
Seminar 1
Exercise 1/1
Recommend a query processing strategy for (tangerine OR trees) AND (marmalade OR
skies) AND (kaleidoscope OR eyes) with respect to the following postings list sizes:

eyes 213312

kaleidoscope 87009

marmalade 107913

skies 271658

tangerine 46653

trees 316812

We use a database trick where we filter out the results with the clause of the shortest
intermediate result first. Operations OR is understood as addition and AND as multiplication.
Compose the equations:

tangerine OR trees = 46653 + 316812 = 363465

marmalade OR skies = 107913 + 271658 = 379571

kaleidoscope OR eyes = 87009 + 213312 = 300321

After sorting these with respect to sizes and we get the ordering

kaleidoscope OR eyes < tangerine OR trees < marmalade OR skies

we see that the query is best processed in the following sequence:

1. 𝑎 = kaleidoscope OR eyes

2. 𝑏 = tangerine OR trees

3. 𝑐 = marmalade OR skies

4. 𝑑 = 𝑎 AND 𝑏

5. 𝑒 = 𝑑 AND 𝑐

Exercise 1/2
What is the best order for processing the query ostrich AND hippo AND giraffe if we know
that the number of occurrences of the animals are 100, 500, 300, respectively?

(ostrich AND giraffe) AND hippo

1

Exercise 1/3
Create an inverted index composed of the following collection of documents:
Doc 1: new home sales top forecasts

Doc 2: home sales rise in July

Doc 3: increase in home sales in July

Doc 4: July new home sales rise

Very easy procedure. Start with an empty table. If the term already appears in the table
as a key, add the document ID only. Otherwise, take each term of a document and add
it as a key to the table with the ID of the document. This way we get the inverted index
represented in the following table.

new 1 4
home 1 2 3 4
sales 1 2 3 4
top 1
forecasts 1
rise 2 4
in 2 3
July 2 3 4
increase 3

Table 1: Inverted index

Exercise 1/4
Create an inverted index composed of the following collection of documents:
Doc 1: hippo ostrich ostrich giraffe

Doc 2: lion frog giraffe hippo

Doc 3: ostrich frog bat giraffe lion frog

hippo 1 2
ostrich 1 3
giraffe 1 2 3
lion 2 3
frog 2 3
bat 3

Table 2: Inverted index

2

Seminar 2
Algorithm 1 (Soundex Code)
Transformation of a string to a 4-character soundex code

1. Keep the first character

2. Rewrite {𝐴, 𝐸, 𝐼, 𝑂, 𝑈, 𝐻, 𝑊, 𝑌 } to 0

3. Rewrite characters

(a) {𝐵, 𝐹, 𝑃, 𝑉 } to 1
(b) {𝐶, 𝐺, 𝐽, 𝐾, 𝑄, 𝑆, 𝑋, 𝑍} to 2
(c) {𝐷, 𝑇} to 3
(d) {𝐿} to 4
(e) {𝑀, 𝑁} to 5
(f) {𝑅} to 6

4. Remove duplicities

5. Remove zeros

6. Change to length 4 (truncate or add zeros)

Algorithm 2 (Querying in Permuterm Index)
For query 𝑞, find keys according to the following scheme:

∙ for 𝑞 = 𝑋, find keys in the form 𝑋$

∙ for 𝑞 = 𝑋*, find keys in the form $𝑋*

∙ for 𝑞 = *𝑋, find keys in the form 𝑋$*

∙ for 𝑞 = *𝑋*, find keys in the form 𝑋*

∙ for 𝑞 = 𝑋*𝑌 , find keys in the form 𝑌 $𝑋*

Exercise 2/1
Below is a part of index with positions in the form
doc1: ⟨𝑝𝑜𝑠1, 𝑝𝑜𝑠2, 𝑝𝑜𝑠3, . . .⟩; doc2: ⟨𝑝𝑜𝑠1, 𝑝𝑜𝑠2, . . .⟩; . . .

∙ angels: 2 : ⟨36, 174, 252, 651⟩; 4 : ⟨12, 22, 102, 432⟩; 7 : ⟨17⟩;

∙ fools: 2 : ⟨1, 17, 74, 222⟩; 4 : ⟨8, 78, 108, 458⟩; 7 : ⟨3, 13, 23, 193⟩;

∙ fear: 2 : ⟨87, 704, 722, 901⟩; 4 : ⟨13, 43, 113, 433⟩; 7 : ⟨18, 328, 528⟩;

∙ in: 2 : ⟨3, 37, 76, 444, 851⟩; 4 : ⟨10, 20, 110, 470, 500⟩; 7 : ⟨5, 15, 25, 195⟩;

∙ rush: 2 : ⟨2, 66, 194, 321, 702⟩; 4 : ⟨9, 69, 149, 429, 569⟩; 7 : ⟨4, 14, 404⟩;

∙ to: 2 : ⟨47, 86, 234, 999⟩; 4 : ⟨14, 24, 774, 944⟩; 7 : ⟨19, 319, 599, 709⟩;

3

∙ tread: 2 : ⟨57, 94, 333⟩; 4 : ⟨15, 35, 155⟩; 7 : ⟨20, 320⟩;

∙ where: 2 : ⟨67, 124, 393, 1001⟩; 4 : ⟨11, 41, 101, 421, 431⟩; 7 : ⟨15, 35, 735⟩;

The following terms are phrase queries. Which documents correspond to the following queries
and on which positions?

a) fools rush in

b) fools rush in AND angels fear to tread.

The index is incorrect. How?

In order to retrieve the query it is necessary that the words are in a sequence. That is, if the
word angels is in doc2 on position 36, then the word fear has to be in the same document
on the position 37 and so on.

For the exercise a) we calculate all possible positions of the phrase. Word fools appears in
doc2 on positions ⟨1, 17, 74, 222⟩. That means that the word rush has to appear on positions
⟨2, 18, 75, 223⟩ and the word in on positions ⟨3, 19, 76, 224⟩. Similar process is applied on
doc4 and doc7 which retrieves the requested results.

doc2 ⟨1, 2, 3⟩, ⟨17, 18, 19⟩, ⟨74, 75, 76⟩, ⟨222, 223, 224⟩

doc4 ⟨8, 9, 10⟩, ⟨78, 79, 80⟩, ⟨108, 109, 110⟩, ⟨458, 459, 460⟩

doc7 ⟨3, 4, 5⟩, ⟨13, 14, 15⟩, ⟨23, 24, 25⟩, ⟨193, 194, 195⟩

Now we look at the original position index and search for whether there is a conjunction
between requested and real positions. Take doc2 and check whether the words fools, rush
and in are in a sequence on positions ⟨1, 2, 3⟩. Since yes, the system returns doc2 as relevant
to our query. Same analogy is used for the remaining documents for which we get the result
doc2: {⟨1, 2, 3⟩}; doc4: {⟨8, 9, 10⟩}; and doc7: {⟨3, 4, 5⟩, ⟨13, 14, 15⟩}.

For the exercise b) we find the requested positions for also the term angels fear to tread.

doc2 ⟨36, 37, 38, 39⟩, ⟨174, 175, 176, 177⟩, ⟨252, 253, 254, 255⟩, ⟨651, 652, 653, 654⟩

doc4 ⟨12, 13, 14, 15⟩, ⟨22, 23, 24, 25⟩, ⟨102, 103, 104, 105⟩, ⟨432, 433, 434, 435⟩

doc7 ⟨17, 18, 19, 20⟩

They appear in the correct order in doc4: {⟨12, 13, 14, 15⟩} and in doc7: {⟨17, 18, 19, 20⟩}.
Taking the first part from a), we only check whether the results overlap {doc2(1), doc4(8),
doc7(3), doc7(13)} ∩ {doc4(12), doc7(17)} = {doc4(8,12), doc7(3,17), doc7(13,17)}.

The index is incorrect. We need to have a look into doc7, where on position 15 are two
terms in and where.

Exercise 2/2
Below is a part of index with positions in the form
doc1: ⟨𝑝𝑜𝑠1, 𝑝𝑜𝑠2, 𝑝𝑜𝑠3, . . .⟩; doc2: ⟨𝑝𝑜𝑠1, 𝑝𝑜𝑠2, . . .⟩; . . .

∙ ostrich: 1 : <1,7>; 2 : <4,5>;

4

∙ hippo: 1 : <5,8,9>; 3 : <6,9>;

∙ lion: 1 : <3,6>; 2 : <3,7>;

∙ giraffe: 1 : <2,4>; 2 : <1,2,8>;

Which documents correspond to the phrase query lion giraffe hippo and on which positions?
Include intermediate results.

Candidates:

doc1 ⟨3, 4, 5⟩, ⟨6, 7, 8⟩

doc2 ⟨3, 4, 5⟩, ⟨7, 8, 9⟩

Result:

doc1 ⟨3, 4, 5⟩

Exercise 2/3
Consider a query composed of two terms. Non-positional postings list of one term is composed
of 16 items 𝑃 = [4, 6, 10, 12, 14, 16, 18, 20, 22, 32, 47, 81, 120, 215, 300, 500] and the second term
has the postings list of only a single element 𝑅 = [47]. Find out how many comparisons (and
why) are necessary to find out the intersection of the lists that are organized as follows:

a) standard postings lists

b) postings lists with skip pointers of skip frequency
√︀
|𝑃 |

a) A naive algorithm compares each element from 𝑃 with each element from 𝑅, which is 11.

b) With skip pointers of frequency
√︀
|𝑃 | = 4 we reduce the number of comparisons. Instead

of the next element 𝑖 + 1 only, the pointer goes directly to 𝑖 +
√︀
|𝑃 | until the referred

value is larger than the searched value, after which it jumps back and then step forward
by 1. Starting at position 0, the algorithm proceeds as follows: compare 4:47, jump to
14, compare 14:47, jump to 22, compare 22:47, jump to 120, compare 120:47, jump
back to 22, step to 32, compare 32:47, step to 47, compare 47:47, done. The number of
compare operations is 6.

