport = 0 N01 = 141 N00 = 774,106

Collection:
docID words in document in c = Japan?

training set 1 Kyoto Osaka Taiwan yes
2 Japan Kyoto yes
3 Taipei Taiwan no
4 Macao Taiwan Shanghai no
5 London no
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Using language models (LMs) for IR

1 LM = language model

2 We view the document as a generative model that generates
the query.

3 What we need to do:

4 Define the precise generative model we want to use

5 Estimate parameters (different parameters for each
document’s model)

6 Smooth to avoid zeros

7 Apply to query and find document most likely to have
generated the query

8 Present most likely document(s) to user

9 Note that 4–7 is very similar to what we did in Naive Bayes.
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What is a language model?

We can view a finite state automaton as a deterministic language
model.

I wish

I wish I wish I wish I wish . . .

Cannot generate: “wish I wish” or “I wish I”

Our basic model: each document was generated by a different
automaton like this except that these automata are probabilistic.
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A probabilistic language model

q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. . . . . .

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048
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A different language model for each document

language model of d1 language model of d2

w P(w |.) w P(w |.)

STOP .2 toad .01
the .2 said .03
a .1 likes .02
frog .01 that .04

. . . . . .

w P(w |.) w P(w |.)

STOP .2 toad .02
the .15 said .03
a .08 likes .02
frog .01 that .05

. . . . . .

query: frog said that toad likes frog STOP

P(query|Md1) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048 = 4.8 · 10−12

P(query|Md2) = 0.01 ·0.03 ·0.05 ·0.02 ·0.02 ·0.01 ·0.2
= 0.0000000000120 = 12 · 10−12

P(query|Md1) < P(query|Md2) Thus, document d2 is “more
relevant” to the query “frog said that toad likes frog STOP” than
d1 is.
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Using language models in IR

Each document is treated as (the basis for) a language model.

Given a query q

Rank documents based on P(d |q)

P(d |q) =
P(q|d)P(d)

P(q)

P(q) is the same for all documents, so ignore

P(d) is the prior – often treated as the same for all d

But we can give a higher prior to “high-quality” documents,
e.g., those with high PageRank.

P(q|d) is the probability of q given d .

For uniform prior: ranking documents according according to
P(q|d) and P(d |q) is equivalent.
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Where we are

In the LM approach to IR, we attempt to model the query
generation process.

Then we rank documents by the probability that a query
would be observed as a random sample from the respective
document model.

That is, we rank according to P(q|d).

Next: how do we compute P(q|d)?
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How to compute P(q|d)

We will make the same conditional independence assumption
as for Naive Bayes.

P(q|Md) = P(〈t1, . . . , t|q|〉|Md) =
∏

1≤k≤|q|

P(tk |Md)

(|q|: length of q; tk : the token occurring at position k in q)

This is equivalent to:

P(q|Md) =
∏

distinct term t in q

P(t|Md)tf t,q

tft,q: term frequency (# occurrences) of t in q

Multinomial model (omitting constant factor)
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Parameter estimation

Missing piece: Where do the parameters P(t|Md) come from?

Start with maximum likelihood estimates (as we did for Naive
Bayes)

P̂(t|Md) =
tft,d

|d |

(|d |: length of d ; tft,d : # occurrences of t in d)

As in Naive Bayes, we have a problem with zeros.

A single t with P(t|Md) = 0 will make
P(q|Md) =

∏
P(t|Md) zero.

We would give a single term “veto power”.

For example, for query [Michael Jackson top hits] a document
about “top songs” (but not using the word “hits”) would have
P(q|Md) = 0. – Thats’s bad.

We need to smooth the estimates to avoid zeros.
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Smoothing

Key intuition: A nonoccurring term is possible (even though it
didn’t occur), . . .

. . . but no more likely than would be expected by chance in
the collection.

Notation: Mc : the collection model; cft : the number of
occurrences of t in the collection; T =

∑
t cft : the total

number of tokens in the collection.

P̂(t|Mc) =
cft

T

We will use P̂(t|Mc) to “smooth” P(t|d) away from zero.
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Jelinek-Mercer smoothing

P(t|d) = λP(t|Md) + (1− λ)P(t|Mc )

Mixes the probability from the document with the general
collection frequency of the word.

High value of λ: “conjunctive-like” search – tends to retrieve
documents containing all query words.

Low value of λ: more disjunctive, suitable for long queries

Correctly setting λ is very important for good performance.
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Jelinek-Mercer smoothing: Summary

P(q|d) ∝
∏

1≤k≤|q|

(λP(tk |Md) + (1− λ)P(tk |Mc))

What we model: The user has a document in mind and
generates the query from this document.

The equation represents the probability that the document
that the user had in mind was in fact this one.
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Example

Collection: d1 and d2

d1: Jackson was one of the most talented entertainers of all
time

d2: Michael Jackson anointed himself King of Pop

Query q: Michael Jackson

Use mixture model with λ = 1/2

P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003

P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

Ranking: d2 > d1
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Exercise: Compute ranking

Collection: d1 and d2

d1: Xerox reports a profit but revenue is down

d2: Lucene narrows quarter loss but revenue decreases further

Query q: revenue down

Use mixture model with λ = 1/2

P(q|d1) = [(1/8 + 2/16)/2] · [(1/8 + 1/16)/2] = 1/8 · 3/32 =
3/256

P(q|d2) = [(1/8 + 2/16)/2] · [(0/8 + 1/16)/2] = 1/8 · 1/32 =
1/256

Ranking: d1 > d2
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Dirichlet smoothing

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α

The background distribution P̂(t|Mc) is the prior for P̂(t|d).

Intuition: Before having seen any part of the document we
start with the background distribution as our estimate.

As we read the document and count terms we update the
background distribution.

The weighting factor α determines how strong an effect the
prior has.
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Jelinek-Mercer or Dirichlet?

Dirichlet performs better for keyword queries, Jelinek-Mercer
performs better for verbose queries.

Both models are sensitive to the smoothing parameters – you
shouldn’t use these models without parameter tuning.
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Sensitivity of Dirichlet to smoothing parameter

µ is the Dirichlet smoothing parameter (called α on the previous
slides)
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Language models are generative models

We have assumed that queries are generated by a probabilistic
process that looks like this: (as in Naive Bayes)

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO
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Naive Bayes and LM generative models

We want to classify document d .
We want to classify a query q.

Classes: e.g., geographical regions like China, UK, Kenya.
Each document in the collection is a different class.

Assume that d was generated by the generative model.
Assume that q was generated by a generative model

Key question: Which of the classes is most likely to have
generated the document? Which document (=class) is most
likely to have generated the query q?

Or: for which class do we have the most evidence? For which
document (as the source of the query) do we have the most
evidence?
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Naive Bayes Multinomial model / IR language models

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO
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Naive Bayes Bernoulli model / Binary independence model

UAlaska=0 UBeijing=1 U India=0 U join=1 UTaipei=1 UWTO=1

C=China
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Comparison of the two models

multinomial model / IR language model Bernoulli model / BIM
event model generation of (multi)set of tokens generation of subset of voc
random variable(s) X = t iff t occurs at given pos Ut = 1 iff t occurs in doc
doc. representation d = 〈t1, . . . , tk , . . . , tnd

〉, tk ∈ V d = 〈e1, . . . , ei , . . . , eM〉,
ei ∈ {0, 1}

parameter estimation P̂(X = t|c) P̂(Ui = e|c)

dec. rule: maximize P̂(c)
∏

1≤k≤nd
P̂(X = tk |c) P̂(c)

∏
ti ∈V

P̂(Ui = ei |c)

multiple occurrences taken into account ignored
length of docs can handle longer docs works best for short docs
# features can handle more works best with fewer

estimate for the P̂(X = the|c) ≈ 0.05 P̂(Uthe = 1|c) ≈ 1.0
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Vector space (tf-idf) vs. LM

precision significant
Rec. tf-idf LM %chg

0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.4 0.2093 0.2572 +22.9 *
0.6 0.1024 0.1405 +37.1 *
0.8 0.0160 0.0432 +169.6 *
1.0 0.0028 0.0050 +76.9
11-point average 0.1868 0.2233 +19.6 *

The language modeling approach always does better in these
experiments . . .
. . . but note that where the approach shows significant gains is at
higher levels of recall.
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Vector space vs BM25 vs LM

BM25/LM: based on probability theory

Vector space: based on similarity, a geometric/linear algebra
notion
Term frequency is directly used in all three models.

LMs: raw term frequency, BM25/Vector space: more complex

Length normalization
Vector space: Cosine or pivot normalization
LMs: probabilities are inherently length normalized
BM25: tuning parameters for optimizing length normalization

idf: BM25/vector space use it directly.
LMs: Mixing term and collection frequencies has an effect
similar to idf.

Terms rare in the general collection, but common in some
documents will have a greater influence on the ranking.

Collection frequency (LMs) vs. document frequency (BM25,
vector space)
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Language models for IR: Assumptions

Simplifying assumption: Queries and documents are objects of
the same type. Not true!

There are other LMs for IR that do not make this assumption.
The vector space model makes the same assumption.

Simplifying assumption: Terms are conditionally independent.

Again, vector space model (and Naive Bayes) make the same
assumption.

Cleaner statement of assumptions than vector space

Thus, better theoretical foundation than vector space

. . . but “pure” LMs perform much worse than “tuned” LMs.
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Take-away today

Feature selection for text classification: How to select a subset
of available dimensions

Statistical language models: Introduction

Statistical language models in IR

Discussion: Properties of different probabilistic models in use
in IR
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Resources

Chapter 13 of IIR (feature selection)

Chapter 12 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Ponte and Croft’s 1998 SIGIR paper (one of the first on LMs
in IR)
Zhai and Lafferty: A study of smoothing methods for language
models applied to information retrieval. ACM Trans. Inf. Syst.
(2004).
Lemur toolkit (good support for LMs in IR)
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Overview

1 Text classification

2 Naive Bayes

3 NB theory

4 Evaluation of TC
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Take-away today

Text classification: definition & relevance to information
retrieval

Naive Bayes: simple baseline text classifier

Theory: derivation of Naive Bayes classification rule & analysis

Evaluation of text classification: how do we know it worked /
didn’t work?
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A text classification task: Email spam filtering

From: ‘‘’’ <takworlld@hotmail.com>

Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the

methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

=================================================

Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

=================================================

How would you write a program that would automatically detect and delete this
type of message?
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Formal definition of TC: Training

Given:

A document space X

Documents are represented in this space – typically some type
of high-dimensional space.

A fixed set of classes C = {c1, c2, . . . , cJ}

The classes are human-defined for the needs of an application
(e.g., spam vs. nonspam).

A training set D of labeled documents. Each labeled
document 〈d , c〉 ∈ X×C

Using a learning method or learning algorithm, we then wish to
learn a classifier γ that maps documents to classes:

γ : X→ C
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Formal definition of TC: Application/Testing

Given: a description d ∈ X of a document

Determine: γ(d) ∈ C, that is, the class that is most appropriate
for d
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Topic classification

classes:

training
set:

test
set:

regions industries subject areas

γ(d ′) =China

first

private

Chinese

airline

UK China poultry coffee elections sports

London

congestion

Big Ben

Parliament

the Queen

Windsor

Beijing

Olympics

Great Wall

tourism

communist

Mao

chicken

feed

ducks

pate

turkey

bird flu

beans

roasting

robusta

arabica

harvest

Kenya

votes

recount

run-off

seat

campaign

TV ads

baseball

diamond

soccer

forward

captain

team

d ′
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Exercise

Find examples of uses of text classification in information
retrieval
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Examples of how search engines use classification

Language identification (classes: English vs. French etc.)

The automatic detection of spam pages (spam vs. nonspam)

Sentiment detection: is a movie or product review positive or
negative (positive vs. negative)

Topic-specific or vertical search – restrict search to a
“vertical” like “related to health” (relevant to vertical vs. not)
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Classification methods: 1. Manual

Manual classification was used by Yahoo in the beginning of
the web. Also: MathSciNet (MSC), DMOZ – the Open
Directory Project, PubMed

Very accurate if job is done by experts.

Consistent when the problem size and team is small.

Scaling manual classification is difficult and expensive.

→ We need automatic methods for classification.
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Classification methods: 2. Rule-based

E.g., Google Alerts is rule-based classification.

There are IDE-type development environments for writing very
complex rules efficiently. (e.g., Verity)

Often: Boolean combinations (as in Google Alerts).

Accuracy is very high if a rule has been carefully refined over
time by a subject expert.

Building and maintaining rule-based classification systems is
cumbersome and expensive.
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A Verity topic (a complex classification rule)
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Classification methods: 3. Statistical/Probabilistic

This was our definition of the classification problem – text
classification as a learning problem.

(i) Supervised learning of the classification function γ and
(ii) application of γ to classifying new documents.

We will look at two methods for doing this: Naive Bayes and
SVMs

No free lunch: requires hand-classified training data.

But this manual classification can be done by non-experts.
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The Naive Bayes classifier

The Naive Bayes classifier is a probabilistic classifier.

We compute the probability of a document d being in a class
c as follows:

P(c |d) ∝ P(c)
∏

1≤k≤nd

P(tk |c)

nd is the length of the document. (number of tokens)

P(tk |c) is the conditional probability of term tk occurring in a
document of class c

P(tk |c) as a measure of how much evidence tk contributes
that c is the correct class.

P(c) is the prior probability of c .

If a document’s terms do not provide clear evidence for one
class vs. another, we choose the c with highest P(c).
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Maximum a posteriori class

Our goal in Naive Bayes classification is to find the “best”
class.

The best class is the most likely or maximum a posteriori
(MAP) class cmap:

cmap = arg max
c∈C

P̂(c |d) = arg max
c∈C

P̂(c)
∏

1≤k≤nd

P̂(tk |c)

We write P̂ for P since these values are estimates from the
training set.
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Taking the log

Multiplying lots of small probabilities can result in floating
point underflow.

Since log(xy) = log(x) + log(y), we can sum log probabilities
instead of multiplying probabilities.

Since log is a monotonic function, the class with the highest
score does not change.

So what we usually compute in practice is:

cmap = arg max
c∈C

[log P̂(c) +
∑

1≤k≤nd

log P̂(tk |c)]

Sojka, IIR Group: PV211: Text Classification & Naive Bayes 18 / 52



Text classification Naive Bayes NB theory Evaluation of TC

Naive Bayes classifier

Classification rule:

cmap = arg max
c∈C

[ log P̂(c) +
∑

1≤k≤nd

log P̂(tk |c)]

Simple interpretation:

Each conditional parameter log P̂(tk |c) is a weight that
indicates how good an indicator tk is for c .
The prior log P̂(c) is a weight that indicates the relative
frequency of c .
The sum of log prior and term weights is then a measure of
how much evidence there is for the document being in the
class.
We select the class with the most evidence.
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Parameter estimation take 1: Maximum likelihood

Estimate parameters P̂(c) and P̂(tk |c) from train data: How?

Prior:

P̂(c) =
Nc

N

Nc : number of docs in class c ; N: total number of docs

Conditional probabilities:

P̂(t|c) =
Tct∑

t′∈V Tct′

Tct is the number of tokens of t in training documents from
class c (includes multiple occurrences)

We have made a Naive Bayes independence assumption here:
P̂(Xk1

= t|c) = P̂(Xk2
= t|c), independent of position
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The problem with maximum likelihood estimates: Zeros

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

P(China|d) ∝ P(China) · P(Beijing|China) · P(and|China)

· P(Taipei|China) · P(join|China) · P(WTO|China)

If WTO never occurs in class China in the train set:

P̂(WTO|China) =
TChina,WTO∑

t′∈V TChina,t′

=
0

∑
t′∈V TChina,t′

= 0
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The problem with maximum likelihood estimates: Zeros

(cont)

If there are no occurrences of WTO in documents in class
China, we get a zero estimate:

P̂(WTO|China) =
TChina,WTO∑

t′∈V TChina,t′

= 0

→ We will get P(China|d) = 0 for any document that
contains WTO
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To avoid zeros: Add-one smoothing

Before:

P̂(t|c) =
Tct∑

t′∈V Tct′

Now: Add one to each count to avoid zeros:

P̂(t|c) =
Tct + 1

∑
t′∈V (Tct′ + 1)

=
Tct + 1

(
∑

t′∈V Tct′) + B

B is the number of bins – in this case the number of different
words or the size of the vocabulary |V | = M
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Naive Bayes: Summary

Estimate parameters from the training corpus using add-one
smoothing

For a new document, for each class, compute sum of (i) log of
prior and (ii) logs of conditional probabilities of the terms

Assign the document to the class with the largest score
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Naive Bayes: Training

TrainMultinomialNB(C,D)
1 V ← ExtractVocabulary(D)
2 N ← CountDocs(D)
3 for each c ∈ C

4 do Nc ← CountDocsInClass(D, c)
5 prior [c]← Nc/N

6 textc ← ConcatenateTextOfAllDocsInClass(D, c)
7 for each t ∈ V

8 do Tct ← CountTokensOfTerm(textc , t)
9 for each t ∈ V

10 do condprob[t][c] ← Tct+1∑
t′(Tct′+1)

11 return V , prior , condprob
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Naive Bayes: Testing

ApplyMultinomialNB(C, V , prior , condprob, d)
1 W ← ExtractTokensFromDoc(V , d)
2 for each c ∈ C

3 do score[c] ← log prior [c]
4 for each t ∈W

5 do score[c]+ = log condprob[t][c]
6 return arg maxc∈C score[c]
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Exercise

docID words in document in c = China?

training set 1 Chinese Beijing Chinese yes
2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no

test set 5 Chinese Chinese Chinese Tokyo Japan ?

Estimate parameters of Naive Bayes classifier
Classify test document
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Example: Parameter estimates

Priors: P̂(c) = 3/4 and P̂(c) = 1/4
Conditional probabilities:

P̂(Chinese|c) = (5 + 1)/(8 + 6) = 6/14 = 3/7

P̂(Tokyo|c) = P̂(Japan|c) = (0 + 1)/(8 + 6) = 1/14

P̂(Chinese|c) = (1 + 1)/(3 + 6) = 2/9

P̂(Tokyo|c) = P̂(Japan|c) = (1 + 1)/(3 + 6) = 2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of
textc and textc are 8 and 3, respectively, and because the constant
B is 6 as the vocabulary consists of six terms.
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Example: Classification

P̂(c |d5) ∝ 3/4 · (3/7)3 · 1/14 · 1/14 ≈ 0.0003

P̂(c |d5) ∝ 1/4 · (2/9)3 · 2/9 · 2/9 ≈ 0.0001

Thus, the classifier assigns the test document to c = China.
The reason for this classification decision is that the three
occurrences of the positive indicator Chinese in d5 outweigh the
occurrences of the two negative indicators Japan and Tokyo.
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Time complexity of Naive Bayes

mode time complexity

training Θ(|D|Lave + |C||V |)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

Lave: average length of a training doc, La: length of the test
doc, Ma: number of distinct terms in the test doc, D: training
set, V : vocabulary, C: set of classes

Θ(|D|Lave) is the time it takes to compute all counts.

Θ(|C||V |) is the time it takes to compute the parameters
from the counts.

Generally: |C||V | < |D|Lave

Test time is also linear (in the length of the test document).

Thus: Naive Bayes is linear in the size of the training set
(training) and the test document (testing). This is optimal.
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Naive Bayes: Analysis

Now we want to gain a better understanding of the properties
of Naive Bayes.

We will formally derive the classification rule . . .

. . . and make our assumptions explicit.

Sojka, IIR Group: PV211: Text Classification & Naive Bayes 32 / 52



Text classification Naive Bayes NB theory Evaluation of TC

Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

cmap = arg max
c∈C

P(c |d)

Apply Bayes rule P(A|B) = P(B|A)P(A)
P(B) :

cmap = arg max
c∈C

P(d |c)P(c)

P(d)

Drop denominator since P(d) is the same for all classes:

cmap = arg max
c∈C

P(d |c)P(c)
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Too many parameters / sparseness

cmap = arg max
c∈C

P(d |c)P(c)

= arg max
c∈C

P(〈t1, . . . , tk , . . . , tnd
〉|c)P(c)

There are too many parameters P(〈t1, . . . , tk , . . . , tnd
〉|c), one

for each unique combination of a class and a sequence of
words.

We would need a very, very large number of training examples
to estimate that many parameters.

This is the problem of data sparseness.
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Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we
make the Naive Bayes conditional independence assumption:

P(d |c) = P(〈t1, . . . , tnd
〉|c) =

∏

1≤k≤nd

P(Xk = tk |c)

We assume that the probability of observing the conjunction of
attributes is equal to the product of the individual probabilities
P(Xk = tk |c).
Recall from earlier the estimates for these conditional probabilities:
P̂(t|c) = Tct+1

(
∑

t′∈V
T

ct′)+B
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Generative model

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

P(c |d) ∝ P(c)
∏

1≤k≤nd
P(tk |c)

Generate a class with probability P(c)

Generate each of the words (in their respective positions),
conditional on the class, but independent of each other, with
probability P(tk |c)

To classify docs, we “reengineer” this process and find the
class that is most likely to have generated the doc.
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Second independence assumption

P̂(Xk1
= t|c) = P̂(Xk2

= t|c)

For example, for a document in the class UK, the probability
of generating queen in the first position of the document is
the same as generating it in the last position.

The two independence assumptions amount to the bag of
words model.
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A different Naive Bayes model: Bernoulli model

UAlaska=0 UBeijing=1 U India=0 U join=1 UTaipei=1 UWTO=1

C=China
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Violation of Naive Bayes independence assumptions

Conditional independence:

P(〈t1, . . . , tnd
〉|c) =

∏

1≤k≤nd

P(Xk = tk |c)

Positional independence:

P̂(Xk1
= t|c) = P̂(Xk2

= t|c)

The independence assumptions do not really hold of
documents written in natural language.

Exercise
Examples for why conditional independence assumption is not
really true?
Examples for why positional independence assumption is not
really true?

How can Naive Bayes work if it makes such inappropriate
assumptions?
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Why does Naive Bayes work?

Naive Bayes can work well even though conditional
independence assumptions are badly violated.

Example:
c1 c2 class selected

true probability P(c |d) 0.6 0.4 c1

P̂(c)
∏

1≤k≤nd
P̂(tk |c) 0.00099 0.00001

NB estimate P̂(c |d) 0.99 0.01 c1

Double counting of evidence causes underestimation (0.01)
and overestimation (0.99).

Classification is about predicting the correct class and not
about accurately estimating probabilities.

Naive Bayes is terrible for correct estimation . . .