Exercise 2/4
Consider a query composed of two terms. Non-positional postings list with skip pointers of one
term is composed of 16 items 𝑃1 = [4, 6, 10, 12, 14, 16, 18, 20, 22, 32, 47, 81, 120, 215, 300, 500]
with skip frequency of square root of its length and the second term has the standard postings
list 𝑃2 = [18, 32, 60]. How many comparisons are necessary to find out the intersection of
the lists?

5

(4, 18), (14, 18), (22, 18), (16, 18), (18, 18), (20, 32), (22, 32), (120, 32), (32, 32), (47, 60),
(81, 60).

Exercise 2/5
List the comparisons performed to intersect the following sorted non-positional postings lists
with skip pointers of frequency 5.

𝑃1 = [2, 10, 12, 16] and 𝑃2 = [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

(2, 1), (2, 7), (2, 3), (10, 3), (10, 4), (10, 5), (10, 6), (10, 7), (10, 12), (10, 8), (10, 9), (10, 10),
(12, 11), (12, 12), (16, 13), (16, 14), (16, 15).

Exercise 2/6
List the comparisons performed to intersect the following sorted non-positional postings lists
with skip pointers of frequency 5.

𝑃1 = [4, 5, 6, 7, 8, 9, 10, 13, 14, 15] and 𝑃2 = [1, 2, 3, 4, 5, 10, 11, 15, 16]

(4, 1), (4, 10), (4, 2), (4, 3), (4, 4), (5, 5), (6, 10), (7, 10), (8, 10), (9, 10), (10, 10), (13, 11),
(13, 15), (14, 15), (15, 15).

Exercise 2/7
a) Find two different words of the same soundex code.

b) Find two phonetically similar words of different soundex codes.

a) sword and short have codes S630

b) fog and thug have codes F200 and T200

Exercise 2/8
Write elements in a dictionary of the permuterm index generated by the term mama.

𝑚𝑎𝑚𝑎$, 𝑎𝑚𝑎$𝑚, 𝑚𝑎$𝑚𝑎, 𝑎$𝑚𝑎𝑚, $𝑚𝑎𝑚𝑎.

6

Exercise 2/9
Which keys are usable for finding the term s*ng in a permuterm wildcard index?

𝑛𝑔$𝑠*

Exercise 2/10
What is the complexity of intersection of two un-ordered posting lists of lengths 𝑚 and 𝑛?

𝒪(𝑚 log 𝑚 + 𝑛 log 𝑛)

Exercise 2/11
What is the complexity (in 𝒪-notation) of intersecting of two ordered posting lists of lengths
𝑚 and 𝑛?

𝒪(𝑚 + 𝑛)

Exercise 2/12
What is the worst-case complexity of searching in hash tables?

Linear.

Seminar 3
Algorithm 3 (Variable byte code)
A number 𝑛 is encoded in variable byte code in the following procedure:

1. Take a binary representation of 𝑛 with padding to the length of a multiple of 7.

2. Split into of 7 bit blocks right-to-left.

3. Add 1 to the beginning of the last block and 0 to the beginning of all previous blocks.

Example: 𝑉 𝐵(824) = 00000110 10111000

Definition 1 (Unary code)
Unary code, also referred to as 𝛼 code, is a coding type where a number 𝑛 is represented by
a sequence of 𝑛 1s (or 0s) and terminated with one 0 (or 1). That is, 6 in unary code is
1111110 (or 0000001). The alternative representation in parentheses is equivalent but for
this course we use the default representation.

7

Definition 2 (𝛾 code)
𝛾 code is a coding type, that consists of an offset and its length: 𝛾(𝑛) = length of offset(𝑛)
in 𝛼,offset(𝑛). Offset is a binary representation of a number 𝑛 without the highest bit (1).
Length of this offset encoded in the unary (𝛼) code. Then the number 60 is encoded in 𝛾 as
111110,11100.

Definition 3 (𝛿 code)
A number 𝑛 is encoded in 𝛿 code in the following way. First calculate the offset of 𝑛 and the
length of 𝑛 encode with 𝛾 code. Then add the offset of 𝑛. The final form is 𝛿(𝑛) = length of
offset(𝑛) in 𝛾,offset(𝑛). Analogously, 600 is encoded in 𝛿 as 1110,001,001011000.

Definition 4 (Zipf’s law)
Zipf’s law says that the 𝑖-th most frequent term has the frequency 1

𝑖 . In this exercise we use
the dependence of the Zipf’s law 𝑐𝑓𝑖 ∝ 1

𝑖 = 𝑐𝑖𝑘 where 𝑐𝑓𝑖 is the number of terms 𝑡𝑖 in a given
collection with 𝑘 = −1.

Definition 5 (Heaps’ law)
Heaps’ law expresses an empiric dependency of collection size (number of all words) 𝑇 and
vocabulary size (number of distinct words) 𝑀 by 𝑀 = 𝑘𝑇 𝑏 where 30 ≤ 𝑘 ≤ 100 and 𝑏 ≈ 1

2 .

Exercise 3/1
Count variable byte code for the postings list ⟨777, 17 743, 294 068, 31 251 336⟩. Bear in mind
that the gaps are encoded. Write in 8-bit blocks.

Encode the list of gaps ⟨777, 16 966, 276 325, 30 957 268⟩. Variable byte code of the gaps:

∙ 𝑉 𝐵(777) = 00000110 10001001

∙ 𝑉 𝐵(16 966) = 00000001 00000100 11000110

∙ 𝑉 𝐵(276 325) = 00010000 01101110 11100101

∙ 𝑉 𝐵(30 957 268) = 00001110 01100001 00111101 11010100

Result: 𝑉 𝐵(⟨777, 17 743, 294 068, 31 251 336⟩) = 00000110 10001001 00000001 00000100 11000110 00010000
01101110 11100101 00001110 01100001 00111101 11010100

Exercise 3/2
Count 𝛾 and 𝛿 codes for the numbers 63 and 1023.

According to the definition 2 it is necessary to count the offsets as binary representations
without the highest bit 6310 = 1111112 and offset(63) = 11111. Offset length is encoded
in 𝛼 as |11111| = 5 𝛼(5) = 111110. Finally, 𝛾(63) = 111110, 11111. Analogically for
1023. 102310 = 11111111112, offset is 111111111, its length is |111111111| = 9 𝛼(9) =
1111111110. Then 𝛾(1023) = 1111111110, 111111111.

𝛿 is a little more complicated. First we count the offset 63 = 11111 and its length
|11111| = 5. The value of 5 we encode in 𝛾 so 𝛾(5) = 110, 01. By definition 3 we have
𝛿(63) = 110, 01, 11111. And finally, 𝛿(1023) = 1110, 010, 111111111.

8

Exercise 3/3
Calculate the variable byte code, 𝛾 code and 𝛿 code of the postings list 𝑃 = [32, 160, 162].
Note that gaps are encoded. Include intermediate results (offsets, lengths).

offset 32 = 0000 and 𝛼(|0000|) = 11110 𝛾(32) = 11110, 0000
offset 128 = 0000000 and 𝛼(|0000000|) = 11111110 𝛾(128) = 11111110, 0000000
offset 2 = 0 and 𝛼(|0|) = 10 𝛾(2) = 10, 0
𝛾(𝑃) = 111100000111111100000000100

offset 32 = 0000 and 𝛾(|0000|) = 110, 00 𝛿(32) = 110, 00, 0000
offset 128 = 0000000 and 𝛾(|0000000|) = 110, 11 𝛿(128) = 110, 11, 0000000
offset 2 = 0 and 𝛾(|0|) = 0 𝛿(2) = 0, , 0
𝛿(𝑃) = 11000000011011000000000

Exercise 3/4
Consider a posting list with the following list of gaps

𝐺 = [4, 6, 1, 2048, 64, 248, 2, 130].

Using variable byte encoding,

∙ What is the largest gap you can encode in 1 byte?

∙ What is the largest gap you can encode in 2 bytes?

∙ How many bytes will the above gaps list require under this encoding?

∙ 64

∙ 2048

∙ 11

Exercise 3/5
From the following sequence of 𝛾-encoded gaps, reconstruct first the gaps list and then the
original postings list. Recall that the 𝛼 code encodes a number 𝑛 with 𝑛 1s followed by one
0.

1110001110101011111101101111011

[1110001, 11010, 101, 11111011011, 11011] [1001, 110, 11, 111011, 111] [9, 6, 3, 59, 7] [9, 15, 18, 77, 84]

9

Exercise 3/6
What does the Zipf’s law say?

Answers can vary. For official definition refer to the Manning book.

Exercise 3/7
What does the Heaps’ law say?

Answers can vary. For official definition refer to the Manning book.

Exercise 3/8
A collection of documents contains 4 words: one, two, three, four of decreasing word
frequencies 𝑓1, 𝑓2, 𝑓3 and 𝑓4. The total number of tokens in the collection is 5000. Assume
that the Zipf’s law holds for this collection perfectly. What are the word frequencies?

We use the Zipf’s law in Definition 4. The least frequent term is four, then three, two and
the most frequent is one. Applying the Zipf’s law we get

𝑐𝑓1 + 𝑐𝑓2 + 𝑐𝑓3 + 𝑐𝑓4 = 5000
𝑐 · 1−1 + 𝑐 · 2−1 + 𝑐 · 3−1 + 𝑐 · 4−1 = 5000

𝑐 + 1
2 𝑐 + 1

3 𝑐 + 1
4 𝑐 = 5000

12𝑐 + 6𝑐 + 4𝑐 + 3𝑐 = 60000
25𝑐 = 60000

𝑐 = 2400

and, plugging in to the formula 𝑐𝑓𝑖 = 𝑐𝑖−1, we obtain the term frequency values:

𝑐𝑓1 = 2400 1
1 = 2400

𝑐𝑓2 = 2400 1
2 = 1200

𝑐𝑓3 = 2400 1
3 = 800

𝑐𝑓4 = 2400 1
4 = 600

Exercise 3/9
How many distinct terms are expected in a document of 1,000,000 tokens? Use the Heaps’
law with parameters 𝑘 = 44 and 𝑏 = 0.5

By Definition 5,
44× 1,000,0000.5 = 44,000.

10

Seminar 4
Definition 6 (Term weight)
Weight of a term 𝑡 in a document 𝑑 is counted as

𝑤𝑡,𝑑 =
{︂

1 + log
(︀
tf𝑡,𝑑

)︀
if 𝑛 > 0

0 otherwise

where tf𝑡,𝑑 is the number of terms 𝑡 in a document 𝑑.

Definition 7 (Inverse document frequency)
Inverse document frequency of a term 𝑡 is defined as

idf𝑡 = log
(︂

𝑁

df𝑡

)︂
where 𝑁 is the number of all documents and df𝑡 (document frequency) is the number of
documents that contain 𝑡.

Definition 8 (tf-idf weighting scheme)
In the tf-idf weighting scheme, a term 𝑡 in a document 𝑑 has weight

tf-idf𝑡,𝑑 = tf𝑡,𝑑 · idf𝑡

Definition 9 (Cosine (Euclidean) normalization)
A vector 𝑣 is cosine-normalized by

𝑣𝑗 = 𝑣𝑗

||𝑣||
= 𝑣𝑗√︁∑︀|𝑣|

𝑘=1 𝑣𝑘
2

where 𝑣𝑗 be the number on the 𝑗-th position in 𝑣.

Exercise 4/1
Consider the frequency table of the words of three documents 𝑑𝑜𝑐1, 𝑑𝑜𝑐2, 𝑑𝑜𝑐3 below.
Calculate the tf-idf weight of the terms car, auto, insurance, best for each document. idf
values of terms are in the table.

𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑑𝑜𝑐3 idf
car 27 4 24 1.65

auto 3 33 0 2.08
insurance 0 33 29 1.62

best 14 0 17 1.5

Table 3: Exercise.

After counting tf-idf weights by Definition 8 individually for each term we get the following
table

11

tf-idf
𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑑𝑜𝑐3

car 44.55 6.6 39.6
auto 6.24 68.64 0

insurance 0 53.46 46.98
best 21 0 25.5

Table 4: Solution.

Exercise 4/2
Count document representations as normalized Euclidean weight vectors for each document
from the previous exercise. Each vector has four components, one for each term.

Normalized Euclidean weight vectors are counted by Definition 9. Denominators 𝑚𝑑𝑜𝑐𝑛
for

the individual documents are

𝑚𝑑𝑜𝑐1 =
√︀

44.552 + 6.242 + 212 = 49.6451

𝑚𝑑𝑜𝑐2 =
√︀

6.62 + 68.642 + 53.462 = 87.2524

𝑚𝑑𝑜𝑐3 =
√︀

39.62 + 46.982 + 25.52 = 66.5247

and the document representations are

𝑑1 =
(︂

44.55
49.6451 ; 6.24

49.6451 ; 0
49.6451 ; 21

49.6451

)︂
= (0.8974; 0.1257; 0; 0.423)

𝑑2 =
(︂

6.6
87.2524 ; 68.64

87.2524 ; 53.46
87.2524 ; 0

87.2524

)︂
= (0.0756; 0.7876; 0.6127; 0)

𝑑3 =
(︂

39.6
66.5247 ; 0

66.5247 ; 46.98
66.5247 ; 25.5

66.5247

)︂
= (0.5953; 0; 0.7062; 0.3833)

Exercise 4/3
Based on the weights from the last exercise, compute the relevance scores of the three
documents for the query car insurance. Use each of the two weighting schemes:

a) Term weight is 1 if the query contains the word and 0 otherwise.

b) Euclidean normalized tf-idf.

Please note that a document and a representation of this document are different things.
Document is always fixed but the representations may vary under different settings and
conditions. In this exercise we fix document representations from the last exercises and will
count relevance scores for query and documents under two different representations of the
query. It might be helpful to view on a query as on another document, as it is a sequence of
words.

12

We count the relevance scores for a) as the scalar products of the representation of the query
𝑞 = (1, 0, 1, 0) with representations of the documents 𝑑𝑛 from the last exercise:

𝑞 · 𝑑1 = 1 · 0.8974 + 0 · 0.1257 + 1 · 0 + 0 · 0.423 = 0.8974

𝑞 · 𝑑2 = 1 · 0.0756 + 0 · 0.7876 + 1 · 0.6127 + 0 · 0 = 0.6883
𝑞 · 𝑑3 = 1 · 0.5953 + 0 · 0 + 1 · 0.7062 + 0 · 0.3833 = 1.3015

For b) we first need the normalized tf-idf vector 𝑞, which is obtained by dividing each
component of the query by the length of idf vector

√
1.652 + 02 + 1.622 + 02 = 2.3123

tf idf tf-idf 𝑞
car 1 1.65 1.65 0.7136

auto 0 2.08 0 0
insurance 1 1.62 1.62 0.7006

best 0 1.5 0 0

Table 5: Process of finding the Euclidean normalized tf-idf.

Now we multiply 𝑞 with the document vectors and we obtain the relevance scores:

𝑞 · 𝑑1 = 0.7136 · 0.8974 + 0 · 0.1257 + 0.7006 · 0 + 0 · 0.423 = 0.6404

𝑞 · 𝑑2 = 0.7136 · 0.0756 + 0 · 0.7876 + 0.7006 · 0.6127 + 0 · 0 = 0.4832
𝑞 · 𝑑3 = 0.7136 · 0.5953 + 0 · 0 + 0.7006 · 0.7062 + 0 · 0.3833 = 0.9196

Exercise 4/4
Consider a collection of documents and the terms dog, cat and food that occur in 10−3𝑥,
10−2𝑥 and 10−𝑥 of the documents, respectively. Now document doc1 contains the words 2𝑦,
𝑦 and 3𝑦 times and doc2 2𝑧, 3𝑧 and 𝑧 times. Order these two documents based on vector
space similarity with the query dog food.

Intuitively, 𝑑𝑜𝑐1 is more relevant than 𝑑𝑜𝑐2 because 𝑑𝑜𝑐2 is relatively too much about
cats and too little about food, which is a satisfactory answer. But precisely:

𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑞

dog 2𝑦 · 3𝑥 2𝑧 · 3𝑥 3𝑥

cat 𝑦 · 2𝑥 3𝑧 · 2𝑥 0
food 3𝑦 · 𝑥 𝑧 · 𝑥 𝑥

Table 6: tf-idf.

𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑞

dog 6𝑥𝑦/7𝑥𝑦 = 6/7 6𝑥𝑧/8.5𝑥𝑧 = 12/17 3𝑥/3.2𝑥 = 15/16

cat 2𝑥𝑦/7𝑥𝑦 = 2/7 6𝑥𝑧/8.5𝑥𝑧 = 12/17 0
food 3𝑥𝑦/7𝑥𝑦 = 3/7 𝑥𝑧/8.5𝑥𝑧 = 1/17 𝑥/3.2𝑥 = 5/16

Table 7: Representations.

13

𝑞 · 𝑑𝑜𝑐1 𝑞 · 𝑑𝑜𝑐2

dog 6/7 · 15/16 ∼ 0.8 12/17 · 15/16 ∼ 0.66
cat 0 0

food 3/7 · 5/16 ∼ 0.13 1/17 · 5/16 ∼ 0.02

Table 8: Relevance.

Here 0.8 + 0.13 > 0.66 + 0.02 and therefore 𝑑𝑜𝑐1 is more relevant than 𝑑𝑜𝑐2.

Exercise 4/5
Calculate the vector-space similarity between the query digital cameras and a document
containing digital cameras and video cameras by filling in the blank columns in the table
below. Assume 𝑁 = 10000000, logarithmic term weighting (columns 𝑤) for both query and
documents, idf weighting only for the query and cosine normalization only for the document.
and is a STOP word.

Query Document relevance
df tf w idf 𝑞 tf w 𝑑 𝑞 · 𝑑

digital 10 000
video 100 000

cameras 50 000

Table 9: Exercise.