. . . but if often performs well at accurate prediction (choosing
the correct class).
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Naive Bayes is not so naive

Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)

More robust to irrelevant features than some more complex
learning methods

More robust to concept drift (changing of definition of class
over time) than some more complex learning methods

Better than methods like decision trees when we have many
equally important features

A good dependable baseline for text classification (but not the
best)

Optimal if independence assumptions hold (never true for
text, but true for some domains)

Very fast

Low storage requirements
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Evaluation on Reuters

classes:

training
set:

test
set:

regions industries subject areas

γ(d ′) =China

first

private

Chinese

airline

UK China poultry coffee elections sports

London

congestion

Big Ben

Parliament

the Queen

Windsor

Beijing

Olympics

Great Wall

tourism

communist

Mao

chicken

feed

ducks

pate

turkey

bird flu

beans

roasting

robusta

arabica

harvest

Kenya

votes

recount

run-off

seat

campaign

TV ads

baseball

diamond

soccer

forward

captain

team

d ′
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Example: The Reuters collection

symbol statistic value

N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

type of class number examples

region 366 UK, China
industry 870 poultry, coffee
subject area 126 elections, sports
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A Reuters document
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Evaluating classification

Evaluation must be done on test data that are independent of
the training data, i.e., training and test sets are disjoint.

It’s easy to get good performance on a test set that was
available to the learner during training (e.g., just memorize
the test set).

Measures: Precision, recall, F1, classification accuracy

Average measures over multiple training and test sets (splits
of the overall data) for best results.
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Precision P and recall R

in the class not in the class
predicted to be in the class true positives (TP) false positives (FP)
predicted to not be in the class false negatives (FN) true negatives (TN)

TP, FP, FN, TN are counts of documents. The sum of these four
counts is the total number of documents.

precision:P = TP/(TP + FP)

recall:R = TP/(TP + FN)
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A combined measure: F

F1 allows us to trade off precision against recall.

F1 =
1

1
2

1
P

+ 1
2

1
R

=
2PR

P + R

This is the harmonic mean of P and R: 1
F

= 1
2( 1

P
+ 1

R
)
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Averaging: Micro vs. Macro

We now have an evaluation measure (F1) for one class.

But we also want a single number that measures the
aggregate performance over all classes in the collection.

Macroaveraging

Compute F1 for each of the C classes
Average these C numbers

Microaveraging

Compute TP, FP, FN for each of the C classes
Sum these C numbers (e.g., all TP to get aggregate TP)
Compute F1 for aggregate TP, FP, FN
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Naive Bayes vs. other methods

(a) NB Rocchio kNN SVM
micro-avg-L (90 classes) 80 85 86 89
macro-avg (90 classes) 47 59 60 60

(b) NB Rocchio kNN trees SVM
earn 96 93 97 98 98
acq 88 65 92 90 94
money-fx 57 47 78 66 75
grain 79 68 82 85 95
crude 80 70 86 85 89
trade 64 65 77 73 76
interest 65 63 74 67 78
ship 85 49 79 74 86
wheat 70 69 77 93 92
corn 65 48 78 92 90
micro-avg (top 10) 82 65 82 88 92
micro-avg-D (118 classes) 75 62 n/a n/a 87

Evaluation measure: F1

Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).
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Take-away today

Text classification: definition & relevance to information
retrieval

Naive Bayes: simple baseline text classifier

Theory: derivation of Naive Bayes classification rule & analysis

Evaluation of text classification: how do we know it worked /
didn’t work?
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Resources

Chapter 13 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Weka: A data mining software package that includes an
implementation of Naive Bayes
Reuters-21578 – text classification evaluation set
Vulgarity classifier fail
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Overview

1 Intro vector space classification

2 Rocchio

3 kNN

4 Linear classifiers

5 > two classes
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Take-away today

Vector space classification: Basic idea of doing text
classification for documents that are represented as vectors

Rocchio classifier: Rocchio relevance feedback idea applied to
text classification

k nearest neighbor classification

Linear classifiers

More than two classes
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Roadmap for today

Naive Bayes is simple and a good baseline.

Use it if you want to get a text classifier up and running in a
hurry.

But other classification methods are more accurate.

Perhaps the simplest well performing alternative: kNN

kNN is a vector space classifier.

Plan for rest of today
1 intro vector space classification
2 very simple vector space classification: Rocchio
3 kNN
4 general properties of classifiers
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Recall vector space representation

Each document is a vector, one component for each term.

Terms are axes.

High dimensionality: 100,000s of dimensions

Normalize vectors (documents) to unit length

How can we do classification in this space?
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Vector space classification

As before, the training set is a set of documents, each labeled
with its class.

In vector space classification, this set corresponds to a labeled
set of points or vectors in the vector space.

Premise 1: Documents in the same class form a contiguous
region.

Premise 2: Documents from different classes don’t overlap.

We define lines, surfaces, hyper-surfaces to divide regions.
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Classes in the vector space

xx
x

x

⋄
⋄

⋄⋄
⋄

⋄

China

Kenya

UK
⋆

Should the document ⋆ be assigned to China, UK or Kenya?
Find separators between the classes
Based on these separators: ⋆ should be assigned to China

How do we find separators that do a good job at classifying new
documents like ⋆? – Main topic of today
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Aside: 2D/3D graphs can be misleading

d tru
e

dprojected

x1

x2 x3 x4

x5

x ′
1 x ′

2 x ′
3 x ′

4 x ′
5

x ′
1 x ′

2 x ′
3

x ′
4 x ′

5

Left: A projection of the 2D semicircle to 1D. For the points x1, x2, x3, x4, x5 at x
coordinates −0.9,−0.2, 0, 0.2, 0.9 the distance |x2x3| ≈ 0.201 only differs by 0.5%
from |x ′

2x ′
3| = 0.2; but |x1x3|/|x

′
1x ′

3| = d true/dprojected ≈ 1.06/0.9 ≈ 1.18 is an
example of a large distortion (18%) when projecting a large area. Right: The
corresponding projection of the 3D hemisphere to 2D.
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Relevance feedback

In relevance feedback, the user marks documents as
relevant/non-relevant.

Relevant/non-relevant can be viewed as classes or categories.

For each document, the user decides which of these two
classes is correct.

The IR system then uses these class assignments to build a
better query (“model”) of the information need . . .

. . . and returns better documents.

Relevance feedback is a form of text classification.

The notion of text classification (TC) is very general and has
many applications within and beyond information retrieval.
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Using Rocchio for vector space classification

The principal difference between relevance feedback and text
classification:

The training set is given as part of the input in text
classification.
It is interactively created in relevance feedback.
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Rocchio classification: Basic idea

Compute a centroid for each class

The centroid is the average of all documents in the class.

Assign each test document to the class of its closest centroid.
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Recall definition of centroid

~µ(c) =
1

|Dc |

∑

d∈Dc

~v(d)

where Dc is the set of all documents that belong to class c and
~v(d) is the vector space representation of d .
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Rocchio algorithm

TrainRocchio(C,D)
1 for each cj ∈ C

2 do Dj ← {d : 〈d , cj 〉 ∈ D}
3 ~µj ←

1
|Dj |

∑
d∈Dj

~v(d)

4 return {~µ1, . . . , ~µJ}

ApplyRocchio({~µ1, . . . , ~µJ}, d)
1 return arg minj |~µj − ~v(d)|
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Rocchio illustrated: a1 = a2, b1 = b2, c1 = c2

xx
x

x

⋄

⋄
⋄

⋄

⋄

⋄

China

Kenya

UK

⋆ a1

a2

b1

b2

c1

c2
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Rocchio properties

Rocchio forms a simple representation for each class: the
centroid

We can interpret the centroid as the prototype of the class.

Classification is based on similarity to / distance from
centroid/prototype.

Does not guarantee that classifications are consistent with the
training data!
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Time complexity of Rocchio

mode time complexity

training Θ(|D|Lave + |C||V |) ≈ Θ(|D|Lave)
testing Θ(La + |C|Ma) ≈ Θ(|C|Ma)
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Rocchio vs. Naive Bayes

In many cases, Rocchio performs worse than Naive Bayes.

One reason: Rocchio does not handle nonconvex, multimodal
classes correctly.
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Rocchio cannot handle nonconvex, multimodal classes

a

a

a

a

a

a

a a
a

a

a
a

a
a

a a

aa

a

a

a

a

a

a

a

a

a

a

a

a a

aa

aa

a
a

aa

a

b

b

b

b

bb bb b

b

b
bb

b

b

b

b

b

b

X XA

B

o

Exercise: Why is Rocchio not
expected to do well for the
classification task a vs. b here?

A is centroid of the a’s,
B is centroid of the b’s.

The point o is closer to
A than to B.

But o is a better fit for
the b class.

A is a multimodal class
with two prototypes.

But in Rocchio we only
have one prototype.
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kNN classification

kNN classification is another vector space classification
method.

It also is very simple and easy to implement.

kNN is more accurate (in most cases) than Naive Bayes and
Rocchio.

If you need to get a pretty accurate classifier up and running
in a short time . . .

. . . and you don’t care about efficiency that much . . .

. . . use kNN.
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kNN classification

kNN = k nearest neighbors

kNN classification rule for k = 1 (1NN): Assign each test
document to the class of its nearest neighbor in the training
set.

1NN is not very robust – one document can be mislabeled or
atypical.

kNN classification rule for k > 1 (kNN): Assign each test
document to the majority class of its k nearest neighbors in
the training set.

Rationale of kNN: contiguity hypothesis

We expect a test document d to have the same label as the
training documents located in the local region surrounding d .
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Probabilistic kNN

Probabilistic version of kNN: P(c |d) = fraction of k neighbors
of d that are in c

kNN classification rule for probabilistic kNN: Assign d to class
c with highest P(c |d)
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kNN is based on Voronoi tessellation

x

x

x
x

x

x
x

x
x x

x

⋄

⋄
⋄

⋄

⋄

⋄

⋄
⋄⋄

⋄ ⋄

⋆

1NN, 3NN
classification
decision for
star?
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kNN algorithm

Train-kNN(C,D)
1 D

′ ← Preprocess(D)
2 k ← Select-k(C,D′)
3 return D

′, k

Apply-kNN(D′, k, d)
1 Sk ← ComputeNearestNeighbors(D′, k, d)
2 for each cj ∈ C(D′)
3 do pj ← |Sk ∩ cj |/k

4 return arg maxj pj
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Exercise

⋆

x

x

x

x

x

x

x

x

x

x

o
o

o

o

o

How is star classified by:
(i) 1-NN (ii) 3-NN (iii) 9-NN (iv) 15-NN (v) Rocchio?
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Time complexity of kNN

kNN with preprocessing of training set

training Θ(|D|Lave)
testing Θ(La + |D|MaveMa) = Θ(|D|MaveMa)

kNN test time proportional to the size of the training set!

The larger the training set, the longer it takes to classify a
test document.

kNN is inefficient for very large training sets.

Question: Can we divide up the training set into regions, so
that we only have to search in one region to do kNN
classification for a given test document? (which perhaps
would give us better than linear time complexity)
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Curse of dimensionality

Our intuitions about space are based on the 3D world we live
in.

Intuition 1: some things are close by, some things are distant.

Intuition 2: we can carve up space into areas such that: within
an area things are close, distances between areas are large.

These two intuitions don’t necessarily hold for high
dimensions.

In particular: for a set of k uniformly distributed points, let
dmin be the smallest distance between any two points and
dmax be the largest distance between any two points.

Then

lim
d→∞

dmax− dmin

dmin
= 0
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Curse of dimensionality: Simulation

Simulate

lim
d→∞

dmax− dmin

dmin
= 0

Pick a dimensionality d

Generate 10 random points in the d-dimensional hypercube
(uniform distribution)

Compute all 45 distances

Compute dmax−dmin
dmin

We see that intuition 1 (some things are close, others are
distant) is not true for high dimensions.
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Intuition 2: Space can be carved up

Intuition 2: we can carve up space into areas such that: within
an area things are close, distances between areas are large.

If this is true, then we have a simple and efficient algorithm
for kNN.

To find the k closest neighbors of data point
< x1, x2, . . . , xd > do the following.

Using binary search find all data points whose first dimension
is in [x1 − ǫ, x1 + ǫ]. This is O(log n) where n is the number of
data points.

Do this for each dimension, then intersect the d subsets.
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Intuition 2: Space can be carved up

Size of data set n = 100

Again, assume uniform distribution in hypercube

Set ǫ = 0.05: we will look in an interval of length 0.1 for
neighbors on each dimension.

What is the probability that the nearest neighbor of a new
data point ~x is in this neighborhood in d = 1 dimension?

for d = 1: 1− (1− 0.1)100 ≈ 0.99997

In d = 2 dimensions?

for d = 2: 1− (1− 0.12)100 ≈ 0.63

In d = 3 dimensions?

for d = 3: 1− (1− 0.13)100 ≈ 0.095

In d = 4 dimensions?

for d = 4: 1− (1− 0.14)100 ≈ 0.0095

In d = 5 dimensions?

for d = 5: 1− (1− 0.15)100 ≈ 0.0009995
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Intuition 2: Space can be carved up

In d = 5 dimensions?

for d = 5: 1− (1− 0.15)100 ≈ 0.0009995

In other words: with enough dimensions, there is only one
“local” region that will contain the nearest neighbor with high
certainty: the entire search space.

We cannot carve up high-dimensional space into neat
neighborhoods . . .

. . . unless the “true” dimensionality is much lower than d .
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kNN: Discussion

No training necessary

But linear preprocessing of documents is as expensive as
training Naive Bayes.
We always preprocess the training set, so in reality training
time of kNN is linear.

kNN is very accurate if training set is large.

Optimality result: asymptotically zero error if Bayes rate is
zero.

But kNN can be very inaccurate if training set is small.
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Linear classifiers

Definition:

A linear classifier computes a linear combination or weighted
sum

∑
i wixi of the feature values.

Classification decision:
∑

i wixi > θ?
. . . where θ (the threshold) is a parameter.

(First, we only consider binary classifiers.)

Geometrically, this corresponds to a line (2D), a plane (3D) or
a hyperplane (higher dimensionalities), the separator.

We find this separator based on training set.

Methods for finding separator: Perceptron, Rocchio, Naive
Bayes – as we will explain on the next slides

Assumption: The classes are linearly separable.
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A linear classifier in 1D

A linear classifier in 1D is
a point described by the
equation w1d1 = θ

The point at θ/w1

Points (d1) with w1d1 ≥ θ
are in the class c .

Points (d1) with w1d1 < θ
are in the complement
class c .
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A linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in
the class c .

Points (d1 d2) with
w1d1 + w2d2 < θ are in
the complement class c .

Sojka, IIR Group: PV211: Vector Space Classification 38 / 63



Intro vector space classification Rocchio kNN Linear classifiers > two classes

A linear classifier in 3D

A linear classifier in 3D is
a plane described by the
equation
w1d1 + w2d2 + w3d3 = θ

Example for a 3D linear
classifier

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 ≥ θ
are in the class c .

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 < θ
are in the complement
class c .
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Rocchio as a linear classifier

Rocchio is a linear classifier defined by:

M∑

i=1

widi = ~w~d = θ

where ~w is the normal vector ~µ(c1)− ~µ(c2) and
θ = 0.5 ∗ (|~µ(c1)|2 − |~µ(c2)|2).
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Naive Bayes as a linear classifier

Multinomial Naive Bayes is a linear classifier (in log space) defined
by:

M∑

i=1

widi = θ

where wi = log[P̂(ti |c)/P̂(ti |c̄)], di = number of occurrences of ti

in d , and θ = − log[P̂(c)/P̂(c̄)]. Here, the index i , 1 ≤ i ≤ M,
refers to terms of the vocabulary (not to positions in d as k did in
our original definition of Naive Bayes)
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kNN is not a linear classifier
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⋆

Classification decision
based on majority of
k nearest neighbors.

The decision
boundaries between
classes are piecewise
linear . . .

. . . but they are in
general not linear
classifiers that can be
described as∑M

i=1 widi = θ.

Sojka, IIR Group: PV211: Vector Space Classification 42 / 63



Intro vector space classification Rocchio kNN Linear classifiers > two classes

Example of a linear two-class classifier

ti wi d1i d2i ti wi d1i d2i

prime 0.70 0 1 dlrs -0.71 1 1
rate 0.67 1 0 world -0.35 1 0
interest 0.63 0 0 sees -0.33 0 0
rates 0.60 0 0 year -0.25 0 0
discount 0.46 1 0 group -0.24 0 0
bundesbank 0.43 0 0 dlr -0.24 0 0

This is for the class interest in Reuters-21578.
For simplicity: assume a simple 0/1 vector representation
d1: “rate discount dlrs world”
d2: “prime dlrs”
θ = 0
Exercise: Which class is d1 assigned to? Which class is d2 assigned to?
We assign document ~d1 “rate discount dlrs world” to interest since
~wT~d1 = 0.67 · 1 + 0.46 · 1 + (−0.71) · 1 + (−0.35) · 1 = 0.07 > 0 = θ.
We assign ~d2 “prime dlrs” to the complement class (not in interest) since
~wT~d2 = −0.01 ≤ θ.
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Which hyperplane?
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Learning algorithms for vector space classification

In terms of actual computation, there are two types of
learning algorithms.

(i) Simple learning algorithms that estimate the parameters of
the classifier directly from the training data, often in one
linear pass.

Naive Bayes, Rocchio, kNN are all examples of this.

(ii) Iterative algorithms

Support vector machines
Perceptron (example available as PDF on website:
http://cislmu.org)

The best performing learning algorithms usually require
iterative learning.
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Perceptron update rule

Randomly initialize linear separator ~w

Do until convergence:

Pick data point ~x
If sign(~wT~x) is correct class (1 or -1): do nothing
Otherwise: ~w = ~w − sign(~wT~x)~x
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Perceptron

~w

~x

S

NO
YES
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Perceptron

~w

~x

~x

S

NO
YES
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Perceptron

~w

~x

~x

~w + ~x

S S ′

NO
YES

NOYES
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Perceptron

~x
~w + ~x

S ′

NOYES
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Which hyperplane?

Sojka, IIR Group: PV211: Vector Space Classification 51 / 63



Intro vector space classification Rocchio kNN Linear classifiers > two classes

Which hyperplane?

For linearly separable training sets: there are infinitely many
separating hyperplanes.

They all separate the training set perfectly . . .

. . . but they behave differently on test data.

Error rates on new data are low for some, high for others.

How do we find a low-error separator?

Perceptron: generally bad; Naive Bayes, Rocchio: ok; linear
SVM: good
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Linear classifiers: Discussion

Many common text classifiers are linear classifiers: Naive
Bayes, Rocchio, logistic regression, linear support vector
machines etc.

Each method has a different way of selecting the separating
hyperplane

Huge differences in performance on test documents

Can we get better performance with more powerful nonlinear
classifiers?

Not in general: A given amount of training data may suffice
for estimating a linear boundary, but not for estimating a
more complex nonlinear boundary.
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A nonlinear problem
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Linear classifier like Rocchio does badly on this task.

kNN will do well (assuming enough training data)
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Which classifier do I use for a given TC problem?

Is there a learning method that is optimal for all text
classification problems?

No, because there is a trade-off between bias and variance.

Factors to take into account:

How much training data is available?
How simple/complex is the problem? (linear vs. nonlinear
decision boundary)
How noisy is the problem?
How stable is the problem over time?

For an unstable problem, it’s better to use a simple and robust

classifier.
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How to combine hyperplanes for > 2 classes?

?
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One-of problems

One-of or multiclass classification

Classes are mutually exclusive.
Each document belongs to exactly one class.
Example: language of a document (assumption: no document
contains multiple languages)
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One-of classification with linear classifiers

Combine two-class linear classifiers as follows for one-of
classification:

Run each classifier separately
Rank classifiers (e.g., according to score)
Pick the class with the highest score
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Any-of problems

Any-of or multilabel classification

A document can be a member of 0, 1, or many classes.
A decision on one class leaves decisions open on all other
classes.
A type of “independence” (but not statistical independence)
Example: topic classification
Usually: make decisions on the region, on the subject area, on
the industry and so on “independently”
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Any-of classification with linear classifiers

Combine two-class linear classifiers as follows for any-of
classification:

Simply run each two-class classifier separately on the test
document and assign document accordingly
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Take-away today

Vector space classification: Basic idea of doing text
classification for documents that are represented as vectors

Rocchio classifier: Rocchio relevance feedback idea applied to
text classification

k nearest neighbor classification

Linear classifiers

More than two classes
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Resources

Chapter 13 of IIR (feature selection)

Chapter 14 of IIR

Resources at http://cislmu.org

Perceptron example
General overview of text classification: Sebastiani (2002)
Text classification chapter on decision tress and perceptrons:
Manning & Schütze (1999)
One of the best machine learning textbooks: Hastie, Tibshirani
& Friedman (2003)
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Take-away today

Basic idea of learning to rank (LTR): We use machine learning
to learn the relevance score (retrieval status value) of a
document with respect to a query.

Zone scoring: a particularly simple instance of LTR

Machine-learned scoring as a general approach to ranking

Ranking SVMs
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Main idea

The aim of term weights (e.g., tf-idf) is to measure term
salience.

The sum of term weights is a measure of the relevance of a
document to a query and the basis for ranking.

Now we view this ranking problem as a machine learning
problem – we will learn the weighting or, more generally, the
ranking.

Term weights can be learned using training examples that have
been judged.

This methodology falls under a general class of approaches
known as machine learned relevance or learning to rank.
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Learning weights

Main methodology

Given a set of training examples, each of which is a tuple of:
a query q, a document d , a relevance judgment for d on q

Simplest case: R(d , q) is either relevant (1) or non-relevant
(0)
More sophisticated cases: graded relevance judgments

Learn weights from these examples, so that the learned scores
approximate the relevance judgments in the training examples

Sojka, IIR Group: PV211: Learning to rank 6 / 46



Zone scoring Machine-learned scoring Ranking SVMs

Binary independence model (BIM)

Is what BIM does a form of learning to rank?

Recap BIM:

Estimate classifier of probability of relevance on training set
Apply to all documents
Rank documents according to probability of relevance
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Learning to rank vs. Text classification

Both are machine learning approaches

Text classification, BIM and relevance feedback (if solved by
text classification) are query-specific.

We need a query-specific training set to learn the ranker.
We need to learn a new ranker for each query.

Learning to rank usually refers to query-independent ranking.

We learn a single classifier.

We can then rank documents for a query that we don’t have
any relevance judgments for.
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Learning to rank: Exercise

One approach to learning to rank is to represent each
query-document pair as a data point, represented as a vector.

We have two classes.

Class 1: the query is relevant to the document.
Class 2: the query is not relevant to the document.

This is a standard classification problem, except that the data
points are query-document pairs (as opposed to documents).

Documents are ranked according to probability of relevance of
corresponding document-query pairs.