The tf value is filled according to the occurrences of the terms in both query and document.

tf𝑞 = 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = (1, 0, 1)
tf𝑑 = 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 𝑎𝑛𝑑 𝑣𝑖𝑑𝑒𝑜 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = (1, 1, 2)

Logarithmic weighting uses the Definition 6. For the query the values are

𝑤𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 1 + log (1) = 1 + 0 = 1
𝑤𝑣𝑖𝑑𝑒𝑜 = 0

𝑤𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = 1 + log (1) = 1 + 0 = 1

and for the document

𝑤𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 1 + log (1) = 1 + 0 = 1
𝑤𝑣𝑖𝑑𝑒𝑜 = 1 + log (1) = 1 + 0 = 1

𝑤𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = 1 + log (2) = 1 + 0.301 = 1.301

Now we need to count the idf weights for the query. These are counted by Definition 7.

𝑖𝑑𝑓𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = log
(︁

107

104

)︁
= log

(︀
103)︀ = 3

𝑖𝑑𝑓𝑣𝑖𝑑𝑒𝑜 = log
(︁

107

105

)︁
= log

(︀
102)︀ = 2

𝑖𝑑𝑓𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = log
(︁

107

5×104

)︁
= log (200) = 2.301

14

and 𝑞 = 𝑤 · 𝑖𝑑𝑓 . Cosine normalization for the document is counted similarly as in the last
exercises by Definition 9 using 𝑤.

𝑑𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 1√
12+12+1.3012 = 0.5204

𝑑𝑣𝑖𝑑𝑒𝑜 = 1√
12+12+1.3012 = 0.5204

𝑑𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = 1.301√
12+12+1.3012 = 0.677

The score is the scalar multiple of 𝑞 and 𝑑. The final table is

Query Document relevance
df tf w idf q tf w d 𝑞 · 𝑑

digital 10 000 1 1 3 3 1 1 0.5204 1.5612
video 100 000 0 0 2 0 1 1 0.5204 0

cameras 50 000 1 1 2.301 2.301 2 1.301 0.677 1.5578

Table 10: Solution.

and the similarity score is

𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) =
3∑︁

𝑖=1
(𝑑𝑖 · 𝑞𝑖) = 3.119.

Exercise 4/6
Show that for the query 𝑞1 = affection the documents in the table below are sorted by
relevance in the opposite order as for the query 𝑞2 = jealous gossip. Query is tf weight
normalized.

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0 0.254

Table 11: Exercise.

We add queries to the original table:

SaS PaP WH 𝑞1 𝑞2
affection 0.996 0.993 0.847 1 0
jealous 0.087 0.120 0.466 0 1
gossip 0.017 0 0.254 0 1

Table 12: Exercise with queries.

Now we normalize the vectors 𝑞𝑖 by Definition 9 and get

15

SaS PaP WH 𝑞1 𝑞2 𝑞1𝑛 𝑞2𝑛

affection 0.996 0.993 0.847 1 0 1 0
jealous 0.087 0.120 0.466 0 1 0 0.7071
gossip 0.017 0 0.254 0 1 0 0.7071

Table 13: Exercise with queries after normalization.

In the last step we count the similarity score between the queries and documents by
𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) =

∑︀|𝑑|
𝑖=1(𝑑𝑖 · 𝑞𝑖)

𝑠𝑐𝑜𝑟𝑒(𝑆𝑎𝑆, 𝑞1) = 0.9961 · 1 + 0.087 · 0 + 0.017 · 0 = 0.9961
𝑠𝑐𝑜𝑟𝑒(𝑃𝑎𝑃, 𝑞1) = 0.993 · 1 + 0.120 · 0 + 0 · 0 = 0.993
𝑠𝑐𝑜𝑟𝑒(𝑊𝐻, 𝑞1) = 0.847 · 1 + 0.466 · 0 + 0.254 · 0 = 0.847

𝑠𝑐𝑜𝑟𝑒(𝑆𝑎𝑆, 𝑞2) = 0.9961 · 0 + 0.087 · 0.7071 + 0.017 · 0.7071 = 0.0735
𝑠𝑐𝑜𝑟𝑒(𝑃𝑎𝑃, 𝑞2) = 0.993 · 0 + 0.120 · 0.7071 + 0 · 0.7071 = 0.0849
𝑠𝑐𝑜𝑟𝑒(𝑊𝐻, 𝑞2) = 0.847 · 0 + 0.466 · 0.7071 + 0.254 · 0.7071 = 0.5091

The ordering for 𝑞1 is SaS > PaP > WH and for 𝑞2 is WH > PaP > SaS, and we see that
they are opposite.

Seminar 6
Definition 10 (Recall)
Recall describes how many of the relevant documents are retrieved.

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑅 = #𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

#𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

Definition 11 (Precision)
Precision describes how many of the retrieved documents are relevant.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃 = #𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

#𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

Definition 12 (𝐹 -measure)
A balanced 𝐹 -measure (𝐹1-measure) defines a recall-precision relationship represented by
their weighted harmonic mean:

𝐹 = 2 ·𝑅 · 𝑃
𝑅 + 𝑃

Definition 13 (Mean Average Precision)
MAP expresses the precision in each point a new relevant document is included in the result.
Is counted as

𝑀𝐴𝑃 (𝑄) = 1
|𝑄|
·

⎛⎝∑︁
𝑞∈𝑄

1
𝑟𝑒𝑙𝑞

·

⎛⎝𝑟𝑒𝑙𝑞∑︁
𝑖=1

𝑝𝑟𝑒𝑐𝑖

⎞⎠⎞⎠
where 𝑟𝑒𝑙𝑞 is the number of relevant documents for query 𝑞 and 𝑝𝑟𝑒𝑐𝑖 is the precision at the
𝑖-th document.

16

Definition 14 (𝜅 statistic)
Let 𝑁 be the total number of documents, 𝐽 is a set of judges and 𝑃 (𝐴) = #𝑎𝑔𝑟𝑒𝑒

𝑁 the number
of documents on which the judges agree. Let also define 𝑅𝑗 and 𝑁𝑅𝑗 be the number of
relevant and non-relevant documents, respectively, according to the judge 𝑗 ∈ 𝐽 and

𝑃 (𝑅) =
∑︀

𝑗∈𝐽 𝑅𝑗

|𝐽 | ·𝑁
and 𝑃 (𝑁𝑅) =

∑︀
𝑗∈𝐽 𝑁𝑅𝑗

|𝐽 | ·𝑁

as the number of relevant and non-relevant documents, respectively. Let finally define

𝑃 (𝐸) = 𝑃 (𝑅)2 + 𝑃 (𝑁𝑅)2

as the approximate number of disagreements between the judges. Then the 𝜅 statistic is
defined as the measure of agreement between the judges

𝜅 = 𝑃 (𝐴)− 𝑃 (𝐸)
1− 𝑃 (𝐸) .

Definition 15 (Rocchio relevance feedback)
Rocchio relevance feedback has the form

𝑞𝑚 = 𝛼𝑞0 + 𝛽
1
|𝐷𝑟|

∑︁
𝑑𝑟∈𝐷𝑟

𝑑𝑟 − 𝛾
1
|𝐷𝑛𝑟|

∑︁
⃗𝑑𝑛𝑟∈𝐷𝑛𝑟

𝑑𝑛𝑟

where 𝑞0 is the original query vector, 𝐷𝑟 is the set of relevant documents, 𝐷𝑛𝑟 is the set of
non-relevant documents and the values 𝛼, 𝛽, 𝛾 depend on the system setting.

Exercise 6/1
The following ordered list of 20 letters 𝑅 and 𝑁 represents relevant (𝑅) and non-relevant
(𝑁) retrieved documents as an answer for a query on a collection of 10 000 documents.
The leftmost document is expected to be the most relevant. The list contains 6 relevant
documents. Assume that the collection contains 8 documents relevant to the query.

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑁𝑅𝑁𝑁𝑁𝑅𝑁𝑁𝑁𝑁𝑅

a) What is the precision on the first 20 results?

b) What is the 𝐹 -measure on the first 20 results?

c) What is the non-interpolated precision of the system at 25% recall? (R=25%)

d) What is the interpolated precision of the system at 33% recall? (R>33%)

e) Assume that these 20 documents is the complete list of retrieved documents. What is the
MAP of the system?

Now assume that the system returned all 10,000 documents in an ordered list and above is
the top 20.

f) What is the highest possible MAP the system can achieve?

g) What is the lowest possible MAP the system can achieve?

17

Applying the Definition 11 do calculate (a) we get 𝑃 = 6
20 = 3

10 . For (b) it is necessary to
count the recall with Definition 10 as 𝑅 = 6

8 = 3
4 . Using Definition 12 with 𝛼 = 0.5 we count

(𝛽2 + 1)𝑃𝑅

𝛽2𝑃 + 𝑅
=

(12 + 1) · 3
10 ·

3
4

3
10 + 3

4
=

9
20
21
20

= 3
7 .

To count the non-interpolated precision of the system at 25% recall for (c) we need the
precisions for the documents of recall equal to 25%:

1. 𝑃 = 1
1 𝑅 = 1

8 = 12.5%

2. 𝑃 = 2
2 𝑅 = 2

8 = 25%

3. 𝑃 = 2
3 𝑅 = 2

8 = 25%

· · ·
8. 𝑃 = 2

8 𝑅 = 2
8 = 25%

9. 𝑃 = 3
9 𝑅 = 3

8 = 37.5%

We see that the first document has 𝑅 = 12.5% but this value is less than 25%. Documents 2
to 8 have the desired recall of 25%. Document 9 has already a higher value so we do not
include it in the result. Non-interpolated precision is then the set of precisions of these 7
documents

𝑃 =
{︂

2
2 ,

2
3 ,

2
4 ,

2
5 ,

2
6 ,

2
7 ,

2
8

}︂
.