What features/dimensions would you use to represent a
query-document pair?
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Simple form of learning to rank: Zone scoring

Given: a collection where documents have three zones (a.k.a.
fields): author, title, body

Weighted zone scoring requires a separate weight for each
zone, e.g. g1, g2, g3

Not all zones are equally important:
e.g. author < title < body

→ g1 = 0.2, g2 = 0.3, g3 = 0.5 (so that they add up to 1)

Score for a zone = 1 if the query term occurs in that zone, 0
otherwise (Boolean)

Example

Query term appears in title and body only
Document score: (0.3 · 1) + (0.5 · 1) = 0.8.
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General form of weighted zone scoring

Given query q and document d , weighted zone scoring assigns to
the pair (q, d) a score in the interval [0,1] by computing a linear
combination of document zone scores, where each zone contributes
a value.

Consider a set of documents, which have l zones

Let g1, . . . , gl ∈ [0, 1], such that
∑l

i=1 gi = 1

For 1 ≤ i ≤ l , let si be the Boolean score denoting a match
(or non-match) between q and the i th zone

si = 1 if a query term occurs in zone i , 0 otherwise

Weighted zone score a.k.a ranked Boolean retrieval

Rank documents according to
∑l

i=1 gisi
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Learning weights in weighted zone scoring

Weighted zone scoring may be viewed as learning a linear
function of the Boolean match scores contributed by the
various zones.

No free lunch: labor-intensive assembly of user-generated
relevance judgments from which to learn the weights

Especially in a dynamic collection (such as the Web)
Major search engine put considerable resources into creating
large training sets for learning to rank.

Good news: once you have a large enough training set, the
problem of learning the weights gi reduces to a simple
optimization problem.
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Learning weights in weighted zone scoring: Simple case

Let documents have two zones: title, body

The weighted zone scoring formula we saw before:

l∑

i=1

gi si

Given q, d , sT (d , q) = 1 if a query term occurs in title, 0
otherwise; sB(d , q) = 1 if a query term occurs in body, 0
otherwise

We compute a score between 0 and 1 for each (d , q) pair
using sT (d , q) and sB(d , q) by using a constant g ∈ [0, 1]:

score(d , q) = g · sT (d , q) + (1 − g) · sB(d , q)
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Learning weights: determine g from training examples

Example

Φj dj qj sT sB r(dj , qj)
Φ1 37 linux 1 1 Relevant
Φ2 37 penguin 0 1 Nonrelevant
Φ3 238 system 0 1 Relevant
Φ4 238 penguin 0 0 Nonrelevant
Φ5 1741 kernel 1 1 Relevant
Φ6 2094 driver 0 1 Relevant
Φ7 3194 driver 1 0 Nonrelevant

Training examples: triples of the form Φj = (dj , qj , r(dj , qj))

A given training document dj and a given training query qj

are assessed by a human who decides r(dj , qj) (either relevant
or nonrelevant)
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Learning weights: determine g from training examples

Example

Example DocID Query sT sB Judgment
Φ1 37 linux 1 1 Relevant
Φ2 37 penguin 0 1 Nonrelevant
Φ3 238 system 0 1 Relevant
Φ4 238 penguin 0 0 Nonrelevant
Φ5 1741 kernel 1 1 Relevant
Φ6 2094 driver 0 1 Relevant
Φ7 3194 driver 1 0 Nonrelevant

For each training example Φj we have Boolean values
sT (dj , qj) and sB(dj , qj) that we use to compute a score:

score(dj , qj) = g · sT (dj , qj) + (1 − g) · sB(dj , qj)
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Learning weights

We compare this score score(dj , qj) with the human relevance
judgment for the same document-query pair (dj , qj).

We define the error of the scoring function with weight g as

ǫ(g ,Φj) = (r(dj , qj) − score(dj , qj))
2

Then, the total error of a set of training examples is given by

∑

j

ǫ(g ,Φj)

The problem of learning the constant g from the given
training examples then reduces to picking the value of g that
minimizes the total error.

Sojka, IIR Group: PV211: Learning to rank 16 / 46



Zone scoring Machine-learned scoring Ranking SVMs

Minimizing the total error ǫ: Example (1)

Training examples

Example DocID Query sT sB Judgment
Φ1 37 linux 1 1 1 (relevant)
Φ2 37 penguin 0 1 0 (nonrelevant)
Φ3 238 system 0 1 1 (relevant)
Φ4 238 penguin 0 0 0 (nonrelevant)
Φ5 1741 kernel 1 1 1 (relevant)
Φ6 2094 driver 0 1 1 (relevant)
Φ7 3194 driver 1 0 0 (nonrelevant)

Compute score:
score(dj , qj) = g · sT (dj , qj) + (1 − g) · sB(dj , qj)

Compute total error:
∑

j ǫ(g ,Φj ), where
ǫ(g ,Φj) = (r(dj , qj) − score(dj , qj))

2

Pick the value of g that minimizes the total error
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Minimizing the total error ǫ: Example (2)

Compute score score(dj , qj)
score(d1, q1) = g · 1 + (1 − g) · 1 = g + 1 − g = 1
score(d2, q2) = g · 0 + (1 − g) · 1 = 0 + 1 − g = 1 − g

score(d3, q3) = g · 0 + (1 − g) · 1 = 0 + 1 − g = 1 − g

score(d4, q4) = g · 0 + (1 − g) · 0 = 0 + 0 = 0
score(d5, q5) = g · 1 + (1 − g) · 1 = g + 1 − g = 1
score(d6, q6) = g · 0 + (1 − g) · 1 = 0 + 1 − g = 1 − g

score(d7, q7) = g · 1 + (1 − g) · 0 = g + 0 = g

Compute total error
∑

j ǫ(g ,Φj)
(1−1)2+(0−1+g)2 +(1−1+g)2+(0−0)2+(1−1)2+(1−1+
g)2+(0−g)2 = 0+(−1+g)2+g2+0+0+g2+g2 = 1−2g+4g2

Pick the value of g that minimizes the total error
Setting derivative to 0, gives you a minimum of g = 1

4 .
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Weight g that minimizes error in the general case

g =
n10r + n01n

n10r + n10n + n01r + n01n

n
...

are the counts of rows of the training set table with the
corresponding properties:
n10r sT = 1 sB = 0 document relevant
n10n sT = 1 sB = 0 document nonrelevant
n01r sT = 0 sB = 1 document relevant
n01n sT = 0 sB = 1 document nonrelevant

Derivation: see book

Note that we ignore documents that have 0 match scores for
both zones or 1 match scores for both zones – the value of g

does not change their final score.

Sojka, IIR Group: PV211: Learning to rank 19 / 46



Zone scoring Machine-learned scoring Ranking SVMs

Exercise: Compute g that minimizes the error

DocID Query sT sB Judgment
Φ1 37 linux 0 0 Relevant
Φ2 37 penguin 1 1 Nonrelevant
Φ3 238 system 1 0 Relevant
Φ4 238 penguin 1 1 Nonrelevant
Φ5 238 redmond 0 1 Nonrelevant
Φ6 1741 kernel 0 0 Relevant
Φ7 2094 driver 1 0 Relevant
Φ8 3194 driver 0 1 Nonrelevant
Φ9 3194 redmond 0 0 Nonrelevant
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More general setup of machine learned scoring

So far, we have considered a case where we combined match
scores (Boolean indicators of relevance).

Now consider more general factors that go beyond Boolean
functions of query term presence in document zones.
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Two examples of typical features

The vector space cosine similarity between query and
document (denoted α)

The minimum window width within which the query terms lie
(denoted ω)

Query term proximity is often indicative of topical relevance.

Thus, we have one feature that captures overall
query-document similarity and one features that captures
proximity of query terms in the document.
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Learning to rank setup for these two features

Example

Example DocID Query α ω Judgment
Φ1 37 linux 0.032 3 relevant
Φ2 37 penguin 0.02 4 nonrelevant
Φ3 238 operating system 0.043 2 relevant
Φ4 238 runtime 0.004 2 nonrelevant
Φ5 1741 kernel layer 0.022 3 relevant
Φ6 2094 device driver 0.03 2 relevant
Φ7 3191 device driver 0.027 5 nonrelevant

α is the cosine score. ω is the window width.

This is exactly the same setup as for zone scoring except we now
have more complex features that capture whether a document is
relevant to a query.
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Graphic representation of the training set

This should look familiar.
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In this case: LTR approach learns a linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in
the class c .

Points (d1 d2) with
w1d1 + w2d2 < θ are in
the complement class c .
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Learning to rank setup for two features

Again, two classes: relevant = 1 and nonrelevant = 0

We now seek a scoring function that combines the values of
the features to generate a value that is (close to) 0 or 1.

We wish this function to be in agreement with our set of
training examples as much as possible.

A linear classifier is defined by an equation of the form:

Score(d , q) = Score(α, ω) = aα+ bω + c ,

where we learn the coefficients a, b, c from training data.

Regression vs. classification

We have only covered binary classification so far.
We can also cast the problem as a regression problem.
This is what we did for zone scoring just now.
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Different geometric interpretation of what’s happening

The function Score(α, ω)
represents a plane
“hanging above” the
figure.

Ideally this plane assumes
values close to 1 above
the points marked R, and
values close to 0 above
the points marked N.
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Linear classification in this case

We pick a threshold θ.

If Score(α, ω) > θ, we
declare the document
relevant, otherwise we
declare it nonrelevant.

As before, all points that
satisfy Score(α, ω) = θ

form a line (dashed here)
→ linear classifier that
separates relevant from
nonrelevant instances.
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Summary

The problem of making a binary relevant/nonrelevant
judgment is cast as a classification or regression problem,
based on a training set of query-document pairs and
associated relevance judgments.

In the example: The classifier corresponds to a line
Score(α, ω) = θ in the α-ω plane.

In principle, any method learning a linear classifier (including
least squares regression) can be used to find this line.

Big advantage of learning to rank: we can avoid hand-tuning
scoring functions and simply learn them from training data.

Bottleneck of learning to rank: maintaining a representative
set of training examples whose relevance assessments must be
made by humans.
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Learning to rank for more than two features

The approach can be readily generalized to a large number of
features.

In addition to cosine similarity and query term window, there
are lots of other indicators of relevance: PageRank-style
measures, document age, zone contributions, document
length, etc.

If these measures can be calculated for a training document
collection with relevance judgments, any number of such
measures can be used to machine-learn a classifier.
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LTR features used by Microsoft Research (1)

Zones: body, anchor, title, url, whole document

Features derived from standard IR models: query term
number, query term ratio, length, idf, sum of term frequency,
min of term frequency, max of term frequency, mean of term
frequency, variance of term frequency, sum of length
normalized term frequency, min of length normalized term
frequency, max of length normalized term frequency, mean of
length normalized term frequency, variance of length
normalized term frequency, sum of tf-idf, min of tf-idf, max of
tf-idf, mean of tf-idf, variance of tf-idf, boolean model, BM25
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LTR features used by Microsoft Research (2)

Language model features: LMIR.ABS, LMIR.DIR, LMIR.JM

Web-specific features: number of slashes in url, length of url,
inlink number, outlink number, PageRank, SiteRank

Spam features: QualityScore

Usage-based features: query-url click count, url click count,
url dwell time

See link in resources for more information
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Shortcoming of our LTR approach so far

Approaching IR ranking like we have done so far is not
necessarily the right way to think about the problem.

Statisticians normally first divide problems into classification
problems (where a categorical variable is predicted) versus
regression problems (where a real number is predicted).

In between is the specialized field of ordinal regression where a
ranking is predicted.

Machine learning for ad hoc retrieval is most properly thought
of as an ordinal regression problem, where the goal is to rank
a set of documents for a query, given training data of the
same sort.

Next up: ranking SVMs, a machine learning method that
learns an ordering directly.
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Exercise

Example

Example DocID Query Cosine ω Judgment
Φ1 37 linux 0.03 3 relevant
Φ2 37 penguin 0.04 5 nonrelevant
Φ3 238 operating system 0.04 2 relevant
Φ4 238 runtime 0.02 3 nonrelevant

Give parameters a, b, c of a line aα+ bω + c that separates
relevant from nonrelevant.
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Basic setup for ranking SVMs

As before we begin with a set of judged query-document pairs.

But we do not represent them as query-document-judgment
triples.

Instead, we ask judges, for each training query q, to order the
documents that were returned by the search engine with
respect to relevance to the query.

We again construct a vector of features ψj = ψ(dj , q) for each
document-query pair – exactly as we did before.

For two documents di and dj , we then form the vector of
feature differences:

Φ(di , dj , q) = ψ(di , q) − ψ(dj , q)
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Training a ranking SVM

Vector of feature differences: Φ(di , dj , q) = ψ(di , q) −ψ(dj , q)

By hypothesis, one of di and dj has been judged more
relevant.

Notation: We write di ≺ dj for “di precedes dj in the results
ordering”.

If di is judged more relevant than dj , then we will assign the
vector Φ(di , dj , q) the class yijq = +1; otherwise −1.

This gives us a training set of pairs of vectors and
“precedence indicators”. Each of the vectors is computed as
the difference of two document-query vectors.

We can then train an SVM on this training set with the goal
of obtaining a classifier that returns

~wTΦ(di , dj , q) > 0 iff di ≺ dj
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Advantages of Ranking SVMs vs. Classification/regression

Documents can be evaluated relative to other candidate
documents for the same query, rather than having to be
mapped to a global scale of goodness.

This often is an easier problem to solve since just a ranking is
required rather than an absolute measure of relevance.

Especially germane in web search, where the ranking at the
very top of the results list is exceedingly important.
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Why simple ranking SVMs don’t work that well

Ranking SVMs treat all ranking violations alike.

But some violations are minor problems, e.g., getting the order
of two relevant documents wrong.
Other violations are big problems, e.g., ranking a nonrelevant
document ahead of a relevant document.

Some queries have many relevant documents, others few.

Depending on the training regime, too much emphasis may be
put on queries with many relevant documents.

In most IR settings, getting the order of the top documents
right is key.

In the simple setting we have described, top and bottom ranks
will not be treated differently.

→ Learning-to-rank frameworks actually used in IR are more
complicated than what we have presented here.
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Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to
ranking).
Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2002.
Performance compared to state-of-the-art models: cosine, tf-idf,
BM25, language models (Dirichlet and Jelinek-Mercer)

Learning-to-rank clearly better than non-machine-learning
approaches
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Optimizing scaling/representation of features

Both of the methods that we’ve seen treat the features as
given and do not attempt to modify the basic representation
of the document-query pairs.

Much of traditional IR weighting involves nonlinear scaling of
basic measurements (such as log-weighting of term frequency,
or idf).

At the present time, machine learning is very good at
producing optimal weights for features in a linear
combination, but it is not good at coming up with good
nonlinear scalings of basic measurements.

This area remains the domain of human feature engineering.
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Assessment of learning to rank

The idea of learning to rank is old.

Early work by Norbert Fuhr and William S. Cooper

But it is only very recently that sufficient machine learning
knowledge, training document collections, and computational
power have come together to make this method practical and
exciting.

While skilled humans can do a very good job at defining
ranking functions by hand, hand tuning is difficult, and it has
to be done again for each new document collection and class
of users.

The more features are used in ranking, the more difficult it is
to manually integrate them into one ranking function.

Web search engines use a large number of features → web
search engines need some form of learning to rank.
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Exercise

Write down the training set from the last exercise as a training set
for a ranking SVM.
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Take-away today

Basic idea of learning to rank (LTR): We use machine learning
to learn the relevance score (retrieval status value) of a
document with respect to a query.

Zone scoring: a particularly simple instance of LTR

Machine-learned scoring as a general approach to ranking

Ranking SVMs
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Resources

Chapter 15-2 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

References to ranking SVM results
Microsoft learning to rank datasets
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SVM intro SVM details Classification in the real world

Overview

1 SVM intro

2 SVM details

3 Classification in the real world

Sojka, IIR Group: PV211: Support Vector Machines 2 / 38



SVM intro SVM details Classification in the real world

Take-away today

Support vector machines: State-of-the-art text classification
methods (linear and nonlinear)

Introduction to SVMs

Formalization

Soft margin case for nonseparable problems

Discussion: Which classifier should I use for my problem?

Sojka, IIR Group: PV211: Support Vector Machines 3 / 38



SVM intro SVM details Classification in the real world

Support vector machines

Machine-learning research in the last two decades has
improved classifier effectiveness.

New generation of state-of-the-art classifiers: support vector
machines (SVMs), boosted decision trees, regularized logistic
regression, maximum entropy, neural networks, and random
forests

As we saw in IIR: Applications to IR problems, particularly
text classification
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What is a support vector machine – first take

Vector space classification (similar to Rocchio, kNN, linear
classifiers)

Difference from previous methods: large margin classifier

We aim to find a separating hyperplane (decision boundary)
that is maximally far from any point in the training data

In case of non-linear-separability: We may have to discount
some points as outliers or noise.
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(Linear) Support Vector Machines

binary classification
problem

Decision boundary is
linear separator.

criterion: being maximally
far away from any data
point → determines
classifier margin

Vectors on margin lines
are called support vectors

Set of support vectors are
a complete specification
of classifier
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Why maximize the margin?

Points near the decision
surface are uncertain
classification decisions.
A classifier with a large
margin makes no low
certainty classification
decisions (on the
training set).
Gives classification
safety margin with
respect to errors and
random variation
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Support vectors

Margin is
maximized

Maximum
margin
decision
hyperplane
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Why maximize the margin?

SVM classification = large
margin around decision
boundary

We can think of the margin
as a “fat separator” – a
fatter version of our regular
decision hyperplane.

unique solution

decreased memory capacity

increased ability to correctly
generalize to test data
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Separating hyperplane: Recap

Hyperplane

An n-dimensional generalization of a plane (point in 1-D space,
line in 2-D space, ordinary plane in 3-D space).

Decision hyperplane

Can be defined by:

intercept term b (we were calling this θ before)

normal vector ~w (weight vector) which is perpendicular to the
hyperplane

All points ~x on the hyperplane satisfy:

~wT~x + b = 0
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Exercise

0

1

2

3

0 1 2 3

b

b

ut

Draw the maximum margin separator. Which vectors are the
support vectors? Coordinates of dots: (3,3), (-1,1). Coordinates of
triangle: (3,0)
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Formalization of SVMs

Training set

Consider a binary classification problem:

~xi are the input vectors

yi are the labels

For SVMs, the two classes are yi = +1 and yi = −1.

The linear classifier is then:

f (~x) = sign(~wT~x + b)

A value of −1 indicates one class, and a value of +1 the other
class.
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Functional margin of a point

SVM makes its decision based on the score ~wT~x + b.
Clearly, the larger |~wT~x + b| is, the more confidence we can have
that the decision is correct.

Functional margin

The functional margin of the vector ~xi w.r.t the hyperplane
〈~w , b〉 is: yi(~wT~xi + b)

The functional margin of a data set w.r.t a decision surface is
twice the functional margin of any of the points in the data
set with minimal functional margin

Factor 2 comes from measuring across the whole width of the
margin.

Problem: We can increase functional margin by scaling ~w and b.
→ We need to place some constraint on the size of ~w .
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Geometric margin

Geometric margin of the classifier: maximum width of the band
that can be drawn separating the support vectors of the two
classes.
To compute the geometric margin, we need to compute the
distance of a vector ~x from the hyperplane:

r = y
~wT~x + b

|~w |

(why? we will see that this is so graphically in a few moments)
Distance is of course invariant to scaling: if we replace ~w by 5~w
and b by 5b, then the distance is the same because it is normalized
by the length of ~w .

Sojka, IIR Group: PV211: Support Vector Machines 15 / 38



SVM intro SVM details Classification in the real world

Optimization problem solved by SVMs

Assume canonical “functional margin” distance
Assume that every data point has at least distance 1 from the
hyperplane, then:

yi(~wT~xi + b) ≥ 1

Since each example’s distance from the hyperplane is
ri = yi(~wT~xi + b)/|~w |, the margin is ρ = 2/|~w |. We want to
maximize this margin. That is, we want to find ~w and b such that:

For all (~xi , yi ) ∈ D, yi(~wT~xi + b) ≥ 1

ρ = 2/|~w | is maximized
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Support Vector Machines
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maximum
margin
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~wT~x + b = 1

~wT~x + b = 0

~wT~x + b = −1

0.5x + 0.5y − 2 = 1

0.5x + 0.5y − 2 = 0

0.5x + 0.5y − 2 = −1

Sojka, IIR Group: PV211: Support Vector Machines 17 / 38



SVM intro SVM details Classification in the real world

~wT~w ′ + b = 0

b = −~wT~w ′

b

|~w | = − ~wT~w ′

|~w |

Distance of support vector from separator =
(length of projection of ~x onto ~w) minus (length of ~w ′)

~wT~x

|~w | − ~wT~w ′

|~w |

=
~wT~x

|~w | +
b

|~w |

=
~wT~x + b

|~w |
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Distance of support vector from separator =
(length of projection of ~x = (1 5)T onto ~w) minus (length of ~w ′)

~wT~x

|~w | − ~wT~w ′

|~w |

(1 · 2 + 5 · 2)/(1/
√

2) − (0.5 · 2 + 0.5 · 2)/(1/
√

2)

3/(1/
√

2) − 2/(1/
√

2)

~wT~x

|~w | +
b

|~w |

3/(1/
√

2) + (−2)/(1/
√

2)

3 − 2

1/
√

2

√
2
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Optimization problem solved by SVMs (2)

Maximizing 2/|~w | is the same as minimizing |~w |/2.
This gives the final standard formulation of an SVM as a
minimization problem:

Example

Find ~w and b such that:
1
2 ~wT~w is minimized (because |~w | =

√
~wT ~w), and

for all {(~xi , yi )}, yi(~wT~xi + b) ≥ 1

We are now optimizing a quadratic function subject to linear
constraints. Quadratic optimization problems are standard
mathematical optimization problems, and many algorithms exist
for solving them (e.g. Quadratic Programming libraries).
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Recap

We start with a training set.

The data set defines the maximum-margin separating
hyperplane (if it is separable).

We use quadratic optimization to find this plane.

Given a new point ~x to classify, the classification function
f (~x) computes the functional margin of the point (=
normalized distance).

The sign of this function determines the class to assign to the
point.

If the point is within the margin of the classifier, the classifier
can return “don’t know” rather than one of the two classes.

The value of f (~x) may also be transformed into a probability
of classification
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Exercise

0

1

2

3

0 1 2 3

b

b

ut

Which vectors are the support vectors? Draw the maximum margin
separator. What values of w1, w2 and b (for w1x + w2y + b = 0)
describe this separator? Recall that we must have
w1x + w2y + b ∈ {1, −1} for the support vectors.

Sojka, IIR Group: PV211: Support Vector Machines 22 / 38



SVM intro SVM details Classification in the real world

Walkthrough example

Working geometrically:

The maximum margin weight vector
will be parallel to the shortest line
connecting points of the two classes,
that is, the line between (1, 1) and
(2, 3), giving a weight vector of (1, 2).

The optimal decision surface is
orthogonal to that line and intersects
it at the halfway point. Therefore, it
passes through (1.5, 2).

The SVM decision boundary is:

0 = x+2y−(1·1.5+2·2) ⇔ 0 =
2
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5
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Walkthrough example

Working algebraically:

With the constraint
sign(yi (~wT~xi + b)) ≥ 1, we seek to
minimize |~w |.
We know that the solution is
~w = (a, 2a) for some a. So:
a + 2a + b = −1, 2a + 6a + b = 1

Hence, a = 2/5 and b = −11/5. So
the optimal hyperplane is given by
~w = (2/5, 4/5) and b = −11/5.

The margin ρ is 2/|~w | =
2/

√

4/25 + 16/25 = 2/(2
√

5/5) =√
5 =

√

(1 − 2)2 + (1 − 3)2.
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Soft margin classification

What happens if data is not linearly separable?

Standard approach: allow the fat decision margin to make a
few mistakes

some points, outliers, noisy examples are inside or on the
wrong side of the margin

Pay cost for each misclassified example, depending on how far
it is from meeting the margin requirement

Slack variable ξi : A non-zero value for ξi allows ~xi to not meet the
margin requirement at a cost proportional to the value of ξi .
Optimization problem: trading off how fat it can make the margin
vs. how many points have to be moved around to allow this margin.
The sum of the ξi gives an upper bound on the number of training
errors. Soft-margin SVMs minimize training error traded off
against margin.
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Using SVM for one-of classification

Recall how to use binary linear classifiers (k classes) for
one-of: train and run k classifiers and then select the class
with the highest confidence

Another strategy used with SVMs: build k(k − 1)/2
one-versus-one classifiers, and choose the class that is selected
by the most classifiers. While this involves building a very
large number of classifiers, the time for training classifiers may
actually decrease, since the training data set for each classifier
is much smaller.

Yet another possibility: structured prediction. Generalization
of classification where the classes are not just a set of
independent, categorical labels, but may be arbitrary
structured objects with relationships defined between them
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Text classification

Many commercial applications

There are many applications of text classification for corporate
Intranets, government departments, and Internet publishers.

Often greater performance gains from exploiting
domain-specific text features than from changing from one
machine learning method to another.

Understanding the data is one of the keys to successful
categorization, yet this is an area in which many
categorization tool vendors are weak.
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training
data is there currently available?

Practical challenge: creating or obtaining enough training data

Hundreds or thousands of examples from each class are required to
produce a high performance classifier and many real world contexts
involve large sets of categories.

None?

Very little?

Quite a lot?

A huge amount, growing every day?
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If you have no labeled training data

Use hand-written rules!

Example

IF (wheat OR grain) AND NOT (whole OR bread) THEN
c = grain

In practice, rules get a lot bigger than this, and can be phrased
using more sophisticated query languages than just Boolean
expressions, including the use of numeric scores.
With careful crafting, the accuracy of such rules can become very
high (high 90% precision, high 80% recall).
Nevertheless the amount of work to create such well-tuned rules is
very large. A reasonable estimate is 2 days per class, and extra
time has to go into maintenance of rules, as the content of
documents in classes drifts over time.
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A Verity topic (a complex classification rule)
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Westlaw: Example queries

Information need: Information on the legal theories involved in
preventing the disclosure of trade secrets by employees formerly
employed by a competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to
access a workplace

Query: disab! /p access! /s work-site work-place (employment /3
place)

Information need: Cases about a host’s responsibility for drunk
guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest
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If you have fairly little data and you are going to train a

supervised classifier

Work out how to get more labeled data as quickly as you can.

Best way: insert yourself into a process where humans will be
willing to label data for you as part of their natural tasks.

Example

Often humans will sort or route email for their own purposes, and
these actions give information about classes.

Active Learning

A system is built which decides which documents a human should
label.
Usually these are the ones on which a classifier is uncertain of the
correct classification.
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If you have labeled data

Good amount of labeled data, but not huge

Use everything that we have presented about text classification.
Consider hybrid approach (overlay Boolean classifier)

Huge amount of labeled data

Choice of classifier probably has little effect on your results.
Choose classifier based on the scalability of training or runtime
efficiency.
Rule of thumb: each doubling of the training data size produces a
linear increase in classifier performance, but with very large
amounts of data, the improvement becomes sub-linear.

Sojka, IIR Group: PV211: Support Vector Machines 34 / 38



SVM intro SVM details Classification in the real world

Large and difficult category taxonomies

If you have a small number of well-separated categories, then many
classification algorithms are likely to work well. But often: very
large number of very similar categories.

Example

Web directories (e.g. the Yahoo! Directory consists of over
200,000 categories or the Open Directory Project), library
classification schemes (Dewey Decimal or Library of Congress), the
classification schemes used in legal or medical applications.

Accurate classification over large sets of closely related classes is
inherently difficult. – No general high-accuracy solution.
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Recap

Is there a learning method that is optimal for all text
classification problems?

No, because there is a trade-off between bias and variance.

Factors to take into account:

How much training data is available?
How simple/complex is the problem? (linear vs. nonlinear
decision boundary)
How noisy is the problem?
How stable is the problem over time?

For an unstable problem, it’s better to use a simple and robust

classifier.
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Take-away today

Support vector machines: State-of-the-art text classification
methods (linear and nonlinear)

Introduction to SVMs

Formalization

Soft margin case for nonseparable problems

Discussion: Which classifier should I use for my problem?
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Resources

Chapter 14 of IIR (basic vector space classification)

Chapter 15-1 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Discussion of “how to select the right classifier for my
problem” in Russell and Norvig
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Overview

1 Recap

2 Clustering: Introduction

3 Clustering in IR

4 K -means

5 Evaluation

6 How many clusters?
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Support vector machines

Binary classification
problem

Simple SVMs are
linear classifiers.

criterion: being
maximally far away
from any data point
→ determines
classifier margin

linear separator
position defined by
support vectors
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Optimization problem solved by SVMs

Find ~w and b such that:
1
2 ~wT~w is minimized (because |~w | =

√
~wT~w), and

for all {(~xi , yi)}, yi(~wT~xi + b) ≥ 1
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Which machine learning method to choose?

Is there a learning method that is optimal for all text
classification problems?

No, because there is a tradeoff, a dilemma between
bias and variance.

Factors to take into account:

How much training data is available?
How simple/complex is the problem? (linear vs. nonlinear
decision boundary)
How noisy is the problem?
How stable is the problem over time?

For an unstable problem, it’s better to use a simple and robust

classifier.

See Fig. 15 in Geman et al.
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Take-away today

What is clustering?

Applications of clustering in information retrieval

K -means algorithm

Evaluation of clustering

How many clusters?
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Clustering: Definition

(Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

Documents within a cluster should be similar.

Documents from different clusters should be dissimilar.

Clustering is the most common form of unsupervised learning.

Unsupervised = there are no labeled or annotated data.

Hard clustering vs. soft clustering.

Cardinality of clustering.
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Exercise: Data set with clear cluster structure
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Classification vs. Clustering

Classification: supervised learning

Clustering: unsupervised learning

Classification: Classes are human-defined and part of the
input to the learning algorithm.

Clustering: Clusters are inferred from the data without human
input.

However, there are many ways of influencing the outcome of
clustering: number of clusters, similarity measure,
representation of documents, . . .
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The cluster hypothesis

Cluster hypothesis. Documents in the same cluster behave
similarly with respect to relevance to information needs.

All applications of clustering in IR are based (directly or indirectly)
on the cluster hypothesis.

Van Rijsbergen’s original wording (1979): “closely associated
documents tend to be relevant to the same requests”.
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Applications of clustering in IR

application what is benefit
clustered?

search result clustering search
results

more effective infor-
mation presentation
to user

Scatter-Gather (subsets of)
collection

alternative user inter-
face: “search without
typing”

collection clustering collection effective information
presentation for ex-
ploratory browsing

cluster-based retrieval collection higher efficiency:
faster search
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Search result clustering for better navigation
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Scatter-Gather
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Global navigation: Yahoo
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Global navigation: Medical Subject Headings MESH
(upper level)
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Global navigation: MESH (lower level)
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Navigational hierarchies: Manual vs. automatic creation

Note: Yahoo/MESH are not examples of clustering.

But they are well known examples for using a global hierarchy
for navigation.

Some examples for global navigation/exploration based on
clustering:

Arxiv’s LDAExplore: https://arxiv.lateral.io/

Cartia
Themescapes
Google News
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Global navigation combined with visualization (1)
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Global navigation combined with visualization (2)

Sojka, IIR Group: PV211: Flat Clustering 22 / 83



Recap Clustering: Introduction Clustering in IR K -means Evaluation How many clusters?

Global clustering for navigation: Google News

http://news.google.com
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Clustering for improving recall

To improve search recall:

Cluster docs in collection a priori
When a query matches a doc d , also return other docs in the
cluster containing d

Hope: if we do this: the query “car” will also return docs
containing “automobile”

Because the clustering algorithm groups together docs
containing “car” with those containing “automobile”.
Both types of documents contain words like “parts”, “dealer”,
“mercedes”, “road trip”.
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Exercise: Data set with clear cluster structure
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Propose
algorithm
for finding
the cluster
structure in
this
example
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Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.
Later: Semiautomatic methods for determining K

Secondary goals in clustering

Avoid very small and very large clusters
Define clusters that are easy to explain to the user
Many others . . .
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Flat vs. Hierarchical clustering

Flat algorithms

Usually start with a random (partial) partitioning of docs into
groups
Refine iteratively
Main algorithm: K -means

Hierarchical algorithms

Create a hierarchy
Bottom-up, agglomerative
Top-down, divisive
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Hard vs. Soft clustering

Hard clustering: Each document belongs to exactly one
cluster.

More common and easier to do
Soft clustering: A document can belong to more than one
cluster.

Makes more sense for applications like creating browsable
hierarchies
You may want to put sneakers in two clusters:

sports apparel

shoes

You can only do that with a soft clustering approach.

This class: flat, hard clustering; next: hierarchical, hard
clustering then: latent semantic indexing, a form of soft
clustering

We won’t have time for soft clustering. See IIR 16.5, IIR 18

Non-exhaustive clustering: some docs are not assigned to any
cluster. See references in IIR 16.
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Flat algorithms

Flat algorithms compute a partition of N documents into a
set of K clusters.

Given: a set of documents and the number K

Find: a partition into K clusters that optimizes the chosen
partitioning criterion

Global optimization: exhaustively enumerate partitions, pick
optimal one

Not tractable

Effective heuristic method: K -means algorithm
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K -means

Perhaps the best known clustering algorithm

Simple, works well in many cases

Use as default / baseline for clustering documents
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Document representations in clustering

Vector space model

As in vector space classification, we measure relatedness
between vectors by Euclidean distance . . .

. . . which is almost equivalent to cosine similarity.

Almost: centroids are not length-normalized.
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K -means: Basic idea

Each cluster in K -means is defined by a centroid.

Objective/partitioning criterion: minimize the average squared
difference from the centroid

Recall definition of centroid:

~µ(ω) =
1

|ω|
∑

~x∈ω

~x

where we use ω to denote a cluster.

We try to find the minimum average squared difference by
iterating two steps:

reassignment: assign each vector to its closest centroid
recomputation: recompute each centroid as the average of the
vectors that were assigned to it in reassignment
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K -means pseudocode (µk is centroid of ωk)

K -means({~x1, . . . , ~xN}, K )
1 (~s1,~s2, . . . ,~sK )← SelectRandomSeeds({~x1, . . . , ~xN}, K )
2 for k ← 1 to K
3 do ~µk ← ~sk

4 while stopping criterion has not been met
5 do for k ← 1 to K
6 do ωk ← {}
7 for n← 1 to N
8 do j ← arg minj ′ |~µj ′ − ~xn|
9 ωj ← ωj ∪ {~xn} (reassignment of vectors)

10 for k ← 1 to K
11 do ~µk ← 1

|ωk |

∑

~x∈ωk
~x (recomputation of centroids)

12 return {~µ1, . . . , ~µK}
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Worked Example: Set of points to be clustered

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

Exercise: (i) Guess what the optimal clustering into two clusters is
in this case; (ii) compute the centroids of the clusters
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Worked Example: Random selection of initial centroids
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Worked Example: Assign points to closest center
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Worked Example: Assignment
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid
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Worked Example: Assignment
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid
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Worked Example: Assignment
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid
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Worked Example: Assignment
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid
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Worked Example: Assignment
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid
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Worked Example: Assignment
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Worked Example: Recompute cluster centroids
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Worked Ex.: Centroids and assignments after convergence
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K -means is guaranteed to converge: Proof

RSS (Residual Sum of Squares) = sum of all squared
distances between document vector and closest centroid

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

see next slide

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

Assumption: Ties are broken consistently.

Finite set & monotonically decreasing → convergence
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Recomputation decreases average distance

RSS =
∑K

k=1 RSSk – the residual sum of squares (the “goodness”
measure)

RSSk(~v) =
∑

~x∈ωk

‖~v − ~x‖2 =
∑

~x∈ωk

M
∑

m=1

(vm − xm)2

∂RSSk(~v)

∂vm

=
∑

~x∈ωk

2(vm − xm) = 0

vm =
1

|ωk |
∑

~x∈ωk

xm

The last line is the componentwise definition of the centroid!
We minimize RSSk when the old centroid is replaced with the new
centroid. RSS, the sum of the RSSk , must then also decrease during
recomputation.
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K -means is guaranteed to converge

But we don’t know how long convergence will take!

If we don’t care about a few docs switching back and forth,
then convergence is usually fast (< 10–20 iterations).

However, complete convergence can take many more
iterations.
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Optimality of K -means

Convergence 6= optimality

Convergence does not mean that we converge to the optimal
clustering!

This is the great weakness of K -means.

If we start with a bad set of seeds, the resulting clustering can
be horrible.
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Exercise: Suboptimal clustering

0
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×
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×

×
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×
d1 d2 d3

d4 d5 d6

What is the optimal clustering for K = 2?

Do we converge on this clustering for arbitrary seeds
di , dj?
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Initialization of K -means

Random seed selection is just one of many ways K -means can
be initialized.

Random seed selection is not very robust: It’s easy to get a
suboptimal clustering.

Better ways of computing initial centroids:

Select seeds not randomly, but using some heuristic (e.g., filter
out outliers or find a set of seeds that has “good coverage” of
the document space)
Use hierarchical clustering to find good seeds
Select i (e.g., i = 10) different random sets of seeds, do a
K -means clustering for each, select the clustering with lowest
RSS
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Time complexity of K -means

Computing one distance of two vectors is O(M).

Reassignment step: O(KNM) (we need to compute KN
document-centroid distances)

Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

Assume number of iterations bounded by I

Overall complexity: O(IKNM) – linear in all important
dimensions

However: This is not a real worst-case analysis.

In pathological cases, complexity can be worse than linear.
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What is a good clustering?

Internal criteria

Example of an internal criterion: RSS in K -means

But an internal criterion often does not evaluate the actual
utility of a clustering in the application.

Alternative: External criteria

Evaluate with respect to a human-defined classification
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External criteria for clustering quality

Based on a gold standard data set, e.g., the Reuters collection
we also used for the evaluation of classification

Goal: Clustering should reproduce the classes in the gold
standard

(But we only want to reproduce how documents are divided
into groups, not the class labels.)

First measure for how well we were able to reproduce the
classes: purity
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External criterion: Purity

purity(Ω, C) =
1

N

∑

k

max
j
|ωk ∩ cj |

Ω = {ω1, ω2, . . . , ωK} is the set of clusters and
C = {c1, c2, . . . , cJ} is the set of classes.

For each cluster ωk : find class cj with most members nkj in ωk

Sum all nkj and divide by total number of points
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Example for computing purity

x

o

x x

x

x

o

x

o

o ⋄
o x

⋄ ⋄
⋄

x

cluster 1 cluster 2 cluster 3

To compute purity: 5 = maxj |ω1 ∩ cj | (class x, cluster 1); 4 =
maxj |ω2 ∩ cj | (class o, cluster 2); and 3 = maxj |ω3 ∩ cj | (class ⋄,
cluster 3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.
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Another external criterion: Rand index

Purity can be increased easily by increasing K – a measure
that does not have this problem: Rand index.

Definition: RI = TP+TN
TP+FP+FN+TN

Based on 2x2 contingency table of all pairs of documents:
same cluster different clusters

same class true positives (TP) false negatives (FN)
different classes false positives (FP) true negatives (TN)

TP+FN+FP+TN is the total number of pairs.

TP+FN+FP+TN =
(N

2

)

for N documents.

Example:
(17

2

)

= 136 in o/⋄/x example

Each pair is either positive or negative (the clustering puts the
two documents in the same or in different clusters) . . .

. . . and either “true” (correct) or “false” (incorrect): the
clustering decision is correct or incorrect.
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Rand Index: Example

As an example, we compute RI for the o/⋄/x example. We first
compute TP + FP. The three clusters contain 6, 6, and 5 points,
respectively, so the total number of “positives” or pairs of
documents that are in the same cluster is:

TP + FP =

(

6
2

)

+

(

6
2

)

+

(

5
2

)

= 40

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the ⋄
pairs in cluster 3, and the x pair in cluster 3 are true positives:

TP =

(

5
2

)

+

(

4
2

)

+

(

3
2

)

+

(

2
2

)

= 20

Thus, FP = 40− 20 = 20.
FN and TN are computed similarly.
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Rand measure for the o/⋄/x example

same cluster different clusters
same class TP = 20 FN = 24
different classes FP = 20 TN = 72

RI is then (20 + 72)/(20 + 20 + 24 + 72) ≈ 0.68.
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Two other external evaluation measures

Two other measures

Normalized mutual information (NMI)

How much information does the clustering contain about the
classification?
Singleton clusters (number of clusters = number of docs) have
maximum MI
Therefore: normalize by entropy of clusters and classes

F measure

Like Rand, but “precision” and “recall” can be weighted
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Evaluation results for the o/⋄/x example

purity NMI RI F5

lower bound 0.0 0.0 0.0 0.0
maximum 1.0 1.0 1.0 1.0
value for example 0.71 0.36 0.68 0.46

All four measures range from 0 (really bad clustering) to 1 (perfect
clustering).
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How many clusters?

Number of clusters K is given in many applications.

E.g., there may be an external constraint on K . Example: In
the case of Scatter-Gather, it was hard to show more than
10–20 clusters on a monitor in the 90s.

What if there is no external constraint? Is there a “right”
number of clusters?

One way to go: define an optimization criterion

Given docs, find K for which the optimum is reached.
What optimization criterion can we use?
We can’t use RSS or average squared distance from centroid
as criterion: always chooses K = N clusters.
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Exercise

Your job is to develop the clustering algorithms for a
competitor to news.google.com

You want to use K -means clustering.

How would you determine K?
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Simple objective function for K : Basic idea

Start with 1 cluster (K = 1)

Keep adding clusters (= keep increasing K )

Add a penalty for each new cluster

Then trade off cluster penalties against average squared
distance from centroid

Choose the value of K with the best tradeoff
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Simple objective function for K : Formalization

Given a clustering, define the cost for a document as
(squared) distance to centroid

Define total distortion RSS(K) as sum of all individual
document costs (corresponds to average distance)

Then: penalize each cluster with a cost λ

Thus for a clustering with K clusters, total cluster penalty is
Kλ

Define the total cost of a clustering as distortion plus total
cluster penalty: RSS(K) + Kλ

Select K that minimizes (RSS(K) + Kλ)

Still need to determine good value for λ . . .
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Finding the “knee” in the curve
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Pick the number of clusters where curve “flattens”. Here: 4 or
9.
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Take-away today

What is clustering?

Applications of clustering in information retrieval

K -means algorithm

Evaluation of clustering

How many clusters?
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Resources

Chapter 16 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Keith van Rijsbergen on the cluster hypothesis (he was one of
the originators)
Bing/Carrot2/Clusty: search result clustering systems
Stirling number: the number of distinct k-clusterings of n
items
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Overview
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Take-away today

Introduction to hierarchical clustering

Single-link and complete-link clustering

Centroid and group-average agglomerative clustering (GAAC)

Bisecting K-means

How to label clusters automatically
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Hierarchical clustering

Our goal in hierarchical clustering is to create a
hierarchy like the one we saw earlier in Reuters:

coffee poultry oil & gasFranceUKChinaKenya

industriesregions

TOP

We want to create this hierarchy automatically.

We can do this either top-down or bottom-up.
The best known bottom-up method is hierarchical
agglomerative clustering.

Sojka, IIR Group: PV211: Hierarchical clustering 5 / 62
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Hierarchical agglomerative clustering (HAC)

HAC creates a hierarchy in the form of a binary tree.

Assumes a similarity measure for determining the similarity of
two clusters.

Up to now, our similarity measures were for documents.

We will look at four different cluster similarity measures.

Sojka, IIR Group: PV211: Hierarchical clustering 6 / 62
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HAC: Basic algorithm

Start with each document in a separate cluster

Then repeatedly merge the two clusters that are most similar

Until there is only one cluster.

The history of merging is a hierarchy in the form of a binary
tree.

The standard way of depicting this history is a
dendrogram.

Sojka, IIR Group: PV211: Hierarchical clustering 7 / 62
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Divisive clustering

Divisive clustering is top-down.

Alternative to HAC (which is bottom up).

Divisive clustering:

Start with all docs in one big cluster
Then recursively split clusters
Eventually each node forms a cluster on its own.

→ Bisecting K -means at the end

For now: HAC (= bottom-up)

Sojka, IIR Group: PV211: Hierarchical clustering 9 / 62
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Naive HAC algorithm

SimpleHAC(d1, . . . , dN)
1 for n← 1 to N
2 do for i ← 1 to N
3 do C [n][i ]← Sim(dn, di)
4 I[n]← 1 (keeps track of active clusters)
5 A← [] (collects clustering as a sequence of merges)
6 for k ← 1 to N − 1
7 do 〈i , m〉 ← arg max{〈i ,m〉:i 6=m∧I[i]=1∧I[m]=1} C [i ][m]
8 A.Append(〈i , m〉) (store merge)
9 for j ← 1 to N

10 do (use i as representative for < i , m >)
11 C [i ][j]← Sim(< i , m >, j)
12 C [j][i ]← Sim(< i , m >, j)
13 I[m]← 0 (deactivate cluster)
14 return A

Sojka, IIR Group: PV211: Hierarchical clustering 10 / 62
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Computational complexity of the naive algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.
We compute the similarity of the new cluster with all other
(surviving) clusters.