For the interpolated precision (d) we are looking for the highest precision for the relevant
documents of recall higher than 33%. Recall changes if and only if the result contains a
relevant document. Therefore, the values are calculated for the documents 11, 15 and 20.

11. 𝑃 = 4
11 𝑅 = 4

8 = 50%

15. 𝑃 = 5
15 𝑅 = 5

8 = 62.5%

20. 𝑃 = 6
20 𝑅 = 6

8 = 75%

The requested recall value is exceeded by retrieving the document 9 (37.5 %). Now we only
have to find 𝑚𝑎𝑥{𝑃9, 𝑃11, 𝑃15, 𝑃20} = 𝑚𝑎𝑥{ 3

9 , 4
11 , 5

15 , 6
20} = 4

11 = 0.36.
To estimate the MAP of the system (e) we use the Definition 13. Since we only have one

query 𝑁 = |𝑄| = 1 and the first 20 documents contain 𝑟𝑒𝑙𝑞 = 6 relevant documents

𝑀𝐴𝑃 (𝑄) = 1
1

⎛⎝ 1∑︁
𝑗=1

1
8

(︃ 6∑︁
𝑖=1

𝑃 (𝑑𝑜𝑐𝑖)
)︃⎞⎠ = 1

1 ·
1
8

⎛⎜⎜⎝ 1
1⏟ ⏞

𝑃 (1.)

+ 2
2⏟ ⏞

𝑃 (2.)

+ 3
9⏟ ⏞

𝑃 (9.)

+ 4
11⏟ ⏞

𝑃 (11.)

+ 5
15⏟ ⏞

𝑃 (15.)

+ 6
20⏟ ⏞

𝑃 (20.)

⎞⎟⎟⎠
= 1

1 ·
1
8 ·

1099
330 = 1099

2640 = 0.416287

18

From Definition 11 and Definition13 follows that if the two remaining relevant documents
were on positions 21 and 22 then MAP with 𝑟𝑒𝑙𝑞 = 8 relevant documents is the highest
possible (f)

𝑀𝐴𝑃 (𝑄) = 1
8

(︂
1
1 + 2

2 + 3
9 + 4

11 + 5
15 + 6

20 + 7
21 + 8

22

)︂
= 0.503409

and, on the other hand, if they were on the last places the MAP would be minimal (g)

𝑀𝐴𝑃 (𝑄) = 1
8

(︂
1
1 + 2

2 + 3
9 + 4

11 + 5
15 + 6

20 + 7
9999 + 8

10000

)︂
= 0.41647538.

Exercise 6/2
The following ordered list of 5 letters 𝑅 and 𝑁 represent relevant (𝑅) and non-relevant (𝑁)
retrieved documents as an answer for a query on a collection of 100 documents. The leftmost
document is expected to be the most relevant. The list contains 3 relevant documents.
Assume that the collection contains 5 documents relevant to the query.

𝑅𝑁𝑁𝑅𝑅

∙ What is the F-measure on the first 5 results?

Assume that these 5 documents is the complete list of retrieved documents.

∙ What is the MAP of the system?

Now assume that the system returned all 100 documents in an ordered list and above is the
top 5.

∙ What are the highest and lowest possible MAPs the system can achieve?

∙ 𝑅 = 3
5 , 𝑃 = 3

5 , then 𝐹 = 3
5 .

∙ 1
5
(︀ 1

1 + 2
4 + 3

5
)︀
.

∙ highest 1
5
(︀ 1

1 + 2
4 + 3

5 + 4
6 + 5

7
)︀

and lowest 1
5
(︀ 1

1 + 2
4 + 3

5 + 4
99 + 5

100
)︀
.

Exercise 6/3
The following two sequences of letters 𝑅 and 𝑁 represent the complete lists of relevant (𝑅)
and non-relevant (𝑁) retrieved documents as answers for two queries on a collection of 100
documents. The leftmost document is expected to be the most relevant. Assume that the
collection contains 10 documents relevant to the first query and 20 documents relevant to
the second query. Find the F-measure and the MAP of this system.

𝑁𝑅𝑁𝑁𝑁𝑅𝑁 and 𝑁𝑁𝑅𝑅𝑅

19

∙ 𝑅1 = 2
10 , 𝑃1 = 2

7 , then 𝐹1 =
4

35
17
35

= 4
17 .

∙ 𝑅2 = 3
20 , 𝑃2 = 3

5 , then 𝐹2 =
9

50
3
4

= 6
25 .

∙ 𝐹 = 𝐹1+𝐹2
2 = 101

425 .

∙ MAP1 = 1
10
(︀ 1

2 + 2
6
)︀

= 5
2*10*6 = 1

12 .

∙ MAP2 = 1
20
(︀ 1

3 + 2
4 + 3

5
)︀

= 20+30+12
2*20*60 = 31

600 .

∙ MAP = MAP1+MAP2
2 = 81

1200 .

Exercise 6/4
Below is a table showing how two judges judged the relevance (0 = non-relevant, 1 = relevant)
of the set of 12 documents with respect to a query. Assume that you developed an IR system,
that for this query returns the documents {4, 5, 6, 7, 8}.

Doc ID Judge 1 Judge 2
1 0 0
2 0 0
3 1 1
4 1 1
5 1 0
6 1 0
7 1 0
8 1 0
9 0 1
10 0 1
11 0 1
12 0 1

Table 14: Judges judging the relevance of documents.

a) Calculate the 𝜅 statistic.

b) Calculate the recall, precision and 𝐹 -measure of your system in which a document is
considered relevant if the judges agree.

c) Calculate the recall, precision and 𝐹 -measure of your system in which a document is
considered relevant if at least one of the judges thinks so.

For (a) it is necessary to use the Definition 14. First we count 𝑃 (𝐴) as the number of
documents on which the judges agree. Since these are the documents {1, 2, 3, 4} and the
total number of them is 𝑁 = 12, then 𝑃 (𝐴) = |{1,2,3,4}|

12 = 4
12 = 1

3 . Now we need the
counts of disagreements between the judges. Judge 1 considers the documents 𝑁𝑅1 =

20

{1, 2, 9, 10, 11, 12} and judge 2 𝑁𝑅2 = {1, 2, 5, 6, 7, 8} as non-relevant. Plugging in to the
formula for 𝑃 (𝑁𝑅) we get 𝑃 (𝑁𝑅) = |𝑁𝑅1|+|𝑁𝑅2|

2·12 = 2·6
24 = 1

2 . We repeat this for 𝑃 (𝑅). Since
the number of relevant is equal to non-relevant, then 𝑃 (𝑅) = 𝑃 (𝑁𝑅) = 1

2 . We finally can
count 𝑃 (𝐸) as

𝑃 (𝐸) = 𝑃 (𝑁𝑅)2 + 𝑃 (𝑅)2 =
(︂

1
2

)︂2
+
(︂

1
2

)︂2
= 1

4 + 1
4 = 1

2

and
𝜅 = 𝑃 (𝐴)− 𝑃 (𝐸)

1− 𝑃 (𝐸) =
1
3 −

1
2

1− 1
2

= −1
3 .

If 𝜅 < 0 then the agreement between the judges is more than random.
For (b) it is necessary to calculate recall and precision. Our system retrieves the documents

{4, 5, 6, 7, 8} as relevant whereas the judges only agree on {3, 4}. The intersection is {4}. As
to the Definition 11 we obtain

𝑃 = |{4}|
|{4, 5, 6, 7, 8}| = 1

5

and, as the number of relevant documents is |{3, 4}| = 2, the recall is 𝑅 = 1
2 by Definition 10.

Then, by Definition 12 the 𝐹 -measure is equal to

𝐹 = (𝛽2 + 1)𝑃𝑅

𝛽2𝑃 + 𝑅
=

(1 + 1) 1
5

1
2

1
5 + 1

2
= 2

7 .

We similarly count these for (c) which says that a document is relevant if at least one
judge considers it relevant. This makes the documents {3, 4, 5, 6, 7, 8, 9, 10, 11, 12} relevant.
Their intersection with our result {4, 5, 6, 7, 8} is the set {4, 5, 6, 7, 8} of size 5. Recall is
𝑅 = |{4,5,6,7,8}|

|{3,4,5,6,7,8,9,10,11,12}| = 5
10 = 1

2 , precision is 𝑃 = 5
5 = 1 and 𝐹 -measure is

𝐹 =
(1 + 1) 1

2
1 + 1

2
= 2

3 .

Exercise 6/5
What is the main purpose of Rocchio relevance feedback?

Answers can vary. For official definition refer to the Manning book.

Exercise 6/6
A user’s primary query is cheap CDs cheap DVDs extremely cheap CDs. The user has a look
on two documents: doc1 a doc2, marking doc1 CDs cheap software cheap CDs as relevant
and doc2 cheap thrills DVDs as non-relevant. Assume that we use a simple tf scheme without
vector length normalization. What would be the restructured query vector after considering
the Rocchio relevance feedback with values 𝛼 = 1, 𝛽 = 0.75 and 𝛾 = 0.25?

21

We rewrite the exercise to the table for an easier processing.

relevant non-relevant
terms doc1 doc2 query
Cds 2 0 2
cheap 2 1 3
software 1 0 0
thrills 0 1 0
DVDs 0 1 1
extremely 0 0 1

Table 15:

Now we mark the input if the algorithm by Definition 15.