There are O(N) iterations, each performing a O(N × N)
“scan” operation.

Overall complexity is O(N3).

We’ll look at more efficient algorithms later.

Sojka, IIR Group: PV211: Hierarchical clustering 11 / 62
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Key question: How to define cluster similarity

Single-link: Maximum similarity

Maximum similarity of any two documents

Complete-link: Minimum similarity

Minimum similarity of any two documents

Centroid: Average “intersimilarity”

Average similarity of all document pairs (but excluding pairs of
docs in the same cluster)
This is equivalent to the similarity of the centroids.

Group-average: Average “intrasimilarity”

Average similary of all document pairs, including pairs of docs
in the same cluster

Sojka, IIR Group: PV211: Hierarchical clustering 12 / 62



Introduction Single-link/Complete-link Centroid/GAAC Labeling clusters Variants

Cluster similarity: Example
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Single-link: Maximum similarity
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Complete-link: Minimum similarity
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Centroid: Average intersimilarity

intersimilarity = similarity of two documents in different clusters
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Group average: Average intrasimilarity

intrasimilarity = similarity of any pair, including cases where the
two documents are in the same cluster
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Cluster similarity: Larger Example
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Single-link: Maximum similarity

0

1

2

3

4

0 1 2 3 4 5 6 7

b

b

b

b
bb

b
b

b

b
b

b

b

b

b

b

b

b

b

b

Sojka, IIR Group: PV211: Hierarchical clustering 19 / 62



Introduction Single-link/Complete-link Centroid/GAAC Labeling clusters Variants

Complete-link: Minimum similarity
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Centroid: Average intersimilarity
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Group average: Average intrasimilarity
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Single link HAC

The similarity of two clusters is the maximum intersimilarity –
the maximum similarity of a document from the first cluster
and a document from the second cluster.

Once we have merged two clusters, how do we update the
similarity matrix?

This is simple for single link:

sim(ωi , (ωk1 ∪ ωk2)) = max(sim(ωi , ωk1), sim(ωi , ωk2))

Sojka, IIR Group: PV211: Hierarchical clustering 24 / 62
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Complete link HAC

The similarity of two clusters is the minimum intersimilarity –
the minimum similarity of a document from the first cluster
and a document from the second cluster.

Once we have merged two clusters, how do we update the
similarity matrix?

Again, this is simple:

sim(ωi , (ωk1 ∪ ωk2)) = min(sim(ωi , ωk1), sim(ωi , ωk2))

We measure the similarity of two clusters by computing the
diameter of the cluster that we would get if we merged
them.

Sojka, IIR Group: PV211: Hierarchical clustering 26 / 62
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Exercise: Compute single and complete link clusterings
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Single-link clustering
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Complete link clustering
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Single-link vs. Complete link clustering
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Single-link: Chaining

0

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12

× × × × × × × × × × × ×

× × × × × × × × × × × ×

Single-link clustering often produces long, straggly clusters. For
most applications, these are undesirable.
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What 2-cluster clustering will complete-link produce?
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Coordinates: 1 + 2× ǫ, 4, 5 + 2× ǫ, 6, 7− ǫ.
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Complete-link: Sensitivity to outliers
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The complete-link clustering of this set splits d2 from its right
neighbors – clearly undesirable.

The reason is the outlier d1.

This shows that a single outlier can negatively affect the
outcome of complete-link clustering.

Single-link clustering does better in this case.
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Centroid HAC

The similarity of two clusters is the average intersimilarity –
the average similarity of documents from the first cluster with
documents from the second cluster.

A naive implementation of this definition is inefficient
(O(N2)), but the definition is equivalent to computing the
similarity of the centroids:

sim-cent(ωi , ωj) = ~µ(ωi) · ~µ(ωj)

Hence the name: centroid HAC

Note: this is the dot product, not cosine similarity!
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Exercise: Compute centroid clustering
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Centroid clustering
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Inversion in centroid clustering

In an inversion, the similarity increases during a merge
sequence. Results in an “inverted” dendrogram.

Below: Similarity of the first merger (d1 ∪ d2) is -4.0,
similarity of second merger ((d1 ∪ d2) ∪ d3) is ≈ −3.5.
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Inversions

Hierarchical clustering algorithms that allow inversions are
inferior.

The rationale for hierarchical clustering is that at any given
point, we’ve found the most coherent clustering for a given K .

Intuitively: smaller clusterings should be more coherent than
larger clusterings.

An inversion contradicts this intuition: we have a large cluster
that is more coherent than one of its subclusters.

The fact that inversions can occur in centroid clustering is a
reason not to use it.
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Group-average agglomerative clustering (GAAC)

GAAC also has an “average-similarity” criterion, but does not
have inversions.

The similarity of two clusters is the average intrasimilarity –
the average similarity of all document pairs (including those
from the same cluster).

But we exclude self-similarities.
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Group-average agglomerative clustering (GAAC)

Again, a naive implementation is inefficient (O(N2)) and there
is an equivalent, more efficient, centroid-based definition:

sim-ga(ωi , ωj) =

1

(Ni + Nj)(Ni + Nj − 1)
[(

∑

dm∈ωi ∪ωj

~dm)2 − (Ni + Nj)]

Again, this is the dot product, not cosine similarity.
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Which HAC clustering should I use?

Don’t use centroid HAC because of inversions.

In most cases: GAAC is best since it isn’t subject to chaining
and sensitivity to outliers.

However, we can only use GAAC for vector representations.

For other types of document representations (or if only
pairwise similarities for documents are available): use
complete-link.

There are also some applications for single-link (e.g., duplicate
detection in web search).

Sojka, IIR Group: PV211: Hierarchical clustering 43 / 62
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Flat or hierarchical clustering?

For high efficiency, use flat clustering (or perhaps bisecting
k-means)

For deterministic results: HAC

When a hierarchical structure is desired: hierarchical algorithm

HAC also can be applied if K cannot be predetermined (can
start without knowing K )

Sojka, IIR Group: PV211: Hierarchical clustering 44 / 62
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Major issue in clustering – labeling

After a clustering algorithm finds a set of clusters: how can
they be useful to the end user?

We need a pithy label for each cluster.

For example, in search result clustering for “jaguar”, The
labels of the three clusters could be “animal”, “car”, and
“operating system”.

Topic of this section: How can we automatically find good
labels for clusters?
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Exercise

Come up with an algorithm for labeling clusters

Input: a set of documents, partitioned into K clusters (flat
clustering)

Output: A label for each cluster

Part of the exercise: What types of labels should we consider?
Words?
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Discriminative labeling

To label cluster ω, compare ω with all other clusters

Find terms or phrases that distinguish ω from the other
clusters

We can use any of the feature selection criteria we introduced
in text classification to identify discriminating terms: mutual
information, χ2 and frequency.

(but the latter is actually not discriminative)
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Non-discriminative labeling

Select terms or phrases based solely on information from the
cluster itself

E.g., select terms with high weights in the centroid (if we are
using a vector space model)

Non-discriminative methods sometimes select frequent terms
that do not distinguish clusters.

For example, Monday, Tuesday, . . . in newspaper text

Sojka, IIR Group: PV211: Hierarchical clustering 49 / 62
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Using titles for labeling clusters

Terms and phrases are hard to scan and condense into a
holistic idea of what the cluster is about.

Alternative: titles

For example, the titles of two or three documents that are
closest to the centroid.

Titles are easier to scan than a list of phrases.

Sojka, IIR Group: PV211: Hierarchical clustering 50 / 62
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Cluster labeling: Example

labeling method
# docs centroid mutual information title

4 622
oil plant mexico pro-
duction crude power

000 refinery gas bpd

plant oil production
barrels crude bpd
mexico dolly capac-

ity petroleum

MEXICO: Hurricane
Dolly heads for Mex-
ico coast

9 1017

police security rus-

sian people military
peace killed told
grozny court

police killed military
security peace told
troops forces rebels

people

RUSSIA: Russia’s
Lebed meets rebel
chief in Chechnya

10 1259

00 000 tonnes traders
futures wheat prices
cents september

tonne

delivery traders fu-
tures tonne tonnes
desk wheat prices
000 00

USA: Export Business
- Grain/oilseeds com-
plex

Three methods: most prominent terms in centroid, differential labeling using
MI, title of doc closest to centroid
All three methods do a pretty good job.
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Bisecting K -means: A top-down algorithm

Start with all documents in one cluster

Split the cluster into 2 using K -means

Of the clusters produced so far, select one to split (e.g. select
the largest one)

Repeat until we have produced the desired number of
clusters
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Bisecting K -means

BisectingKMeans(d1, . . . , dN)
1 ω0 ← {~d1, . . . , ~dN}
2 leaves ← {ω0}
3 for k ← 1 to K − 1
4 do ωk ← PickClusterFrom(leaves)
5 {ωi , ωj} ← KMeans(ωk , 2)
6 leaves ← leaves \ {ωk} ∪ {ωi , ωj}
7 return leaves

Sojka, IIR Group: PV211: Hierarchical clustering 54 / 62



Introduction Single-link/Complete-link Centroid/GAAC Labeling clusters Variants

Bisecting K -means

If we don’t generate a complete hierarchy, then a top-down
algorithm like bisecting K -means is much more efficient than
HAC algorithms.

But bisecting K -means is not deterministic.

There are deterministic versions of bisecting K -means (see
resources at the end), but they are much less efficient.
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Efficient single link clustering

SingleLinkClustering(d1, . . . , dN , K )
1 for n← 1 to N
2 do for i ← 1 to N
3 do C [n][i ].sim← SIM(dn, di)
4 C [n][i ].index← i
5 I[n]← n
6 NBM[n]← arg maxX∈{C [n][i]:n 6=i} X .sim
7 A← []
8 for n← 1 to N − 1
9 do i1 ← arg max{i :I[i]=i} NBM[i ].sim

10 i2 ← I[NBM[i1].index]
11 A.Append(〈i1, i2〉)
12 for i ← 1 to N
13 do if I[i ] = i ∧ i 6= i1 ∧ i 6= i2
14 then C [i1][i ].sim← C [i ][i1].sim← max(C [i1][i ].sim, C [i2][i ].sim)
15 if I[i ] = i2
16 then I[i ]← i1
17 NBM[i1]← arg maxX∈{C [i1][i]:I[i]=i∧i 6=i1} X .sim
18 return A
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Time complexity of HAC

The single-link algorithm we just saw is O(N2).

Much more efficient than the O(N3) algorithm we looked at
earlier!

There are also O(N2) algorithms for complete-link, centroid
and GAAC.
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Combination similarities of the four algorithms

clustering algorithm sim(ℓ, k1, k2)

single-link max(sim(ℓ, k1), sim(ℓ, k2))
complete-link min(sim(ℓ, k1), sim(ℓ, k2))
centroid ( 1

Nm
~vm) · ( 1

Nℓ
~vℓ)

group-average 1
(Nm+Nℓ)(Nm+Nℓ−1) [(~vm + ~vℓ)

2 − (Nm + Nℓ)]
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Comparison of HAC algorithms

method combination similarity time compl. optimal? comment

single-link max intersimilarity of any 2 docs Θ(N2) yes chaining effect

complete-link min intersimilarity of any 2 docs Θ(N2 log N) no sensitive to outliers

group-average average of all sims Θ(N2 log N) no
best choice for
most applications

centroid average intersimilarity Θ(N2 log N) no inversions can occur
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What to do with the hierarchy?

Use as is (e.g., for browsing as in Yahoo hierarchy)

Cut at a predetermined threshold

Cut to get a predetermined number of clusters K

Ignores hierarchy below and above cutting line.
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Take-away today

Introduction to hierarchical clustering

Single-link and complete-link clustering

Centroid and group-average agglomerative clustering (GAAC)

Bisecting K-means

How to label clusters automatically
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Resources

Chapter 17 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Columbia Newsblaster (a precursor of Google News):
McKeown et al. (2002)
Bisecting K -means clustering: Steinbach et al. (2000)
PDDP (similar to bisecting K -means; deterministic, but also
less efficient): Saravesi and Boley (2004)
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Overview

1 Recap

2 Latent semantic indexing

3 Dimensionality reduction

4 LSI in information retrieval

5 Clustering
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Indexing anchor text

Anchor text is often a better description of a page’s content
than the page itself.

Anchor text can be weighted more highly than the text on the
page.

A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

[dangerous cult] on Google, Bing, Yahoo
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PageRank

Model: a web surfer doing a random walk on the web

Formalization: Markov chain

PageRank is the long-term visit rate of the random surfer or
the steady-state distribution.

Need teleportation to ensure well-defined PageRank

Power method to compute PageRank

PageRank is the principal left eigenvector of the transition
probability matrix.
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Computing PageRank: Power method

x1 x2

Pt(d1) Pt(d2)

P11 = 0.1 P12 = 0.9
P21 = 0.3 P22 = 0.7

t0 0 1 0.3 0.7 = ~xP

t1 0.3 0.7 0.24 0.76 = ~xP2

t2 0.24 0.76 0.252 0.748 = ~xP3

t3 0.252 0.748 0.2496 0.7504 = ~xP4

. . .
t∞ 0.25 0.75 0.25 0.75 = ~xP∞

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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HITS: Hubs and authorities

hubs authorities

www.bestfares.com

www.airlinesquality.com

blogs.usatoday.com/sky

aviationblog.dallasnews.com

www.aa.com

www.delta.com

www.united.com
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HITS update rules

A: link matrix

~h: vector of hub scores

~a: vector of authority scores

HITS algorithm:

Compute ~h = A~a

Compute ~a = AT~h

Iterate until convergence
Output (i) list of hubs ranked according to hub score and
(ii) list of authorities ranked according to authority score
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Take-away today

Latent Semantic Indexing (LSI) / Singular Value
Decomposition: The math

SVD used for dimensionality reduction

LSI: SVD in information retrieval

LSI as clustering

gensim: Topic modelling for humans (practical use of LSI
etal.)
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Recall: Term-document matrix

Anthony Julius The Hamlet Othello Macbeth
and Caesar Tempest

Cleopatra
anthony 5.25 3.18 0.0 0.0 0.0 0.35
brutus 1.21 6.10 0.0 1.0 0.0 0.0
caesar 8.59 2.54 0.0 1.51 0.25 0.0
calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

This matrix is the basis for computing the similarity between
documents and queries.

Today: Can we transform this matrix, so that we get a better
measure of similarity between documents and queries?
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Latent semantic indexing: Overview

We will decompose the term-document matrix into a product
of matrices.

The particular decomposition we’ll use: singular value
decomposition (SVD).

SVD: C = UΣV T (where C = term-document matrix)

We will then use the SVD to compute a new, improved
term-document matrix C ′.

We’ll get better similarity values out of C ′ (compared to C).

Using SVD for this purpose is called latent semantic indexing
or LSI.
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Example of C = UΣV T : The matrix C

C d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

This is a standard term-document matrix.

Actually, we use a non-weighted matrix here to simplify the
example.
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Example of C = UΣV T : The matrix U

U 1 2 3 4 5

ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

One row per term, one column per min(M, N) where M is the
number of terms and N is the number of documents.

This is an orthonormal matrix: (i) Row vectors have unit length.
(ii) Any two distinct row vectors are orthogonal to each other.

Think of the dimensions as “semantic” dimensions that capture
distinct topics like politics, sports, economics. 2 = land/water

Each number uij in the matrix indicates how strongly related term
i is to the topic represented by semantic dimension j .

Sojka, IIR Group: PV211: Latent Semantic Indexing 14 / 44



Recap Latent semantic indexing Dimensionality reduction LSI in information retrieval Clustering

Example of C = UΣV T : The matrix Σ

Σ 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

This is a square, diagonal matrix of dimensionality
min(M, N) × min(M, N).

The diagonal consists of the singular values of C .

The magnitude of the singular value measures the importance of
the corresponding semantic dimension.

We’ll make use of this by omitting unimportant dimensions.
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Example of C = UΣV T : The matrix V T

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

One column per document, one row per min(M, N) where M is the
number of terms and N is the number of documents.

Again: This is an orthonormal matrix: (i) Column vectors have
unit length. (ii) Any two distinct column vectors are orthogonal to
each other.

These are again the semantic dimensions from matrices U and Σ
that capture distinct topics like politics, sports, economics.

Each number vij in the matrix indicates how strongly related
document i is to the topic represented by semantic dimension
j .Sojka, IIR Group: PV211: Latent Semantic Indexing 16 / 44
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Example of C = UΣV T : All four matrices Recall

unreduced decomposition C = UΣV
T Exercise: Why can

this be viewed as soft clustering?

C d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

=

U 1 2 3 4 5

ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

×

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

LSI is decomposition of C into a representation of the terms, a representation of the documents
and a representation of the importance of the “semantic” dimensions.
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LSI: Summary

We’ve decomposed the term-document matrix C into a
product of three matrices: UΣV T .

The term matrix U – consists of one (row) vector for each
term

The document matrix V T – consists of one (column) vector
for each document

The singular value matrix Σ – diagonal matrix with singular
values, reflecting importance of each dimension

Next: Why are we doing this?
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Exercise

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

Verify that the first document has unit length.

Verify that the first two documents are orthogonal.

0.752 + 0.292 + 0.282 + 0.002 + 0.532 = 1.0059

−0.75 ∗ −0.28 + −0.29 ∗ −0.53 + 0.28 ∗ −0.75 + 0.00 ∗ 0.00 +
−0.53 ∗ 0.29 = 0
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How we use the SVD in LSI

Key property: Each singular value tells us how important its
dimension is.

By setting less important dimensions to zero, we keep the
important information, but get rid of the “details”.

These details may

be noise – in that case, reduced LSI is a better representation
because it is less noisy.
make things dissimilar that should be similar – again, the
reduced LSI representation is a better representation because it
represents similarity better.

Analogy for “fewer details is better”

Image of a blue flower
Image of a yellow flower
Omitting color makes is easier to see the similarity
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Reducing the dimensionality to 2

U 1 2 3 4 5

ship −0.44 −0.30 0.00 0.00 0.00
boat −0.13 −0.33 0.00 0.00 0.00
ocean −0.48 −0.51 0.00 0.00 0.00
wood −0.70 0.35 0.00 0.00 0.00
tree −0.26 0.65 0.00 0.00 0.00

Σ2 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Actually, we

only zero out

singular values

in Σ. This has

the effect of

setting the

corresponding

dimensions in

U and V
T to

zero when

computing the

product C =

UΣV
T .
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Reducing the dimensionality to 2

C2 d1 d2 d3 d4 d5 d6

ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49

=

U 1 2 3 4 5

ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ2 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00

×

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22
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Example of C = UΣV T : All four matrices Recall

unreduced decomposition C = UΣV
T Exercise: Why can

this be viewed as soft clustering?

C d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

=

U 1 2 3 4 5

ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

×

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

LSI is decomposition of C into a representation of the terms, a representation of the documents
and a representation of the importance of the “semantic” dimensions.

Sojka, IIR Group: PV211: Latent Semantic Indexing 24 / 44



Recap Latent semantic indexing Dimensionality reduction LSI in information retrieval Clustering

Original matrix C vs. reduced C2 = UΣ2V
T

C d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

C2 d1 d2 d3 d4 d5 d6

ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49

We can view

C2 as a two-

dimensional

representation

of the matrix

C . We have

performed a

dimensionality

reduction to

two

dimensions.
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Exercise

C d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

C2 d1 d2 d3 d4 d5 d6

ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49

Compute the
similarity between
d2 and d3 for the
original matrix
and for the
reduced matrix.
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Why the reduced matrix C2 is better than C

C d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

C2 d1 d2 d3 d4 d5 d6

ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49

Similarity of d2 and d3 in the

original space: 0.

Similarity of d2 and d3 in the

reduced space:

0.52 ∗ 0.28 + 0.36 ∗ 0.16 +

0.72 ∗ 0.36 + 0.12 ∗ 0.20 +

−0.39 ∗ −0.08 ≈ 0.52

“boat” and “ship” are

semantically similar. The

“reduced” similarity measure

reflects this.

What property of the SVD

reduction is responsible for

improved similarity?
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Exercise: Compute matrix product

C2 d1 d2 d3 d4 d5 d6

ship 0.09 0.16 0.06 -0.19 -0.07 -0.12
boat 0.10 0.17 0.06 -0.21 -0.07 -0.14
ocean 0.15 0.27 0.10 -0.32 -0.11 -0.21
wood -0.10 -0.19 -0.07 0.22 0.08 0.14
tree -0.19 -0.34 -0.12 0.41 0.14 0.27

???????=

U 1 2 3 4 5

ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ2 1 2 3 4 5

1 0.00 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00

×

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22
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Why we use LSI in information retrieval

LSI takes documents that are semantically similar (= talk
about the same topics), . . .

. . . but are not similar in the vector space (because they use
different words) . . .

. . . and re-represents them in a reduced vector space . . .

. . . in which they have higher similarity.

Thus, LSI addresses the problems of synonymy and semantic
relatedness.

Standard vector space: Synonyms contribute nothing to
document similarity.

Desired effect of LSI: Synonyms contribute strongly to
document similarity.
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How LSI addresses synonymy and semantic relatedness

The dimensionality reduction forces us to omit a lot of
“detail”.

We have to map differents words (= different dimensions of
the full space) to the same dimension in the reduced space.

The “cost” of mapping synonyms to the same dimension is
much less than the cost of collapsing unrelated words.

SVD selects the “least costly” mapping (see below).

Thus, it will map synonyms to the same dimension.

But it will avoid doing that for unrelated words.
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LSI: Comparison to other approaches

Recap: Relevance feedback and query expansion are used to
increase recall in information retrieval – if query and
documents have no terms in common.

(or, more commonly, too few terms in common for a high
similarity score)

LSI increases recall and hurts precision.

Thus, it addresses the same problems as (pseudo) relevance
feedback and query expansion . . .

. . . and it has the same problems.
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Implementation

Compute SVD of term-document matrix

Reduce the space and compute reduced document
representations

Map the query into the reduced space ~qk = Σ−1
k UT

k ~q.

This follows from: Ck = UkΣkV T
k ⇒ Σ−1

k UT C = V T
k

Compute similarity of qk with all reduced documents in Vk .

Output ranked list of documents as usual

Exercise: What is the fundamental problem with this
approach?
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Optimality

SVD is optimal in the following sense.

Keeping the k largest singular values and setting all others to
zero gives you the optimal approximation of the original
matrix C . Eckart-Young theorem

Optimal: no other matrix of the same rank (= with the same
underlying dimensionality) approximates C better.