𝑑𝑟 ∈ 𝐷𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎝
2
2
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑑𝑛𝑟 ∈ 𝐷𝑛𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎝
2
3
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎠
By filling the values to the formula for 𝑞𝑚 we get

𝑞𝑚 = 1 ·

⎛⎜⎜⎜⎜⎜⎜⎝
2
3
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎠+ 0.75 · 1
1

⎛⎜⎜⎜⎜⎜⎜⎝
2
2
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠− 0.25 · 1
1

⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
2
3
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
1.5
1.5
0.75

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎝

0
0.25

0
0.25
0.25

0

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
3.5

4.25
0.75
−0.25

0.75
1

⎞⎟⎟⎟⎟⎟⎟⎠
Seminar 7
Definition 16 (Naive Bayes Classifier)
Naive Bayes (NB) Classifier assumes that the effect of the value of a predictor 𝑥 on a given
class 𝑐 is class conditional independent. Bayes theorem provides a way of calculating the

22

posterior probability 𝑃 (𝑐|𝑥) from class prior probability 𝑃 (𝑐), predictor prior probability 𝑃 (𝑥)
and probability of the predictor given the class 𝑃 (𝑥|𝑐)

𝑃 (𝑐|𝑥) = 𝑃 (𝑥|𝑐)𝑃 (𝑐)
𝑃 (𝑥)

and for a vector of predictors 𝑋 = (𝑥1, . . . , 𝑥𝑛)

𝑃 (𝑐|𝑋) = 𝑃 (𝑥1|𝑐) . . . 𝑃 (𝑥𝑛|𝑐)𝑃 (𝑐).

The class with the highest posterior probability is the outcome of prediction.

Exercise 7/1
What is naive about Naive Bayes classifier? Briefly outline its major idea.

Answers can vary. For official definition refer to the Manning book.

Exercise 7/2
Considering the table of observations, use the Naive Bayes classifier to recommend whether
to Play Golf given a day with Outlook = Rainy, Temperature = Mild, Humidity = Normal
and Windy = True. Do not deal with the zero-frequency problem.

Outlook Temperature Humidity Windy Play Golf
Rainy Hot High False No
Rainy Hot High True No

Overcast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True No

Overcast Cool Normal True Yes
Rainy Mild High False No
Rainy Cool Normal False Yes
Sunny Mild Normal False Yes
Rainy Mild Normal True Yes

Overcast Mild High True Yes
Overcast Hot Normal False Yes
Sunny Mild High True No

Table 16: Exercise.

First build the likelihood tables for each predictor

23

Play Golf
Yes No

Outlook
Sunny 3/9 2/5 5/14
Overcast 4/9 0/5 4/14
Rainy 2/9 3/5 5/14

9/14 5/14

Play Golf
Yes No

Temperature
Hot 2/9 2/5 4/14
Mild 4/9 2/5 6/14
Cool 3/9 1/5 4/14

9/14 5/14

Play Golf
Yes No

Humidity High 3/9 4/5 7/14
Normal 6/9 1/5 7/14

9/14 5/14

Play Golf
Yes No

Windy True 3/9 2/5 5/14
False 6/9 3/5 9/14

9/14 5/14

We see that probability of Sunny given Yes is 3/9 = 0.33, probability of Sunny is 5/14 = 0.36
and probability of Yes is 9/14 = 0.64. Then we count the likelihoods of Yes and No

𝑃 (𝑌 𝑒𝑠|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) =
= 𝑃 (𝑅𝑎𝑖𝑛𝑦|𝑌 𝑒𝑠) · 𝑃 (𝑀𝑖𝑙𝑑|𝑌 𝑒𝑠) · 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙|𝑌 𝑒𝑠) · 𝑃 (𝑇𝑟𝑢𝑒|𝑌 𝑒𝑠) · 𝑃 (𝑌 𝑒𝑠)

= 2
9 ·

4
9 ·

6
9 ·

3
9 ·

9
14 = 0.014109347

𝑃 (𝑁𝑜|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) =
= 𝑃 (𝑅𝑎𝑖𝑛𝑦|𝑁𝑜) · 𝑃 (𝑀𝑖𝑙𝑑|𝑁𝑜) · 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙|𝑁𝑜) · (𝑇𝑟𝑢𝑒|𝑁𝑜) · 𝑃 (𝑁𝑜)

= 3
5 ·

2
5 ·

1
5 ·

3
5 ·

5
14 = 0.010285714

(1)

and suggest Yes. We can normalize the likelihoods to obtain the % confidence:

𝑃 (𝑌 𝑒𝑠|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) = 0.014109347
0.014109347 + 0.010285714 = 57.84%

𝑃 (𝑁𝑜|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) = 0.010285714
0.014109347 + 0.010285714 = 42.16%

Definition 17 (Support Vector Machines Classifier (two-class, linearly separable))
Support Vector Machines (SVM) finds the hyperplane that bisects and is perpendicular to
the connecting line of the closest points from the two classes. The separating (decision)
hyperplane is defined in terms of a normal (weight) vector w and a scalar intercept term 𝑏 as

𝑓(𝑥) = w · x + 𝑏

where · is the dot product of vectors. Finally, the SVM classifier becomes

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛(𝑓(𝑥)).

Exercise 7/3
Draw a sketch explaining the concept of SVM classifier. Include the equation of the separation
hyperplane. What are limitations of SVM?

Answers can vary. For official definition refer to the Manning book.

24

Exercise 7/4
Build the SVM classifier for the training set {([1, 1],−1), ([2, 0],−1), ([2, 3], +1)}.

We first take the closest two points from the respective classes: [1, 1] and [2, 3]. We have
w = 𝑎 · ([1, 1]− [2, 3]) = [𝑎, 2𝑎]. Now we calculate 𝑎 and 𝑏

𝑎 + 2𝑎 + 𝑏 = −1

2𝑎 + 6𝑎 + 𝑏 = 1

for the points [1, 1] and [2, 3], respectively. The solution is

𝑎 = 2
5 𝑏 = −11

5

building the weight vector

w =
[︂

2
5 ,

4
5

]︂
and the final classifier becomes

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛

(︂
2
5𝑥1 + 4

5𝑥2 −
11
5

)︂
.

Exercise 7/5
Explain the concept of classification based on neural networks. Draw a sketch and comment
on all components.

Answers can vary. For official definition refer to the Manning book.

Exercise 7/6
What is the difference between supervised and unsupervised learning? Give examples.

Answers can vary. For official definition refer to the Manning book.

25

Seminar 9

Algorithm 1 K-means({�⃗�1, . . . , �⃗�𝑁}, 𝐾, stopping criterion)
1: (�⃗�1, . . . , �⃗�𝐾)← SelectRandomSeeds({�⃗�1, . . . , �⃗�𝑁}, 𝐾)
2: for 𝑘 ← 1 to 𝐾 do
3: �⃗�𝑘 ← �⃗�𝑘

4: end for
5: while stopping criterion has not been met do
6: for 𝑘 ← 1 to 𝐾 do
7: 𝜔𝑘 ← {}
8: end for
9: for 𝑛← 1 to 𝑁 do

10: 𝑗 ← argmin𝑗′ |�⃗�𝑗′ − �⃗�𝑛|
11: 𝜔𝑗 ← 𝜔𝑗 ∪ {�⃗�𝑛} ◁ reassigning vectors
12: end for
13: for 𝑘 ← 1 to 𝐾 do
14: �⃗�𝑘 ← 1

|𝜔𝑘|
∑︀

�⃗�∈𝜔𝑘
�⃗� ◁ recomputing centroids

15: end for
16: end while
17: return {�⃗�1, . . . , �⃗�𝐾}

Exercise 9/1
Use the 𝐾-means algorithm with Euclidean distance to cluster the following 𝑁 = 8 examples
into 𝐾 = 3 clusters: 𝐴1 = (2, 10), 𝐴2 = (2, 5), 𝐴3 = (8, 4), 𝐴4 = (5, 8), 𝐴5 = (7, 5),
𝐴6 = (6, 4), 𝐴7 = (1, 2), 𝐴8 = (4, 9). Suppose that the initial seeds (centers of each cluster)
are 𝐴1, 𝐴4 and 𝐴7. Run the 𝐾-means algorithm for 3 epochs. After each epoch, draw a
10× 10 space with all the 8 points and show the clusters with the new centroids.

𝑑(𝐴, 𝐵) denotes the Euclidean distance between 𝐴 = (𝑎1, 𝑎2) and 𝐵 = (𝑏1, 𝑏2). It is calcu-
lated as 𝑑(𝐴, 𝐵) =

√︀
(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2.

Take seeds �⃗�1 = 𝐴1 = (2, 10), �⃗�2 = 𝐴4 = (5, 8), �⃗�3 = 𝐴7 = (1, 2).

By 1 we count the alignment for epoch 1: 𝐴1 ∈ 𝜔1, 𝐴2 ∈ 𝜔3, 𝐴3 ∈ 𝜔2, 𝐴4 ∈ 𝜔2, 𝐴5 ∈ 𝜔2,
𝐴6 ∈ 𝜔2, 𝐴7 ∈ 𝜔3, 𝐴8 ∈ 𝜔2; and we get the clusters: 𝜔1 = {𝐴1}, 𝜔2 = {𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴8},
𝜔3 = {𝐴2, 𝐴7}.

Centroids of the clusters: �⃗�1 = (2, 10), �⃗�2 = ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6, 6),
�⃗�3 = ((2 + 1)/2, (5 + 2)/2) = (1.5, 3.5).

After epoch 2 the clusters are 𝜔1 = {𝐴1, 𝐴8}, 𝜔2 = {𝐴3, 𝐴4, 𝐴5, 𝐴6}, 𝜔3 = {𝐴2, 𝐴7} with
centroids �⃗�1 = (3, 9.5), �⃗�2 = (6.5, 5.25) and �⃗�3 = (1.5, 3.5). And finally after epoch
3, the clusters are 𝜔1 = {𝐴1, 𝐴4, 𝐴8}, 𝜔2 = {𝐴3, 𝐴5, 𝐴6}, 𝜔3 = {𝐴2, 𝐴7} with centroids
�⃗�1 = (3.66, 9), �⃗�2 = (7, 4.33) and �⃗�3 = (1.5, 3.5).

26

d(A5, seed2)= 13 = 3.60 smaller
d(A5, seed3)= 45 = 6.70

 A5 ∈ cluster2

d(A6, seed2)= 17 = 4.12 smaller
d(A6, seed3)= 29 = 5.38

 A6 ∈ cluster2

A7:
d(A7, seed1)= 65 >0
d(A7, seed2)= 52 >0
d(A7, seed3)=0 as A7 is seed3

 A7 ∈ cluster3

A8:
d(A8, seed1)= 5
d(A8, seed2)= 2 smaller
d(A8, seed3)= 58

 A8 ∈ cluster2
end of epoch1

new clusters: 1: {A1}, 2: {A3, A4, A5, A6, A8}, 3: {A2, A7}

b) centers of the new clusters:
C1= (2, 10), C2= ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6, 6), C3= ((2+1)/2, (5+2)/2) = (1.5, 3.5)

c)

0
0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6
7

8

9
10

A
1

A2
A3

A
4

A5

A6

A7

A8

0
0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6
7

8

9
10

A1

A
2 A3

A4

A5

A6

A7

A8

0
0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6
7

8

9
10

A1

A
2 A

3

A4

A5

A6

A7

A8

0
0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6
7

8

9
10

A1

A2
A3

A4

A5

A6

A7

A8
x

x

x

d)
We would need two more epochs. After the 2nd epoch the results would be:
1: {A1, A8}, 2: {A3, A4, A5, A6}, 3: {A2, A7}
with centers C1=(3, 9.5), C2=(6.5, 5.25) and C3=(1.5, 3.5).
After the 3rd epoch, the results would be:
1: {A1, A4, A8}, 2: {A3, A5, A6}, 3: {A2, A7}
with centers C1=(3.66, 9), C2=(7, 4.33) and C3=(1.5, 3.5).

Exercise 2. Nearest Neighbor clustering

Use the Nearest Neighbor clustering algorithm and Euclidean distance to cluster the examples from the
previous exercise: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).
Suppose that the threshold t is 4.

Solution:
A1 is placed in a cluster by itself, so we have K1={A1}.

We then look at A2 if it should be added to K1 or be placed in a new cluster.
d(A1,A2)= 25 = 5 > t K2={A2}

A3: we compare the distances from A3 to A1 and A2.
A3 is closer to A2 and d(A3,A2)= 36 > t K3={A3}

A4: We compare the distances from A4 to A1, A2 and A3.
A1 is the closest object and d(A4,A1)= 13 < t K1={A1, A4}

A5: We compare the distances from A5 to A1, A2, A3 and A4.
A3 is the closest object and d(A5,A3)= 2 < t K3={A3, A5}

A6: We compare the distances from A6 to A1, A2, A3, A4 and A5.
A3 is the closest object and d(A6,A3)= 2 < t K3={A3, A5, A6}

A7: We compare the distances from A7 to A1, A2, A3, A4, A5, and A6.
A2 is the closest object and d(A7,A2)= 10 < t K2={A2, A7)

0
0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
A1

A2

A3

A4

A5

A6

A7

A8
x

x

x

0
0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
A1

A2

A3

A4

A5

A6

A7

A8 x

x

x

Figure 1: Visualization of 𝐾-means clustering algorithm.

27

Exercise 9/2
Consider three points: 𝐴1 = [1, 1], 𝐴2 = [3, 1], 𝐴3 = [6, 1]. Give an example of a point
𝐴4 such that the K-means clustering algorithm with seeds {𝐴2, 𝐴4} and the agglomerative
hierarchical clustering algorithm result in different clusterings of {𝐴1, 𝐴2, 𝐴3, 𝐴4} into 2
classes.

For example, if 𝐴4 = [2, 1], then K-means results in {{𝐴1, 𝐴4}, {𝐴2, 𝐴3}} and agglomerative
in {{𝐴1, 𝐴2, 𝐴4}, {𝐴3}}.

Exercise 9/3
What makes a good clustering? Give some clustering evaluation metrics.

Answers can vary. For official definition refer to the Manning book.

Seminar 11
Definition 18 (Markov Transition Matrix)
Given the graph 𝐺 = (𝑉, 𝐸) and teleport probability 𝛼, let 𝑁 = |𝑉 | and 𝐴 be the 𝑁 ×𝑁 link
matrix with elements

∀𝑢, 𝑣 ∈ 𝑉 : 𝐴𝑢𝑣 =
{︃

1 (𝑢, 𝑣) ∈ 𝐸

0 otherwise
The transition probability matrix 𝑃 is then calculated in the following way:

1. If a row of 𝐴 has all 0s, then substitute all of them with 1s.

2. Divide each 1 by the number of 1s in that row.

3. Multiply each entry by 1− 𝛼.

4. Add 𝛼
𝑁 to each entry.

Algorithm 4 (PageRank)
1: function PageRank(𝑃)
2: 𝑖← 0
3: −→𝑥 𝑖 = (1, 0, . . . , 0)
4: −→𝑥 𝑖+1 = (0, 0, . . . , 0)
5: repeat
6: −→𝑥 𝑖+1 = −→𝑥 𝑖 · 𝑃
7: 𝑖 = 𝑖 + 1
8: until 𝑥𝑖 = 𝑥𝑖−1
9: end function

Definition 19 (Hubs and authorities)
Given the link matrix 𝐴, let ℎ(𝑣) denote the hub score and 𝑎(𝑣) the authority score. First,
set the ℎ(𝑣) a 𝑎(𝑣) vectors to 1𝑁 for all vertices 𝑣 ∈ 𝑉 . The scores are calculated as

ℎ(𝑣) = 𝐴 · 𝑎(𝑣)
𝑎(𝑣) = 𝐴𝑇 · ℎ(𝑣)

28

which is equivalent to
ℎ(𝑣) = 𝐴 ·𝐴𝑇 · ℎ(𝑣)
𝑎(𝑣) = 𝐴𝑇 ·𝐴 · 𝑎(𝑣)

Exercise 11/1
Assume the web graph 𝐺 = (𝑉 = {𝑎, 𝑏, 𝑐}, 𝐸 = {(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐), (𝑐, 𝑏)}). Count PageRank,
hub and authority scores for each of the web pages. Rank the pages by the individual scores
and observe the connections. You can assume that in each step of the random walk we
teleport to a random page with probability 0.1 and uniform distribution. Normalize the hub
and authority scores so that the maximum is 1.

By Definition 18, rewrite the graph as a link matrix⎛⎝0 1 1
0 0 1
0 1 0

⎞⎠ .

Trying to apply the step 1 the algorithm, does not contain a row with all 0s, so we proceed
to step 2. First row contains two 1s so we divide both of them by 2. Second and third lines
only contain one 1, so dividing them by 1 makes no change⎛⎝ 0 1 1

0 0 1
0 1 0

⎞⎠ : 2
: 1
: 1

=

⎛⎝ 0 1
2

1
2

0 0 1
0 1 0

⎞⎠ .

Now apply step 3. Since 𝛼 = 0.1, multiply all entries by 0.9⎛⎝ 0 1
2

1
2

0 0 1
0 1 0

⎞⎠ · 0.9 =

⎛⎝ 0 9
20

9
20

0 0 9
10

0 9
10 0

⎞⎠
and by step 4 add 𝛼

𝑁 = 0.1
3 = 1

30⎛⎝ 0 9
20

9
20

0 0 9
10

0 9
10 0

⎞⎠+ 1
30 =

⎛⎝ 1
30

29
60

29
601

30
1

30
14
151

30
14
15

1
30

⎞⎠ = 𝑃.

Using the Algorithm 4 for PageRank, we select −→𝑥 0 = (1, 0, 0) and the transition probability
matrix 𝑃 from the previous calculation.

29

−→𝑥 1 = −→𝑥 0 · 𝑃 (2)

−→𝑥 1 = (1, 0, 0) ·

⎛⎝ 1
30

29
60

29
601

30
1

30
14
151

30
14
15

1
30

⎞⎠ (3)

−→𝑥 1 =
(︂

1
30 ,

29
60 ,

29
60

)︂
(4)

−→𝑥 2 = −→𝑥 1 · 𝑃 (5)

−→𝑥 2 =
(︂

1
30 ,

29
60 ,

29
60

)︂
·

⎛⎝ 1
30

29
60

29
601

30
1

30
14
151

30
14
15

1
30

⎞⎠ (6)

−→𝑥 2 =
(︂

1
30 ,

29
60 ,

29
60

)︂
(7)

Since 𝑥𝑖 = 𝑥𝑖−1, we claim the entries of 𝑥2 as PageRanks of the individual web pages. By
Definition 19, we set the hub score ℎ(𝑣) and the authority score 𝑎(𝑣) to 1s

𝑎(𝑣) =

⎛⎝ 1
1
1

⎞⎠ , ℎ(𝑣) =

⎛⎝ 1
1
1

⎞⎠ .