Measure of approximation is Frobenius norm:

||C ||F =
√

∑

i

∑

j c2
ij

So LSI uses the “best possible” matrix.

There is only one best possible matrix – unique solution
(modulo signs).

Caveat: There is only a tenuous relationship between the
Frobenius norm and cosine similarity between documents.
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Data for graphical illustration of LSI

c1 Human machine interface for lab abc computer applications
c2 A survey of user opinion of computer system response time
c3 The EPS user interface management system
c4 System and human system engineering testing of EPS
c5 Relation of user perceived response time to error measurement
m1 The generation of random binary unordered trees
m2 The intersection graph of paths in trees
m3 Graph minors IV Widths of trees and well quasi ordering
m4 Graph minors A survey

The matrix C

c1 c2 c3 c4 c5 m1 m2 m3 m4
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1
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Graphical illustration of LSI: Plot of C2

2-dimensional plot of
C2 (scaled dimensions).
Circles = terms. Open
squares = documents
(component terms in
parentheses). q = query
“human computer inter-
action”.

The dotted cone represents the region whose points are within a cosine of
.9 from q . All documents about human-computer documents (c1-c5) are
near q, even c3/c5 although they share no terms. None of the graph theory
documents (m1-m4) are near q.
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Exercise

What happens when we rank documents according to cosine
similarity in the original vector space? What happens when we
rank documents according to cosine similarity in the reduced vector
space?
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LSI performs better than vector space on MED collection

LSI-100 = LSI reduced to 100 dimensions; SMART = SMART
implementation of vector space model
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Example of C = UΣV T : All four matrices Recall

unreduced decomposition C = UΣV
T Exercise: Why can

this be viewed as soft clustering?

C d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

=

U 1 2 3 4 5

ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

×

V T d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

LSI is decomposition of C into a representation of the terms, a representation of the documents
and a representation of the importance of the “semantic” dimensions.
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Why LSI can be viewed as soft clustering

Each of the k dimensions of the reduced space is one cluster.

If the value of the LSI representation of document d on
dimension k is x , then x is the soft membership of d in
topic k.

This soft membership can be positive or negative.

Example: Dimension 2 in our SVD decomposition

This dimension/cluster corresponds to the water/earth
dichotomy.

“ship”, “boat”, “ocean” have negative values.

“wood”, “tree” have positive values.

d1, d2, d3 have negative values (most of their terms are water
terms).

d4, d5, d6 have positive values (all of their terms are earth
terms).
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Semantic indexing and clustering with Gensim

Gensim: an open-source vector space modeling and topic modeling
toolkit, implemented in the Python programming language

Tutorial examples of topic modelling for humans (LSI):
http://radimrehurek.com/gensim/tut2.html

DML-CZ similarity example:
http://dml.cz/handle/10338.dmlcz/500114/SimilarArticles

cf. papers similar to famous Otakar Borůvka’s paper

Go forth and create masterpieces for semantic indexing
applications (by gensim, similarly as others already did ;-)!
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Take-away today

Latent Semantic Indexing (LSI) / Singular Value
Decomposition: The math

SVD used for dimensionality reduction

LSI: SVD in information retrieval

LSI as clustering

gensim: Topic modelling for humans (practical use of LSI
etal.)
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Resources

Chapter 18 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Original paper on latent semantic indexing by Deerwester et al.
Paper on probabilistic LSI by Thomas Hofmann
Word space: LSI for words
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Overview

1 Big picture

2 Ads

3 Duplicate detection

4 Spam

5 Web IR
Queries
Links
Context
Users
Documents
Size

6 Size of the web
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Web search overview
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Search is a top activity on the web
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Without search engines, the web wouldn’t work

Without search, content is hard to find.

→ Without search, there is no incentive to create content.

Why publish something if nobody will read it?
Why publish something if I don’t get ad revenue from it?

Somebody needs to pay for the web.

Servers, web infrastructure, content creation
A large part today is paid by search ads.
Search pays for the web.
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Interest aggregation

Unique feature of the web: A small number of geographically
dispersed people with similar interests can find each other.

Elementary school kids with hemophilia
People interested in translating R5 Scheme into relatively
portable C (open source project)
Search engines are a key enabler for interest aggregation.
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IR on the web vs. IR in general

On the web, search is not just a nice feature.

Search is a key enabler of the web: . . .
. . . financing, content creation, interest aggregation etc.

→ look at search ads

The web is a chaotic and uncoordinated collection. → lots of
duplicates – need to detect duplicates

No control / restrictions on who can author content → lots of
spam – need to detect spam

The web is very large. → need to know how big it is

Sojka, IIR Group: PV211: Web search 8 / 117



Big picture Ads Duplicate detection Spam Web IR Size of the web

Take-away today

Big picture

Ads – they pay for the web

Duplicate detection – addresses one aspect of chaotic content
creation

Spam detection – addresses one aspect of lack of central
access control

Probably won’t get to today

Web information retrieval
Size of the web
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First generation of search ads: Goto (1996)
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First generation of search ads: Goto (1996)

Buddy Blake bid the maximum ($0.38) for this search.

He paid $0.38 to Goto every time somebody clicked on the
link.

Pages were simply ranked according to bid – revenue
maximization for Goto.

No separation of ads/docs. Only one result list!

Upfront and honest. No relevance ranking, . . .

. . . but Goto did not pretend there was any.

Sojka, IIR Group: PV211: Web search 12 / 117



Big picture Ads Duplicate detection Spam Web IR Size of the web

Second generation of search ads: Google (2000/2001)

Strict separation of search results and search ads
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Two ranked lists: web pages (left) and ads (right)

SogoTrade ap-

pears in search

results.

SogoTrade ap-

pears in ads.

Do search engines

rank advertis-

ers higher than

non-advertisers?

All major search

engines claim no.
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Do ads influence editorial content?

Similar problem at newspapers / TV channels

A newspaper is reluctant to publish harsh criticism of its
major advertisers.

The line often gets blurred at newspapers / on TV.

No known case of this happening with search engines yet?
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How are the ads on the right ranked?
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How are ads ranked?

Advertisers bid for keywords – sale by auction.

Open system: Anybody can participate and bid on keywords.

Advertisers are only charged when somebody clicks on your ad.

How does the auction determine an ad’s rank and the price
paid for the ad?

Basis is a second price auction, but with twists

For the bottom line, this is perhaps the most important
research area for search engines – computational advertising.

Squeezing an additional fraction of a cent from each ad means
billions of additional revenue for the search engine.
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Ranking ads

Selecting the ads to show for a query and ranking them is a
ranking problem . . .

. . . similar to the document ranking problem.

Key difference: The bid price of each ad is a factor in ranking
that we didn’t have in document ranking.

First cut: rank advertisers according to bid price
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How are ads ranked?

First cut: according to bid price à la Goto

Bad idea: open to abuse
Example: query [treatment for cancer?] → how to write your
last will
We don’t want to show nonrelevant or offensive ads.

Instead: rank based on bid price and relevance

Key measure of ad relevance: clickthrough rate

clickthrough rate = CTR = clicks per impressions

Result: A nonrelevant ad will be ranked low.

Even if this decreases search engine revenue short-term
Hope: Overall acceptance of the system and overall revenue is
maximized if users get useful information.

Other ranking factors: location, time of day, quality and
loading speed of landing page

The main ranking factor: the query
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Google’s second price auction

advertiser bid CTR ad rank rank paid

A $4.00 0.01 0.04 4 (minimum)
B $3.00 0.03 0.09 2 $2.68
C $2.00 0.06 0.12 1 $1.51
D $1.00 0.08 0.08 3 $0.51

bid: maximum bid for a click by advertiser

CTR: click-through rate: when an ad is displayed, what
percentage of time do users click on it? CTR is a measure of
relevance.

ad rank: bid × CTR: this trades off (i) how much money the
advertiser is willing to pay against (ii) how relevant the ad is

rank: rank in auction

paid: second price auction price paid by advertiser
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Google’s second price auction (cont.)

advertiser bid CTR ad rank rank paid

A $4.00 0.01 0.04 4 (minimum)
B $3.00 0.03 0.09 2 $2.68
C $2.00 0.06 0.12 1 $1.51
D $1.00 0.08 0.08 3 $0.51

Second price auction: The advertiser pays the minimum amount
necessary to maintain their position in the auction (plus 1 cent).

price1 × CTR1 = bid2 × CTR2 (this will result in rank1=rank2)

price1 = bid2 × CTR2 / CTR1

p1 = bid2 × CTR2/CTR1 = 3.00 × 0.03/0.06 = 1.50
p2 = bid3 × CTR3/CTR2 = 1.00 × 0.08/0.03 = 2.67
p3 = bid4 × CTR4/CTR3 = 4.00 × 0.01/0.08 = 0.50
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Keywords with high bids

According to
https://web.archive.org/web/20080928175127/http://www.cwire

$69.1 mesothelioma treatment options
$65.9 personal injury lawyer michigan
$62.6 student loans consolidation
$61.4 car accident attorney los angeles
$59.4 online car insurance quotes
$59.4 arizona dui lawyer
$46.4 asbestos cancer
$40.1 home equity line of credit
$39.8 life insurance quotes
$39.2 refinancing
$38.7 equity line of credit
$38.0 lasik eye surgery new york city
$37.0 2nd mortgage
$35.9 free car insurance quote
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Search ads: A win-win-win?

The search engine company gets revenue every time
somebody clicks on an ad.

The user only clicks on an ad if they are interested in the ad.

Search engines punish misleading and nonrelevant ads.
As a result, users are often satisfied with what they find after
clicking on an ad.

The advertiser finds new customers in a cost-effective way.
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Exercise

Why is web search potentially more attractive for advertisers
than TV spots, newspaper ads or radio spots?

The advertiser pays for all this. How can the advertiser be
cheated?

Any way this could be bad for the user?

Any way this could be bad for the search engine?

Sojka, IIR Group: PV211: Web search 24 / 117



Big picture Ads Duplicate detection Spam Web IR Size of the web

Not a win-win-win: Keyword arbitrage

Buy a keyword on Google

Then redirect traffic to a third party that is paying much more
than you are paying Google.

E.g., redirect to a page full of ads

This rarely makes sense for the user.

Ad spammers keep inventing new tricks.

The search engines need time to catch up with them.
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Not a win-win-win: Violation of trademarks

Example: geico

During part of 2005: The search term “geico” on Google was
bought by competitors.

Geico lost this case in the United States.

Louis Vuitton lost similar case in Europe.

See
https://web.archive.org/web/20050702015704/www.google.c

It’s potentially misleading to users to trigger an ad off of a
trademark if the user can’t buy the product on the site.
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Duplicate detection

The web is full of duplicated content.

More so than many other collections

Exact duplicates

Easy to eliminate
E.g., use hash/fingerprint

Near-duplicates

Abundant on the web
Difficult to eliminate

For the user, it’s annoying to get a search result with
near-identical documents.

Marginal relevance is zero: even a highly relevant document
becomes non-relevant if it appears below a (near-)duplicate.

We need to eliminate near-duplicates.
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Near-duplicates: Example
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Exercise

How would you eliminate near-duplicates on the web?
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Detecting near-duplicates

Compute similarity with an edit-distance measure

We want “syntactic” (as opposed to semantic) similarity.

True semantic similarity (similarity in content) is too difficult
to compute.

We do not consider documents near-duplicates if they have
the same content, but express it with different words.

Use similarity threshold θ to make the call “is/isn’t a
near-duplicate”.

E.g., two documents are near-duplicates if similarity
> θ = 80%.

Sojka, IIR Group: PV211: Web search 31 / 117



Big picture Ads Duplicate detection Spam Web IR Size of the web

Represent each document as set of shingles

A shingle is simply a word n-gram.

Shingles are used as features to measure syntactic similarity of
documents.

For example, for n = 3, “a rose is a rose is a rose” would be
represented as this set of shingles:

{ a-rose-is, rose-is-a, is-a-rose }

We can map shingles to 1..2m (e.g., m = 64) by fingerprinting.

From now on: sk refers to the shingle’s fingerprint in 1..2m.

We define the similarity of two documents as the Jaccard
coefficient of their shingle sets.
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Recall: Jaccard coefficient

A commonly used measure of overlap of two sets

Let A and B be two sets

Jaccard coefficient:

jaccard(A, B) =
|A ∩ B|

|A ∪ B|

(A 6= ∅ or B 6= ∅)

jaccard(A, A) = 1

jaccard(A, B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.
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Jaccard coefficient: Example

Three documents:
d1: “Jack London traveled to Oakland”
d2: “Jack London traveled to the city of Oakland”
d3: “Jack traveled from Oakland to London”

Based on shingles of size 2 (2-grams or bigrams), what are the
Jaccard coefficients J(d1, d2) and J(d1, d3)?

J(d1, d2) = 3/8 = 0.375

J(d1, d3) = 0

Note: very sensitive to dissimilarity
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Represent each document as a sketch

The number of shingles per document is large.

To increase efficiency, we will use a sketch, a cleverly chosen
subset of the shingles of a document.

The size of a sketch is, say, n = 200 . . .

. . . and is defined by a set of permutations π1 . . . π200.

Each πi is a random permutation on 1..2m

The sketch of d is defined as:
< mins∈d π1(s), mins∈d π2(s), . . . , mins∈d π200(s) >
(a vector of 200 numbers).
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Permutation and minimum: Example
document 1: {sk} document 2: {sk}

✲

✲

✲

✲

✲

✲

✲

✲

1

1

1

1

1

1

1

1

2m

2m

2m

2m

2m

2m

2m

2ms

s1

s

s1

s

s2

s

s5

s

s3

s

s3

s

s4

s

s4

xk = π(sk) xk = π(sk)
s ss ss ss s

x3

❝

x3

❝

x1

❝

x1

❝

x4

❝

x4

❝

x2

❝

x5

❝

x3

❝

x3

❝

x1

❝

x1

❝

x4

❝

x5

❝

x2

❝

x2

❝

xk xk

x3

❝

x3

❝

minsk
π(sk) minsk

π(sk)

We use mins∈d1
π(s) = mins∈d2

π(s) as a test for: are d1 and d2

near-duplicates? In this case: permutation π says: d1 ≈ d2
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Computing Jaccard for sketches

Sketches: Each document is now a vector of n = 200
numbers.

Much easier to deal with than the very high-dimensional space
of shingles

But how do we compute Jaccard?
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Computing Jaccard for sketches (2)

How do we compute Jaccard?
Let U be the union of the set of shingles of d1 and d2 and I

the intersection.

There are |U|! permutations on U.
For s ′ ∈ I, for how many permutations π do we have
arg mins∈d1

π(s) = s ′ = arg mins∈d2
π(s)?

Answer: (|U| − 1)!
There is a set of (|U| − 1)! different permutations for each s

in I. ⇒ |I|(|U| − 1)! permutations make
arg mins∈d1

π(s) = arg mins∈d2
π(s) true

Thus, the proportion of permutations that make
mins∈d1

π(s) = mins∈d2
π(s) true is:

|I|(|U| − 1)!

|U|!
=

|I|

|U|
= J(d1, d2)
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Estimating Jaccard

Thus, the proportion of successful permutations is the Jaccard
coefficient.

Permutation π is successful iff mins∈d1 π(s) = mins∈d2 π(s)

Picking a permutation at random and outputting 1
(successful) or 0 (unsuccessful) is a Bernoulli trial.

Estimator of probability of success: proportion of successes in
n Bernoulli trials. (n = 200)

Our sketch is based on a random selection of permutations.

Thus, to compute Jaccard, count the number k of successful
permutations for < d1, d2 > and divide by n = 200.

k/n = k/200 estimates J(d1, d2).
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Implementation

We use hash functions as an efficient type of permutation:
hi : {1..2m} → {1..2m}

Scan all shingles sk in union of two sets in arbitrary order

For each hash function hi and documents d1, d2, . . .: keep slot
for minimum value found so far

If hi(sk) is lower than minimum found so far: update slot
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Example

d1 d2

s1 1 0
s2 0 1
s3 1 1
s4 1 0
s5 0 1
h(x) = x mod 5
g(x) = (2x + 1) mod 5

min(h(d1)) = 1 6= 0 =
min(h(d2))

min(g(d1)) = 2 6= 0 =
min(g(d2))

Ĵ(d1, d2) = 0+0
2 = 0

d1 slot d2 slot

h ∞ ∞
g ∞ ∞
h(1) = 1 1 1 – ∞
g(1) = 3 3 3 – ∞
h(2) = 2 – 1 2 2
g(2) = 0 – 3 0 0

h(3) = 3 3 1 3 2
g(3) = 2 2 2 2 0

h(4) = 4 4 1 – 2
g(4) = 4 4 2 – 0

h(5) = 0 – 1 0 0
g(5) = 1 – 2 1 0

final sketches
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Exercise

d1 d2 d3

s1 0 1 1
s2 1 0 1
s3 0 1 0
s4 1 0 0

h(x) = 5x + 5 mod 4
g(x) = (3x + 1) mod 4

Estimate Ĵ(d1, d2), Ĵ(d1, d3), Ĵ(d2, d3)
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Solution (1)

d1 d2 d3

s1 0 1 1
s2 1 0 1
s3 0 1 0
s4 1 0 0

h(x) = 5x + 5 mod 4
g(x) = (3x + 1) mod 4

d1 slot d2 slot d3 slot

∞ ∞ ∞
∞ ∞ ∞

h(1) = 2 – ∞ 2 2 2 2
g(1) = 0 – ∞ 0 0 0 0

h(2) = 3 3 3 – 2 3 2
g(2) = 3 3 3 – 0 3 0

h(3) = 0 – 3 0 0 – 2
g(3) = 2 – 3 2 0 – 0

h(4) = 1 1 1 – 0 – 2
g(4) = 1 1 1 – 0 – 0

final sketches
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Solution (2)

Ĵ(d1, d2) =
0 + 0

2
= 0

Ĵ(d1, d3) =
0 + 0

2
= 0

Ĵ(d2, d3) =
0 + 1

2
= 1/2
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Shingling: Summary

Input: N documents

Choose n-gram size for shingling, e.g., n = 5

Pick 200 random permutations, represented as hash functions

Compute N sketches: 200 × N matrix shown on previous
slide, one row per permutation, one column per document

Compute N·(N−1)
2 pairwise similarities

Transitive closure of documents with similarity > θ

Index only one document from each equivalence class
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Efficient near-duplicate detection

Now we have an extremely efficient method for estimating a
Jaccard coefficient for a single pair of two documents.

But we still have to estimate O(N2) coefficients where N is
the number of web pages.

Still intractable

One solution: locality sensitive hashing (LSH)

Another solution: sorting (Henzinger 2006)
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The goal of spamming on the web

You have a page that will generate lots of revenue for you if
people visit it.

Therefore, you would like to direct visitors to this page.

One way of doing this: get your page ranked highly in search
results.

Exercise: How can I get my page ranked highly?
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Spam technique: Keyword stuffing / Hidden text

Misleading meta-tags, excessive repetition

Hidden text with colors, style sheet tricks etc.

Used to be very effective, most search engines now catch these
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Keyword stuffing

Sojka, IIR Group: PV211: Web search 50 / 117



Big picture Ads Duplicate detection Spam Web IR Size of the web

Spam technique: Doorway and lander pages

Doorway page: optimized for a single keyword, redirects to
the real target page

Lander page: optimized for a single keyword or a misspelled
domain name, designed to attract surfers who will then click
on ads
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Lander page

Number one hit on Google for the search “composita”

The only purpose of this page: get people to click on the ads
and make money for the page owner
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Spam technique: Duplication

Get good content from somewhere (steal it or produce it
yourself)

Publish a large number of slight variations of it

For example, publish the answer to a tax question with the
spelling variations of “tax deferred” on the previous slide
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Spam technique: Cloaking

Serve fake content to search engine spider

So do we just penalize this always?

No: legitimate uses (e.g., different content to US vs.
European users)

Sojka, IIR Group: PV211: Web search 54 / 117



Big picture Ads Duplicate detection Spam Web IR Size of the web

Spam technique: Link spam

Create lots of links pointing to the page you want to promote

Put these links on pages with high (or at least non-zero)
PageRank

Newly registered domains (domain flooding)
A set of pages that all point to each other to boost each
other’s PageRank (mutual admiration society)
Pay somebody to put your link on their highly ranked page
(“schuetze horoskop” example)
Leave comments that include the link on blogs
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SEO: Search engine optimization

Promoting a page in the search rankings is not necessarily
spam.

It can also be a legitimate business – which is called SEO.

You can hire an SEO firm to get your page highly ranked.

There are many legitimate reasons for doing this.

For example, Google bombs like Who is a failure?

And there are many legitimate ways of achieving this:

Restructure your content in a way that makes it easy to index
Talk with influential bloggers and have them link to your site
Add more interesting and original content
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The war against spam

Quality indicators

Links, statistically analyzed (PageRank etc)
Usage (users visiting a page)
No adult content (e.g., no pictures with flesh-tone)
Distribution and structure of text (e.g., no keyword stuffing)

Combine all of these indicators and use machine learning

Editorial intervention

Blacklists
Top queries audited
Complaints addressed
Suspect patterns detected
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Webmaster guidelines

Major search engines have guidelines for webmasters.

These guidelines tell you what is legitimate SEO and what is
spamming.

Ignore these guidelines at your own risk

Once a search engine identifies you as a spammer, all pages
on your site may get low ranks (or disappear from the index
entirely).

There is often a fine line between spam and legitimate SEO.

Scientific study of fighting spam on the web: adversarial

information retrieval
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Web IR: Differences from traditional IR

Links: The web is a hyperlinked document collection.

Queries: Web queries are different, more varied and there are
a lot of them. How many? ≈ 109

Users: Users are different, more varied and there are a lot of
them. How many? ≈ 109

Documents: Documents are different, more varied and there
are a lot of them. How many? ≈ 1011

Context: Context is more important on the web than in many
other IR applications.

Ads and spam
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Query distribution (1)

Most frequent queries on a large search engine on 2002.10.26.

1 sex 16 crack 31 juegos 46 Caramail
2 (artifact) 17 games 32 nude 47 msn
3 (artifact) 18 pussy 33 music 48 jennifer lopez
4 porno 19 cracks 34 musica 49 tits
5 mp3 20 lolita 35 anal 50 free porn
6 Halloween 21 britney spears 36 free6 51 cheats
7 sexo 22 ebay 37 avril lavigne 52 yahoo.com
8 chat 23 sexe 38 hotmail.com 53 eminem
9 porn 24 Pamela Anderson 39 winzip 54 Christina Aguilera

10 yahoo 25 warez 40 fuck 55 incest
11 KaZaA 26 divx 41 wallpaper 56 letras de canciones

12 xxx 27 gay 42 hotmail.com 57 hardcore
13 Hentai 28 harry potter 43 postales 58 weather
14 lyrics 29 playboy 44 shakira 59 wallpapers
15 hotmail 30 lolitas 45 traductor 60 lingerie

More than 1/3 of these are queries for adult content. Exercise: Does this
mean that most people are looking for adult content?
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Query distribution (2)

Queries have a power law distribution.