Substituting into the second equation in the definition, we get the hub score
ℎ(𝑣) = 𝐴 ·𝐴𝑇 · ℎ(𝑣)

ℎ(𝑣) =

⎛⎝ 0 1 1
0 0 1
0 1 0

⎞⎠ ·
⎛⎝ 0 0 0

1 0 1
1 1 0

⎞⎠ ·
⎛⎝ 1

1
1

⎞⎠

ℎ(𝑣) =

⎛⎝ 2 1 1
1 1 0
1 0 1

⎞⎠ ·
⎛⎝ 1

1
1

⎞⎠

ℎ(𝑣) =

⎛⎝ 4
2
2

⎞⎠
and the authority score

𝑎(𝑣) = 𝐴𝑇 ·𝐴 · 𝑎(𝑣)

𝑎(𝑣) =

⎛⎝ 0 0 0
1 0 1
1 1 0

⎞⎠ ·
⎛⎝ 0 1 1

0 0 1
0 1 0

⎞⎠ ·
⎛⎝ 1

1
1

⎞⎠

𝑎(𝑣) =

⎛⎝ 0 0 0
0 2 1
0 1 2

⎞⎠ ·
⎛⎝ 1

1
1

⎞⎠

𝑎(𝑣) =

⎛⎝ 0
3
3

⎞⎠ .

30

Finally, we normalize them to obtain

ℎ(𝑣) =

⎛⎝ 4
2
2

⎞⎠
⎛⎝ 1

0.5
0.5

⎞⎠ and 𝑎(𝑣) =

⎛⎝ 0
3
3

⎞⎠
⎛⎝ 0

1
1

⎞⎠ .

Seminar 12
Exercise 12/1
Pick a topic of your interest and describe it by 5-10 words.
Open Sketch Engine https://ske.fi.muni.cz/. Go to WebBootCaT. Create a corpus
using the description words as seed. Wait until data are downloaded. Search the word corpus
for collocations.

Solutions can vary.
Definition 20 (Index Relations)
Suppose that we could pick a random page from the index of 𝐸1 and test whether it is in 𝐸2’s
index and symmetrically, test whether a random page from 𝐸2 is in 𝐸1. These experiments
give us fractions 𝑥 and 𝑦 such that our estimate is that a fraction 𝑥 of the pages in 𝐸1 are
in 𝐸2, while a fraction 𝑦 of the pages in 𝐸2 are in 𝐸1. Then, letting |𝐸𝑖| denote the size of
the index of search engine 𝐸𝑖, we have

𝑥|𝐸1| ≈ 𝑦|𝐸2|,

from which we have the form we will use

|𝐸1|
|𝐸2|

≈ 𝑦

𝑥
.

Exercise 12/2
Two web search engines 𝐴 and 𝐵 each generate a large number of pages uniformly at random
from their indexes. 30% of 𝐴’s pages are present in 𝐵’s index, while 50% of 𝐵’s pages are
present in 𝐴’s index. What is the number of pages in 𝐴’s index relative to 𝐵’s?

Substituting to the Definition 20 we get the fractions

∙ 3
10 of 𝐴 is in 𝐵

∙ 5
10 of 𝐵 is in 𝐴

and we get the equation

0.3|𝐴| ≈ 0.5|𝐵|
|𝐴|
|𝐵|
≈ 0.5

0.3
|𝐴|
|𝐵|
≈ 5

3

31

https://ske.fi.muni.cz/

Definition 21 (Path Similarity)
Similarity between a query XPath 𝑐𝑞 and a document path 𝑐𝑑 is calculated as

𝐶𝑅(𝑐𝑞, 𝑐𝑑) =
{︃

1+|𝑐𝑞|
1+|𝑐𝑑| if 𝑐𝑞 can be expanded to 𝑐𝑑 by adding nodes to the path
0 otherwise

Definition 22 (Structural Term)
Structural term is defined as an XML-context/term pair denoted by <c,t> of existing path
to a value and the value itself, where the value itself is also a node in the XML document.
For example, an XML document containing only a root element with test.

<root>
test

</root>

contains two structural terms </root/,test> and </,test>.

Exercise 12/3
Consider the following the XML document:

<Course_Catalog>
<Department Code="CS">

<Title>Computer Science</Title>
<Chair>

<Professor>
<First_Name>Jennifer</First_Name>
<Last_Name>Widom</Last_Name>

</Professor>
</Chair>
<Course Number="CS106A" Enrollment="1070">

<Title>Programming Methodology</Title>
<Description>Introduction to the engineering of computer applications
emphasizing modern software engineering principles.
</Description>
<Instructors>

<Lecturer>
<First_Name>Jerry</First_Name>
<Middle_Initial>R.</Middle_Initial>
<Last_Name>Cain</Last_Name>

</Lecturer>
<Professor>

<First_Name>Eric</First_Name>
<Last_Name>Roberts</Last_Name>

</Professor>
<Professor>

<First_Name>Mehran</First_Name>
<Last_Name>Sahami</Last_Name>

</Professor>

32

</Instructors>
</Course>
<Course Number="CS106B" Enrollment="620">

<Title>Programming Abstractions</Title>
<Description>Abstraction and its relation to programming.</Description>
<Instructors>

<Professor>
<First_Name>Eric</First_Name>
<Last_Name>Roberts</Last_Name>

</Professor>
<Lecturer>

<First_Name>Jerry</First_Name>
<Middle_Initial>R.</Middle_Initial>
<Last_Name>Cain</Last_Name>

</Lecturer>
</Instructors>
<Prerequisites>

<Prereq>CS106A</Prereq>
</Prerequisites>

</Course>
</Department>

</Course_Catalog>

1. Write the following expressions:

a) Return all titles (including both departments and courses).
b) Return all course titles that contain the word programming.
c) Return the surnames of all instructors teaching at least one course that contains

the word software in its description.
d) Return the surnames of all professors teaching at least one course that contains the

word software in its description.

2. Calculate the similarity between the queries and the corresponding document paths.

a) //Instructors//Last_Name#Cain

b) //Course/Instructors/Lecturer/Last_Name#Cain

1. a) //Title

b) //Course//Title[contains(current(),’programming’)]

c) //Course[contains(Description,’software’)]/Instructors//Last_Name

d) //Course[contains(Description,’software’)]/Instructors/Professor/Last_Name

33

2. By Definition 21, a query 𝑐𝑞 corresponds to document 𝑐𝑑 if and only if it can be
expanded. Original query for a) can be expanded to
Course_Catalog/Department/Course/Instructors/Lecturer/Last_Name.
Since 𝑐𝑞 is expandable to 𝑐𝑑, use the equation from the definition. Substituting for the
query length 𝑐𝑞 = 2 and the document length 𝑐𝑑 = 6 to the formula we get

𝐶𝑅(𝑐𝑞, 𝑐𝑑) = 1 + |𝑐𝑞|
1 + |𝑐𝑑|

= 1 + 2
1 + 6 = 3

7 .

For b) we only change the query length 𝑐𝑞 = 4 and obtain

𝐶𝑅(𝑐𝑞, 𝑐𝑑) = 1 + |𝑐𝑞|
1 + |𝑐𝑑|

= 1 + 4
1 + 6 = 5

7 .

Exercise 12/4
Count how many structural terms are present in the XML tree:

<Course>
<Title>Programming Abstractions</Title>
<Description>Abstraction and its relation to programming</Description>
<Instructors>

<Professor>
<First_Name>Eric</First_Name>
<Last_Name>Roberts</Last_Name>

</Professor>
</Instructors>

</Course>

To save space, mark each element with its first letter only (D stands for Description, P for
Professor, . . .). By Definition 22, we count all combinations and write them into the table:

C T Programming Abstractions C I P F Eric C I P L Roberts
T Programming Abstractions I P F Eric I P L Roberts
Programming Abstractions P F Eric P L Roberts
C D Abstraction . . . F Eric L Roberts
D Abstraction . . . Eric Roberts
Abstraction . . .

There are 16 structural terms in total.

34

	Exercise 1/1
	Exercise 1/2
	Exercise 1/3
	Exercise 1/4
	Exercise 2/1
	Exercise 2/2
	Exercise 2/3
	Exercise 2/4
	Exercise 2/5
	Exercise 2/6
	Exercise 2/7
	Exercise 2/8
	Exercise 2/9
	Exercise 2/10
	Exercise 2/11
	Exercise 2/12
	Exercise 3/1
	Exercise 3/2
	Exercise 3/3
	Exercise 3/4
	Exercise 3/5
	Exercise 3/6
	Exercise 3/7
	Exercise 3/8
	Exercise 3/9
	Exercise 4/1
	Exercise 4/2
	Exercise 4/3
	Exercise 4/4
	Exercise 4/5
	Exercise 4/6
	Exercise 6/1
	Exercise 6/2
	Exercise 6/3
	Exercise 6/4
	Exercise 6/5
	Exercise 6/6
	Exercise 7/1
	Exercise 7/2
	Exercise 7/3
	Exercise 7/4
	Exercise 7/5
	Exercise 7/6
	Exercise 9/1
	Exercise 9/2
	Exercise 9/3
	Exercise 11/1
	Exercise 12/1
	Exercise 12/2
	Exercise 12/3
	Exercise 12/4