Recall Zipf’s law: a few very frequent words, a large number
of very rare words

Same here: a few very frequent queries, a large number of
very rare queries

Examples of rare queries: search for names, towns, books etc

The proportion of adult queries is much lower than 1/3
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Types of queries / user needs in web search

Informational user needs: I need information on something.
“low hemoglobin”

We called this “information need” earlier in the class.

On the web, information needs proper are only a subclass of
user needs.

Other user needs: Navigational and transactional

Navigational user needs: I want to go to this web site.
“hotmail”, “myspace”, “United Airlines”

Transactional user needs: I want to make a transaction.

Buy something: “MacBook Air”
Download something: “Acrobat Reader”
Chat with someone: “live soccer chat”

Difficult problem: How can the search engine tell what the
user need or intent for a particular query is?
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Search in a hyperlinked collection

Web search in most cases is interleaved with navigation . . .

. . . i.e., with following links.

Different from most other IR collections

Sojka, IIR Group: PV211: Web search 66 / 117





Big picture Ads Duplicate detection Spam Web IR Size of the web

Bowtie structure of the web

Strongly connected component (SCC) in the center
Lots of pages that get linked to, but don’t link (OUT)
Lots of pages that link to other pages, but don’t get linked to (IN)
Tendrils, tubes, islands
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User intent: Answering the need behind the query

What can we do to guess user intent?

Guess user intent independent of context:

Spell correction
Precomputed “typing” of queries (next slide)

Better: Guess user intent based on context:

Geographic context (slide after next)
Context of user in this session (e.g., previous query)
Context provided by personal profile (Yahoo/MSN do this,
Google claims it does not)
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Guessing of user intent by “typing” queries

Calculation: 5+4

Unit conversion: 1 kg in pounds

Currency conversion: 1 euro in kronor

Tracking number: 8167 2278 6764

Flight info: LH 454

Area code: 650

Map: columbus oh

Stock price: msft

Albums/movies etc: coldplay
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The spatial context: Geo-search

Three relevant locations

Server (nytimes.com → New York)
Web page (nytimes.com article about Albania)
User (located in Palo Alto)

Locating the user

IP address
Information provided by user (e.g., in user profile)
Mobile phone

Geo-tagging: Parse text and identify the coordinates of the
geographic entities

Example: East Palo Alto CA → Latitude: 37.47 N, Longitude:
122.14 W
Important NLP problem
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How do we use context to modify query results?

Result restriction: Don’t consider inappropriate results

For user on google.fr . . .
. . . only show .fr results

Ranking modulation: use a rough generic ranking, rerank
based on personal context

Contextualization / personalization is an area of search with a
lot of potential for improvement.
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Users of web search

Use short queries (average < 3)

Rarely use operators

Do not want to spend a lot of time on composing a query

Only look at the first couple of results

Want a simple UI, not a search engine start page overloaded
with graphics

Extreme variability in terms of user needs, user expectations,
experience, knowledge, . . .

Industrial/developing world, English/Estonian, old/young,
rich/poor, differences in culture and class

One interface for hugely divergent needs
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How do users evaluate search engines?

Classic IR relevance (as measured by F ) can also be used for
web IR.

Equally important: Trust, duplicate elimination, readability,
loads fast, no pop-ups

On the web, precision is more important than recall.

Precision at 1, precision at 10, precision on the first 2–3 pages
But there is a subset of queries where recall matters.
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Web information needs that require high recall

Has this idea been patented?

Searching for info on a prospective financial advisor

Searching for info on a prospective employee

Searching for info on a date
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Web documents: different from other IR collections

Distributed content creation: no design, no coordination

“Democratization of publishing”
Result: extreme heterogeneity of documents on the web

Unstructured (text, html), semistructured (html, xml),
structured/relational (databases)

Dynamically generated content
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Dynamic content

Dynamic pages are generated from scratch when the user
requests them – usually from underlying data in a database.

Example: current status of flight LH 454
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Dynamic content (2)

Most (truly) dynamic content is ignored by web spiders.

It’s too much to index it all.

Actually, a lot of “static” content is also assembled on the fly
(asp, php etc.: headers, date, ads etc)
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Web pages change frequently (Fetterly 1997)
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Multilinguality

Documents in a large number of languages

Queries in a large number of languages

First cut: Don’t return English results for a Japanese query

However: Frequent mismatches query/document languages

Many people can understand, but not query in a language.

Translation is important.

Google example: “Beaujolais Nouveau -wine”
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Duplicate documents

Significant duplication – 30%–40% duplicates in some studies.

Duplicates in the search results were common in the early
days of the web.

Today’s search engines eliminate duplicates very effectively.

Key for high user satisfaction.
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Trust

For many collections, it is easy to assess the trustworthiness of
a document.

A collection of Reuters newswire articles
A collection of TASS (Telegraph Agency of the Soviet Union)
newswire articles from the 1980s
Your Outlook email from the last three years

Web documents are different: In many cases, we don’t know
how to evaluate the information.

Hoaxes abound.
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Growth of the web

The web keeps growing.
But growth is no longer exponential?

Sojka, IIR Group: PV211: Web search 87 / 117



Big picture Ads Duplicate detection Spam Web IR Size of the web

Size of the web: Issues

What is size? Number of web servers? Number of pages?
Terabytes of data available?

Some servers are seldom connected.

Example: Your laptop running a web server
Is it part of the web?

The “dynamic” web is infinite.

Any sum of two numbers is its own dynamic page on Google.
(Example: “2+4”)
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“Search engine index contains N pages”: Issues

Can I claim a page is in the index if I only index the first
4,000 bytes?

Can I claim a page is in the index if I only index anchor text
pointing to the page?

There used to be (and still are?) billions of pages that are only
indexed by anchor text.
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Simple method for determining a lower bound

OR-query of frequent words in a number of languages

According to this query: Size of web ≥ 21,450,000,000 on
2007.07.07 and ≥ 25,350,000,000 on 2008.07.03

But page counts of Google search results are only rough
estimates.
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Size of the web: Who cares?

Media

Users

They may switch to the search engine that has the best
coverage of the web.
Users (sometimes) care about recall. If we underestimate the
size of the web, search engine results may have low recall.

Search engine designers (how many pages do I need to be able
to handle?)

Crawler designers (which policy will crawl close to N pages?)
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What is the size of the web? Any guesses?
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Simple method for determining a lower bound

OR-query of frequent words in a number of languages

According to this query: Size of web ≥ 21,450,000,000 on
2007.07.07

Big if: Page counts of Google search results are correct.
(Generally, they are just rough estimates.)

But this is just a lower bound, based on one search engine.

How can we do better?
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Size of the web: Issues

The “dynamic” web is infinite.

Any sum of two numbers is its own dynamic page on Google.
(Example: “2+4”)
Many other dynamic sites generating infinite number of pages

The static web contains duplicates – each “equivalence class”
should only be counted once.

Some servers are seldom connected.

Example: Your laptop
Is it part of the web?
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“Search engine index contains N pages”: Issues

Can I claim a page is in the index if I only index the first
4,000 bytes?

Can I claim a page is in the index if I only index anchor text
pointing to the page?

There used to be (and still are?) billions of pages that are only
indexed by anchor text.
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How can we estimate the size of the web?
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Sampling methods

Random queries

Random searches

Random IP addresses

Random walks
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Variant: Estimate relative sizes of indexes

There are significant differences between indexes of different
search engines.

Different engines have different preferences.

max URL depth, max count/host, anti-spam rules, priority
rules etc.

Different engines index different things under the same URL.

anchor text, frames, meta-keywords, size of prefix etc.
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Sampling URLs

Ideal strategy: Generate a random URL

Problem: Random URLs are hard to find (and sampling
distribution should reflect “user interest”)

Approach 1: Random walks / IP addresses

In theory: might give us a true estimate of the size of the web
(as opposed to just relative sizes of indexes)

Approach 2: Generate a random URL contained in a given
engine

Suffices for accurate estimation of relative size
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Random URLs from random queries

Idea: Use vocabulary of the web for query generation

Vocabulary can be generated from web crawl

Use conjunctive queries w1 AND w2

Example: vocalists AND rsi

Get result set of one hundred URLs from the source engine

Choose a random URL from the result set

This sampling method induces a weight W (p) for each
page p.

Method was used by Bharat and Broder (1998).
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Checking if a page is in the index

Either: Search for URL if the engine supports this

Or: Create a query that will find doc d with high probability

Download doc, extract words
Use 8 low frequency word as AND query
Call this a strong query for d

Run query
Check if d is in result set

Problems

Near duplicates
Redirects
Engine time-outs
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Random searches

Choose random searches extracted from a search engine log
(Lawrence & Giles 97)

Use only queries with small result sets

For each random query: compute ratio size(r1)/size(r2) of the
two result sets

Average over random searches
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Advantages & disadvantages

Advantage

Might be a better reflection of the human perception of
coverage

Issues

Samples are correlated with source of log (unfair advantage for
originating search engine)
Duplicates
Technical statistical problems (must have non-zero results,
ratio average not statistically sound)
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Random IP addresses [ONei97,Lawr99]

[Lawr99] exhaustively crawled 2,500 servers and extrapolated

Estimated size of the web to be 800 million
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Advantages and disadvantages

Advantages

Can, in theory, estimate the size of the accessible web (as
opposed to the (relative) size of an index)
Clean statistics
Independent of crawling strategies

Disadvantages

Many hosts share one IP (→ oversampling)
Hosts with large web sites don’t get more weight than hosts
with small web sites (→ possible undersampling)
Sensitive to spam (multiple IPs for same spam server)
Again, duplicates

Sojka, IIR Group: PV211: Web search 112 / 117









Big picture Ads Duplicate detection Spam Web IR Size of the web

Conclusion

Many different approaches to web size estimation.

None is perfect.

The problem has gotten much harder.

There has not been a good study for a couple of years.

Great topic for a thesis!
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Resources

Chapter 19 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Hal Varian explains Google second price auction:
http://www.youtube.com/watch?v=K7l0a2PVhPQ

Size of the web queries
Trademark issues (Geico and Vuitton cases)
How ads are priced
Henzinger, Finding near-duplicate web pages: A large-scale
evaluation of algorithms, ACM SIGIR 2006.
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Search engines rank content pages and ads

Sojka, IIR Group: PV211: Crawling 3 / 32



Recap A simple crawler A real crawler

Google’s second price auction

advertiser bid CTR ad rank rank paid

A $4.00 0.01 0.04 4 (minimum)
B $3.00 0.03 0.09 2 $2.68
C $2.00 0.06 0.12 1 $1.51
D $1.00 0.08 0.08 3 $0.51

bid: maximum bid for a click by advertiser

CTR: click-through rate: when an ad is displayed, what
percentage of time do users click on it? CTR is a measure of
relevance.

ad rank: bid × CTR: this trades off (i) how much money the
advertiser is willing to pay against (ii) how relevant the ad is

paid: Second price auction: The advertiser pays the minimum
amount necessary to maintain their position in the auction
(plus 1 cent).
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What’s great about search ads

Users only click if they are interested.

The advertiser only pays when a user clicks on an ad.

Searching for something indicates that you are more likely to
buy it . . .

. . . in contrast to radio and newspaper ads.
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Near duplicate detection: Minimum of permutation
document 1: {sk} document 2: {sk}

✲

✲

✲

✲

✲

✲

✲

✲

1

1

1

1

1

1

1

1

2m

2m

2m

2m

2m

2m

2m

2ms
s1

s
s1

s
s2

s
s5

s
s3

s
s3

s
s4

s
s4

xk = π(sk) xk = π(sk)
s ss ss ss s

x3

❝
x3

❝
x1

❝
x1

❝
x4

❝
x4

❝
x2

❝
x5

❝

x3

❝
x3

❝
x1

❝
x1

❝
x4

❝
x5

❝
x2

❝
x2

❝
xk xk

x3

❝
x3

❝
minsk

π(sk) minsk
π(sk)

Roughly: We use mins∈d1
π(s) = mins∈d2

π(s) as a test for: are d1

and d2 near-duplicates?
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How hard can crawling be?

Web search engines must crawl their documents.

Getting the content of the documents is easier for many other
IR systems.

E.g., indexing all files on your hard disk: just do a recursive
descent on your file system

Ok: for web IR, getting the content of the documents takes
longer . . .

. . . because of latency.

But is that really a design/systems challenge?

Sojka, IIR Group: PV211: Crawling 8 / 32



Recap A simple crawler A real crawler

Basic crawler operation

Initialize queue with URLs of known seed pages

Repeat

Take URL from queue
Fetch and parse page
Extract URLs from page
Add URLs to queue

Fundamental assumption: The web is well linked.
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Exercise: What’s wrong with this crawler?

urlqueue := (some carefully selected set of seed urls)

while urlqueue is not empty:

myurl := urlqueue.getlastanddelete()

mypage := myurl.fetch()

fetchedurls.add(myurl)

newurls := mypage.extracturls()

for myurl in newurls:

if myurl not in fetchedurls and not in urlqueue:

urlqueue.add(myurl)

addtoinvertedindex(mypage)
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What’s wrong with the simple crawler

Scale: we need to distribute.

We can’t index everything: we need to subselect. How?

Duplicates: need to integrate duplicate detection

Spam and spider traps: need to integrate spam detection

Politeness: we need to be “nice” and space out all requests
for a site over a longer period (hours, days)

Freshness: we need to recrawl periodically.

Because of the size of the web, we can do frequent recrawls
only for a small subset.
Again, subselection problem or prioritization
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Magnitude of the crawling problem

To fetch 20,000,000,000 pages in one month . . .

. . . we need to fetch almost 8,000 pages per second!

Actually: many more since many of the pages we attempt to
crawl will be duplicates, unfetchable, spam etc.
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What a crawler must do

Be polite

Don’t hit a site too often

Only crawl pages you are allowed to crawl: robots.txt

Be robust

Be immune to spider traps, duplicates, very large pages, very
large websites, dynamic pages etc
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robots.txt

Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994

Examples:

User-agent: *
Disallow: /yoursite/temp/
User-agent: searchengine
Disallow: /

Important: cache the robots.txt file of each site we are
crawling
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Example of a robots.txt (nih.gov)

User-agent: PicoSearch/1.0

Disallow: /news/information/knight/

Disallow: /nidcd/

...

Disallow: /news/research_matters/secure/

Disallow: /od/ocpl/wag/

User-agent: *

Disallow: /news/information/knight/

Disallow: /nidcd/

...

Disallow: /news/research_matters/secure/

Disallow: /od/ocpl/wag/

Disallow: /ddir/

Disallow: /sdminutes/
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What any crawler should do

Be capable of distributed operation

Be scalable: need to be able to increase crawl rate by adding
more machines

Fetch pages of higher quality first

Continuous operation: get fresh version of already crawled
pages
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URL frontier

URLs crawled
and parsed

URL frontier:
found, but

not yet crawled
unseen URLs
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URL frontier

The URL frontier is the data structure that holds and manages
URLs we’ve seen, but that have not been crawled yet.

Can include multiple pages from the same host

Must avoid trying to fetch them all at the same time

Must keep all crawling threads busy
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Basic crawl architecture

www

fetch

DNS

parse

URL frontier

content
seen?

✓

✒

✏

✑
✒✑

doc
FPs ✓

✒

✏

✑
✒✑

robots
templates ✓

✒

✏

✑
✒✑

URL
set

URL
filter

dup

URL
elim✲

✛

✲

✻

✛✲

❄
✻

✲ ✲ ✲

✛

✻
❄

✻
❄

✻
❄
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URL normalization

Some URLs extracted from a document are relative URLs.

E.g., at http://www.fi.muni.cz/˜sojka/PV211/, we may
have p20crawl.pdf

This is the same as URL:
http://www.fi.muni.cz/˜sojka/PV211/p20crawl.pdf

During parsing, we must normalize (expand) all relative URLs.
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Content seen

For each page fetched: check if the content is already in the
index

Check this using document fingerprints or shingles

Skip documents whose content has already been indexed
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Distributing the crawler

Run multiple crawl threads, potentially at different nodes

Usually geographically distributed nodes

Partition hosts being crawled into nodes
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Google data centers (wayfaring.com)
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Distributed crawler

www

fetch

DNS

parse

URL frontier

content
seen?

✓

✒

✏

✑
✍ ✌

doc
FPs ✓

✒

✏

✑
✍ ✌

URL
set

URL
filter

host
splitter

to
other
nodes

from
other
nodes

dup

URL
elim✲

✛

✲

✻

✛✲

❄
✻

✲ ✲ ✲ ✲

✛

✻❄ ✻❄✻✻✻

✲✲✲
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URL frontier: Two main considerations

Politeness: Don’t hit a web server too frequently

E.g., insert a time gap between successive requests to the
same server

Freshness: Crawl some pages (e.g., news sites) more often
than others

Not an easy problem: simple priority queue fails.
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Mercator URL frontier

b. queue selector

f. queue selector & b. queue router

prioritizer

♣ ♣ ♣ ♣
B back queues:

single host on each

♣ ♣ ♣

♣

♣F front queues

1 F

1 B

❳❳❳❳❳❳③
❳❳❳❳❳❳③

✘✘✘✘✘✘✾

✘✘✘✘✘✘✾
✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✏✏✏✏✏✏✮
✏✏✏✏✏✏✮

PPPPPPq

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

❄

❄

✲✛ heap

URLs flow in from the top into
the frontier.

Front queues manage
prioritization.

Back queues enforce politeness.

Each queue is FIFO.
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Mercator URL frontier: Front queues

Prioritizer assigns
to URL an integer
priority between 1
and F .

Then appends URL
to corresponding
queue

Heuristics for
assigning priority:
refresh rate,
PageRank etc

Selection from front
queues is initiated
by back queues

f. queue selector & b. queue router

prioritizer

q q q qF front queues

1 F

✏✏✏✏✏✏✏✮

✏✏✏✏✏✏✏✮

PPPPPPPq

❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✙

❄
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Mercator URL frontier: Back queues

b. queue selector

f. queue selector & b. queue router

q q q q
B back queues

Single host on each

1 B

❳❳❳❳❳❳❳③
❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

❳❳❳❳❳❳❳❳③

❄

✲✛ heap

Invariant 1. Each
back queue is kept
non-empty while the
crawl is in progress.

Invariant 2. Each
back queue only
contains URLs from a
single host.

Maintain a table from
hosts to back queues.

In the heap:

One entry for each
back queue

The entry is the
earliest time te at
which the host
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Mercator URL frontier

b. queue selector

f. queue selector & b. queue router

prioritizer

♣ ♣ ♣ ♣
B back queues:

single host on each

♣ ♣ ♣

♣

♣F front queues

1 F

1 B

❳❳❳❳❳❳③
❳❳❳❳❳❳③

✘✘✘✘✘✘✾

✘✘✘✘✘✘✾
✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✏✏✏✏✏✏✮
✏✏✏✏✏✏✮

PPPPPPq

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

❄

❄

✲✛ heap

URLs flow in from the top into
the frontier.

Front queues manage
prioritization.

Back queues enforce politeness.

Each queue is FIFO.

Sojka, IIR Group: PV211: Crawling 30 / 32



Recap A simple crawler A real crawler

Spider trap

Malicious server that generates an infinite sequence of linked
pages.

Sophisticated spider traps generate pages that are not easily
identified as dynamic.
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Resources

Chapter 20 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

Papers by NLP centre people crawling data for Sketch Engine
Paper on Mercator by Heydon et al.
Robot exclusion standard
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PV211: Introduction to Information Retrieval
http://www.fi.muni.cz/~sojka/PV211

IIR 21: Link analysis
Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno
Center for Information and Language Processing, University of Munich

2017-04-13
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Overview

1 Recap

2 Anchor text

3 Citation analysis

4 PageRank

5 HITS: Hubs & Authorities
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Search engines rank content pages and ads
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Google’s second price auction

advertiser bid CTR ad rank rank paid

A $4.00 0.01 0.04 4 (minimum)
B $3.00 0.03 0.09 2 $2.68
C $2.00 0.06 0.12 1 $1.51
D $1.00 0.08 0.08 3 $0.51

bid: maximum bid for a click by advertiser

CTR: click-through rate: when an ad is displayed, what
percentage of time do users click on it? CTR is a measure of
relevance.

ad rank: bid × CTR: this trades off (i) how much money the
advertiser is willing to pay against (ii) how relevant the ad is

paid: Second price auction: The advertiser pays the minimum
amount necessary to maintain their position in the auction
(plus 1 cent).
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What’s great about search ads

Users only click if they are interested.

The advertiser only pays when a user clicks on an ad.

Searching for something indicates that you are more likely to
buy it . . .

. . . in contrast to radio and newspaper ads.
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Near duplicate detection: Minimum of permutation
document 1: {sk} document 2: {sk}

✲

✲

✲

✲

✲

✲

✲

✲

1

1

1

1

1

1

1

1

2m

2m

2m

2m

2m

2m

2m

2ms

s1

s

s1

s

s2

s

s5

s

s3

s

s3

s

s4

s

s4

xk = π(sk) xk = π(sk)
s ss ss ss s

x3

❝

x3

❝

x1

❝

x1

❝

x4

❝

x4

❝

x2

❝

x5

❝

x3

❝

x3

❝

x1

❝

x1

❝

x4

❝

x5

❝

x2

❝

x2

❝

xk xk

x3

❝

x3

❝

minsk
π(sk) minsk

π(sk)

Roughly: We use mins∈d1 π(s) = mins∈d2 π(s) as a test for: are d1

and d2 near-duplicates?
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Example

d1 d2

s1 1 0
s2 0 1
s3 1 1
s4 1 0
s5 0 1
h(x) = x mod 5
g(x) = (2x + 1) mod 5

min(h(d1)) = 1 6= 0 =
min(h(d2))

min(g(d1)) = 2 6= 0 =
min(g(d2))

Ĵ(d1, d2) = 0+0
2 = 0

d1 slot d2 slot

∞ ∞
∞ ∞

h(1) = 1 1 1 – ∞
g(1) = 3 3 3 – ∞

h(2) = 2 – 1 2 2
g(2) = 0 – 3 0 0

h(3) = 3 3 1 3 2
g(3) = 2 2 2 2 0

h(4) = 4 4 1 – 2
g(4) = 4 4 2 – 0

h(5) = 0 – 1 0 0
g(5) = 1 – 2 1 0

final sketches
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Take-away today

Anchor text: What exactly are links on the web and why are
they important for IR?

Citation analysis: the mathematical foundation of PageRank
and link-based ranking

PageRank: the original algorithm that was used for link-based
ranking on the web

Hubs & Authorities: an alternative link-based ranking
algorithm
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The web as a directed graph

page d1 anchor text page d2

hyperlink

Assumption 1: A hyperlink is a quality signal.
The hyperlink d1 → d2 indicates that d1’s author deems d2

high-quality and relevant.
Assumption 2: The anchor text describes the content of d2.

We use anchor text somewhat loosely here for: the text
surrounding the hyperlink.
Example: “You can find cheap cars <a
href=http://...>here</a>.”
Anchor text: “You can find cheap cars here”

Sojka, IIR Group: PV211: Link analysis 11 / 82



Recap Anchor text Citation analysis PageRank HITS: Hubs & Authorities

[text of d2] only vs. [text of d2] + [anchor text → d2]

Searching on [text of d2] + [anchor text → d2] is often more
effective than searching on [text of d2] only.

Example: Query IBM

Matches IBM’s copyright page
Matches many spam pages
Matches IBM Wikipedia article
May not match IBM home page!
. . . if IBM home page is mostly graphics

Searching on [anchor text → d2] is better for the query IBM.

In this representation, the page with the most occurrences of
IBM is www.ibm.com.
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Anchor text containing IBM pointing to www.ibm.com

www.nytimes.com: “IBM acquires Webify”

www.slashdot.org: “New IBM optical chip”

www.stanford.edu: “IBM faculty award recipients”

www.ibm.com
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Indexing anchor text

Thus: Anchor text is often a better description of a page’s
content than the page itself.

Anchor text can be weighted more highly than document text.
(based on Assumptions 1&2)
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Exercise: Assumptions underlying PageRank

Assumption 1: A link on the web is a quality signal – the
author of the link thinks that the linked-to page is high-quality.

Assumption 2: The anchor text describes the content of the
linked-to page.

Is assumption 1 true in general?

Is assumption 2 true in general?
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Google bombs

A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

Google introduced a new weighting function in 2007 that fixed
many Google bombs.

Still some remnants: [dangerous cult] on Google, Bing, Yahoo

Coordinated link creation by those who dislike the Church of
Scientology

Defused Google bombs: [dumb motherf. . . ], [who is a
failure?], [evil empire]
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Origins of PageRank: Citation analysis (1)

Citation analysis: analysis of citations in the scientific
literature

Example citation: “Miller (2001) has shown that physical
activity alters the metabolism of estrogens.”

We can view “Miller (2001)” as a hyperlink linking two
scientific articles.

One application of these “hyperlinks” in the scientific
literature:

Measure the similarity of two articles by the overlap of other
articles citing them.
This is called cocitation similarity.
Cocitation similarity on the web: Google’s “related:” operator,
e.g. [related:www.ford.com]
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Origins of PageRank: Citation analysis (2)

Another application: Citation frequency can be used to
measure the impact of a scientific article.

Simplest measure: Each citation gets one vote.
On the web: citation frequency = inlink count

However: A high inlink count does not necessarily mean high
quality . . .

. . . mainly because of link spam.

Better measure: weighted citation frequency or citation rank

An citation’s vote is weighted according to its citation impact.
Circular? No: can be formalized in a well-defined way.
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Origins of PageRank: Citation analysis (3)

Better measure: weighted citation frequency or citation rank

This is basically PageRank.

PageRank was invented in the context of citation analysis by
Pinsker and Narin in the 1960s.

Citation analysis is a big deal: The budget and salary of this
lecturer are / will be determined by the impact of his
publications!
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Origins of PageRank: Summary

We can use the same formal representation for

citations in the scientific literature
hyperlinks on the web

Appropriately weighted citation frequency is an excellent
measure of quality . . .

. . . both for web pages and for scientific publications.

Next: PageRank algorithm for computing weighted citation
frequency on the web
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Model behind PageRank: Random walk

Imagine a web surfer doing a random walk on the web

Start at a random page
At each step, go out of the current page along one of the links
on that page, equiprobably

In the steady state, each page has a long-term visit rate.

This long-term visit rate is the page’s PageRank.

PageRank = long-term visit rate = steady state probability
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Formalization of random walk: Markov chains

A Markov chain consists of N states, plus an N × N transition
probability matrix P.

state = page

At each step, we are on exactly one of the pages.

For 1 ≤ i , j ≤ N, the matrix entry Pij tells us the probability
of j being the next page, given we are currently on page i .

Clearly, for all i,
∑N

j=1 Pij = 1

di dj

Pij
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank
d0 0.05 d1 0.04 d2 0.11
d3 0.25 d4 0.21 d5 0.04
d6 0.31

PageRank(d2)< PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d4 0.16 0.04
d5 0.01 0.04
d6 0.13 0.35

highest in-degree: d2, d3, d6

highest out-degree: d2, d6

highest PageRank: d6

highest hub score: d6 (close: d2)
highest authority score: d3
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Link matrix for example

d0 d1 d2 d3 d4 d5 d6

d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 1 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 1 1 0 1
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Transition probability matrix P for example

d0 d1 d2 d3 d4 d5 d6

d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Long-term visit rate

Recall: PageRank = long-term visit rate

Long-term visit rate of page d is the probability that a web
surfer is at page d at a given point in time.

Next: what properties must hold of the web graph for the
long-term visit rate to be well defined?

The web graph must correspond to an ergodic Markov chain.

First a special case: The web graph must not contain dead
ends.
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Dead ends

??

The web is full of dead ends.

Random walk can get stuck in dead ends.

If there are dead ends, long-term visit rates are not
well-defined (or non-sensical).
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Teleporting – to get us out of dead ends

At a dead end, jump to a random web page with prob. 1/N.

At a non-dead end, with probability 10%, jump to a random
web page (to each with a probability of 0.1/N).

With remaining probability (90%), go out on a random
hyperlink.

For example, if the page has 4 outgoing links: randomly
choose one with probability (1-0.10)/4=0.225

10% is a parameter, the teleportation rate.

Note: “jumping” from dead end is independent of
teleportation rate.
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Result of teleporting

With teleporting, we cannot get stuck in a dead end.

But even without dead ends, a graph may not have
well-defined long-term visit rates.

More generally, we require that the Markov chain be
ergodic.
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Ergodic Markov chains

A Markov chain is ergodic iff it is irreducible and aperiodic.

Irreducibility. Roughly: there is a path from any page to any
other page.

Aperiodicity. Roughly: The pages cannot be partitioned such
that the random walker visits the partitions sequentially.

A non-ergodic Markov chain:

1.0

1.0
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Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in proportion to
this rate.

It doesn’t matter where we start.

Teleporting makes the web graph ergodic.

⇒ Web-graph+teleporting has a steady-state probability
distribution.

⇒ Each page in the web-graph+teleporting has a
PageRank.
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Where we are

We now know what to do to make sure we have a well-defined
PageRank for each page.

Next: how to compute PageRank
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Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

Example:
( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

More generally: the random walk is on page i with probability
xi .

Example:
( 0.05 0.01 0.0 . . . 0.2 . . . 0.01 0.05 0.03 )

1 2 3 . . . i . . . N-2 N-1 N
∑

xi = 1
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Change in probability vector

If the probability vector is ~x = (x1, . . . , xN) at this step, what
is it at the next step?

Recall that row i of the transition probability matrix P tells us
where we go next from state i .

So from ~x , our next state is distributed as ~xP.
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Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

(We use ~π to distinguish it from the notation for the
probability vector ~x .)

πi is the long-term visit rate (or PageRank) of page i .

So we can think of PageRank as a very long vector – one
entry per page.
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Steady-state distribution: Example

What is the PageRank / steady state in this example?

d1 d2

0.75

0.25

0.25 0
.7

5
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Steady-state distribution: Example

x1 x2

Pt(d1) Pt(d2)

P11 = 0.25 P12 = 0.75
P21 = 0.25 P22 = 0.75

t0 0.25 0.75 0.25 0.75
t1 0.25 0.75 (convergence)

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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How do we compute the steady state vector?

In other words: how do we compute PageRank?

Recall: ~π = (π1, π2, . . . , πN) is the PageRank vector, the
vector of steady-state probabilities . . .

. . . and if the distribution in this step is ~x , then the
distribution in the next step is ~xP.

But ~π is the steady state!

So: ~π = ~πP

Solving this matrix equation gives us ~π.

~π is the principal left eigenvector for P . . .

. . . that is, ~π is the left eigenvector with the largest eigenvalue.

All transition probability matrices have largest eigenvalue 1.
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One way of computing the PageRank ~π

Start with any distribution ~x , e.g., uniform distribution

After one step, we’re at ~xP.

After two steps, we’re at ~xP2.

After k steps, we’re at ~xPk .

Algorithm: multiply ~x by increasing powers of P until
convergence.

This is called the power method.

Recall: regardless of where we start, we eventually reach the
steady state ~π.

Thus: we will eventually (in asymptotia) reach the steady
state.
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Power method: Example

What is the PageRank / steady state in this example?

d1 d2

0.9

0.3

0.1 0.
7

The steady state distribution (= the PageRanks) in this
example are 0.25 for d1 and 0.75 for d2.
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Computing PageRank: Power method

x1 x2

Pt(d1) Pt(d2)

P11 = 0.1 P12 = 0.9
P21 = 0.3 P22 = 0.7

t0 0 1 0.3 0.7 = ~xP

t1 0.3 0.7 0.24 0.76 = ~xP2

t2 0.24 0.76 0.252 0.748 = ~xP3

t3 0.252 0.748 0.2496 0.7504 = ~xP4

. . . . . .
t∞ 0.25 0.75 0.25 0.75 = ~xP∞

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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Power method: Example

What is the PageRank / steady state in this example?

d1 d2

0.9

0.3

0.1 0.
7

The steady state distribution (= the PageRanks) in this
example are 0.25 for d1 and 0.75 for d2.
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Exercise: Compute PageRank using power method

d1 d2

0.3

0.2

0.7 0.
8
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Solution

x1 x2

Pt(d1) Pt(d2)

P11 = 0.7 P12 = 0.3
P21 = 0.2 P22 = 0.8

t0 0 1 0.2 0.8
t1 0.2 0.8 0.3 0.7
t2 0.3 0.7 0.35 0.65
t3 0.35 0.65 0.375 0.625

. . .
t∞ 0.4 0.6 0.4 0.6

PageRank vector = ~π = (π1, π2) = (0.4, 0.6)

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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PageRank summary

Preprocessing

Given graph of links, build matrix P

Apply teleportation
From modified matrix, compute ~π
~πi is the PageRank of page i .

Query processing

Retrieve pages satisfying the query
Rank them by their PageRank
Return reranked list to the user
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PageRank issues

Real surfers are not random surfers.
Examples of nonrandom surfing: back button, short vs. long
paths, bookmarks, directories – and search!
→ Markov model is not a good model of surfing.
But it’s good enough as a model for our purposes.

Simple PageRank ranking (as described on previous slide)
produces bad results for many pages.

Consider the query [video service]
The Yahoo home page (i) has a very high PageRank and (ii)
contains both video and service.
If we rank all Boolean hits according to PageRank, then the
Yahoo home page would be top-ranked.
Clearly not desirable

In practice: rank according to weighted combination of raw
text match, anchor text match, PageRank & other factors

→ see lecture on Learning to Rank
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank
d0 0.05 d1 0.04 d2 0.11
d3 0.25 d4 0.21 d5 0.04
d6 0.31

PageRank(d2)< PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d4 0.16 0.04
d5 0.01 0.04
d6 0.13 0.35

highest in-degree: d2, d3, d6

highest out-degree: d2, d6

highest PageRank: d6

highest hub score: d6 (close: d2)
highest authority score: d3
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Transition (probability) matrix

d0 d1 d2 d3 d4 d5 d6

d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Transition matrix with teleporting

d0 d1 d2 d3 d4 d5 d6

d0 0.02 0.02 0.88 0.02 0.02 0.02 0.02
d1 0.02 0.45 0.45 0.02 0.02 0.02 0.02
d2 0.31 0.02 0.31 0.31 0.02 0.02 0.02
d3 0.02 0.02 0.02 0.45 0.45 0.02 0.02
d4 0.02 0.02 0.02 0.02 0.02 0.02 0.88
d5 0.02 0.02 0.02 0.02 0.02 0.45 0.45
d6 0.02 0.02 0.02 0.31 0.31 0.02 0.31
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Power method vectors ~xP
k

~x ~xP1 ~xP2 ~xP3 ~xP4 ~xP5 ~xP6 ~xP7 ~xP8 ~xP9 ~xP10 ~xP11 ~xP12 ~xP13

d0 0.14 0.06 0.09 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
d1 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d2 0.14 0.25 0.18 0.17 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11
d3 0.14 0.16 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25
d4 0.14 0.12 0.16 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
d5 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d6 0.14 0.25 0.23 0.25 0.27 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank
d0 0.05 d1 0.04 d2 0.11
d3 0.25 d4 0.21 d5 0.04
d6 0.31

PageRank(d2)< PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d4 0.16 0.04
d5 0.01 0.04
d6 0.13 0.35

highest in-degree: d2, d3, d6

highest out-degree: d2, d6

highest PageRank: d6

highest hub score: d6 (close: d2)
highest authority score: d3
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How important is PageRank?

Frequent claim: PageRank is the most important component
of web ranking.

The reality:

There are several components that are at least as important:
e.g., anchor text, phrases, proximity, tiered indexes . . .
Rumor has it that PageRank in its original form (as presented
here) now has a negligible impact on ranking!
However, variants of a page’s PageRank are still an essential
part of ranking.
Adressing link spam is difficult and crucial.
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HITS – Hyperlink-Induced Topic Search

Premise: there are two different types of relevance on the web.

Relevance type 1: Hubs. A hub page is a good list of [links to
pages answering the information need].

E.g., for query [chicago bulls]: Bob’s list of recommended
resources on the Chicago Bulls sports team

Relevance type 2: Authorities. An authority page is a direct
answer to the information need.

The home page of the Chicago Bulls sports team
By definition: Links to authority pages occur repeatedly on
hub pages.

Most approaches to search (including PageRank ranking)
don’t make the distinction between these two very different
types of relevance.
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Hubs and authorities: Definition

A good hub page for a topic links to many authority pages for
that topic.

A good authority page for a topic is linked to by many hub
pages for that topic.

Circular definition – we will turn this into an iterative
computation.
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Example for hubs and authorities

hubs authorities

www.bestfares.com

www.airlinesquality.com

blogs.usatoday.com/sky

aviationblog.dallasnews.com

www.aa.com

www.delta.com

www.united.com
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How to compute hub and authority scores

Do a regular web search first

Call the search result the root set

Find all pages that are linked to or link to pages in the root set

Call this larger set the base set

Finally, compute hubs and authorities for the base set (which
we’ll view as a small web graph)
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Root set and base set (1)

base set

root set

The root set Nodes that root set nodes link to Nodes that link to
root set nodes The base set
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Root set and base set (2)

Root set typically has 200–1,000 nodes.

Base set may have up to 5,000 nodes.

Computation of base set, as shown on previous slide:

Follow outlinks by parsing the pages in the root set
Find d ’s inlinks by searching for all pages containing a link to
d
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Hub and authority scores

Compute for each page d in the base set a hub score h(d) and
an authority score a(d)

Initialization: for all d : h(d) = 1, a(d) = 1

Iteratively update all h(d), a(d)

After convergence:

Output pages with highest h scores as top hubs
Output pages with highest a scores as top authorities
So we output two ranked lists
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Iterative update

For all d : h(d) =
∑

d 7→y a(y)

d

y1

y2

y3

For all d : a(d) =
∑

y 7→d h(y)

d

y1

y2

y3

Iterate these two steps until convergence
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Details

Scaling

To prevent the a() and h() values from getting too big, can
scale down after each iteration
Scaling factor doesn’t really matter.
We care about the relative (as opposed to absolute) values of
the scores.

In most cases, the algorithm converges after a few
iterations.
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Authorities for query [Chicago Bulls]

0.85 www.nba.com/bulls
0.25 www.essex1.com/people/jmiller/bulls.htm

“da Bulls”
0.20 www.nando.net/SportServer/basketball/nba/chi.html

“The Chicago Bulls”
0.15 users.aol.com/rynocub/bulls.htm

“The Chicago Bulls Home Page”
0.13 www.geocities.com/Colosseum/6095

“Chicago Bulls”

(Ben-Shaul et al, WWW8)
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The authority page for [Chicago Bulls]
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Hubs for query [Chicago Bulls]

1.62 www.geocities.com/Colosseum/1778
“Unbelieveabulls!!!!!”

1.24 www.webring.org/cgi-bin/webring?ring=chbulls
“Erin’s Chicago Bulls Page”

0.74 www.geocities.com/Hollywood/Lot/3330/Bulls.html
“Chicago Bulls”

0.52 www.nobull.net/web_position/kw-search-15-M2.htm
“Excite Search Results: bulls”

0.52 www.halcyon.com/wordsltd/bball/bulls.htm
“Chicago Bulls Links”

(Ben-Shaul et al, WWW8)
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A hub page for [Chicago Bulls]
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Hubs & Authorities: Comments

HITS can pull together good pages regardless of page content.

Once the base set is assembled, we only do link analysis, no
text matching.

Pages in the base set often do not contain any of the query
words.

In theory, an English query can retrieve Japanese-language
pages!

If supported by the link structure between English and
Japanese pages

Danger: topic drift – the pages found by following links may
not be related to the original query.
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Proof of convergence

We define an N × N adjacency matrix A. (We called this the
link matrix earlier.

For 1 ≤ i , j ≤ N, the matrix entry Aij tells us whether there is
a link from page i to page j (Aij = 1) or not (Aij = 0).

Example:

d3

d1 d2

d1 d2 d3

d1 0 1 0
d2 1 1 1
d3 1 0 0
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Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Now we can write h(d) =
∑

d 7→y a(y) as a matrix operation:
~h = A~a . . .

. . . and we can write a(d) =
∑

y 7→d h(y) as ~a = AT~h

HITS algorithm in matrix notation:

Compute ~h = A~a
Compute ~a = AT~h
Iterate until convergence
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HITS as eigenvector problem

HITS algorithm in matrix notation. Iterate:

Compute ~h = A~a
Compute ~a = AT~h

By substitution we get: ~h = AAT~h and ~a = AT A~a

Thus, ~h is an eigenvector of AAT and ~a is an eigenvector of
AT A.

So the HITS algorithm is actually a special case of the power
method and hub and authority scores are eigenvector values.

HITS and PageRank both formalize link analysis as
eigenvector problems.
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank
d0 0.05 d1 0.04 d2 0.11
d3 0.25 d4 0.21 d5 0.04
d6 0.31

PageRank(d2)< PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d4 0.16 0.04
d5 0.01 0.04
d6 0.13 0.35

highest in-degree: d2, d3, d6

highest out-degree: d2, d6

highest PageRank: d6

highest hub score: d6 (close: d2)
highest authority score: d3
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Raw matrix A for HITS

d0 d1 d2 d3 d4 d5 d6

d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 2 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 2 1 0 1
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Hub vectors h0,~hi = 1
di

A · ~ai , i ≥ 1

~h0
~h1

~h2
~h3

~h4
~h5

d0 0.14 0.06 0.04 0.04 0.03 0.03
d1 0.14 0.08 0.05 0.04 0.04 0.04
d2 0.14 0.28 0.32 0.33 0.33 0.33
d3 0.14 0.14 0.17 0.18 0.18 0.18
d4 0.14 0.06 0.04 0.04 0.04 0.04
d5 0.14 0.08 0.05 0.04 0.04 0.04
d6 0.14 0.30 0.33 0.34 0.35 0.35
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Authority vectors ~ai = 1
ci

A
T · ~hi−1, i ≥ 1

~a1 ~a2 ~a3 ~a4 ~a5 ~a6 ~a7

d0 0.06 0.09 0.10 0.10 0.10 0.10 0.10
d1 0.06 0.03 0.01 0.01 0.01 0.01 0.01
d2 0.19 0.14 0.13 0.12 0.12 0.12 0.12
d3 0.31 0.43 0.46 0.46 0.46 0.47 0.47
d4 0.13 0.14 0.16 0.16 0.16 0.16 0.16
d5 0.06 0.03 0.02 0.01 0.01 0.01 0.01
d6 0.19 0.14 0.13 0.13 0.13 0.13 0.13
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank
d0 0.05 d1 0.04 d2 0.11
d3 0.25 d4 0.21 d5 0.04
d6 0.31

PageRank(d2)< PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d4 0.16 0.04
d5 0.01 0.04
d6 0.13 0.35

highest in-degree: d2, d3, d6

highest out-degree: d2, d6

highest PageRank: d6

highest hub score: d6 (close: d2)
highest authority score: d3
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank
d0 0.05 d1 0.04 d2 0.11
d3 0.25 d4 0.21 d5 0.04
d6 0.31

PageRank(d2)< PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d4 0.16 0.04
d5 0.01 0.04
d6 0.13 0.35

highest in-degree: d2, d3, d6

highest out-degree: d2, d6

highest PageRank: d6

highest hub score: d6 (close: d2)
highest authority score: d3

Sojka, IIR Group: PV211: Link analysis 78 / 82



Recap Anchor text Citation analysis PageRank HITS: Hubs & Authorities

PageRank vs. HITS: Discussion

PageRank can be precomputed, HITS has to be computed at
query time.

HITS is too expensive in most application scenarios.

PageRank and HITS make two different design choices
concerning (i) the eigenproblem formalization (ii) the set of
pages to apply the formalization to.

These two are orthogonal.

We could also apply HITS to the entire web and PageRank to
a small base set.

Claim: On the web, a good hub almost always is also a good
authority.

The actual difference between PageRank ranking and HITS
ranking is therefore not as large as one might expect.
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Exercise

Why is a good hub almost always also a good authority?
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Take-away today

Anchor text: What exactly are links on the web and why are
they important for IR?

Citation analysis: the mathematical foundation of PageRank
and link-based ranking

PageRank: the original algorithm that was used for link-based
ranking on the web

Hubs & Authorities: an alternative link-based ranking
algorithm
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Resources

Chapter 21 of IIR

Resources at http://www.fi.muni.cz/~sojka/PV211/ and
http://cislmu.org, materials in MU IS and FI MU library

American Mathematical Society article on PageRank (popular
science style)
Jon Kleinberg’s home page (main person behind HITS)
A Google bomb and its defusing
Google’s official description of PageRank: PageRank reflects

our view of the importance of web pages by considering more

than 500 million variables and 2 billion terms. Pages that we

believe are important pages receive a higher PageRank and are

more likely to appear at the top of the search results.
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