
Essential Skills in Web
Development

PV219, spring 2017

Interface and User Experience

• Browsers implement standards inconsistently,
make sure your site works reasonably well across
all major browsers.

• At a minimum test against a recent Gecko engine
(Firefox), a WebKit engine (Safari and some
mobile browsers), Chrome, your supported IE
browsers, and Opera.

• Also consider how browsers render your site in
different operating systems.

http://en.wikipedia.org/wiki/Gecko_(layout_engine)
http://firefox.com/
http://www.apple.com/safari/
http://www.google.com/chrome
http://en.wikipedia.org/wiki/Internet_Explorer
http://en.wikipedia.org/wiki/Internet_Explorer
http://www.opera.com/
http://www.browsershots.org/

Interface and User Experience

• Consider how people might use the site other
than from the major browsers: cell phones,
screen readers and search engines, for
example.

• Some accessibility info: WAI and Section508.

• It should be a legal requirement. Utilize: WAI-
ARIA and WCAG 2 .

http://www.w3.org/WAI/
http://www.section508.gov/
http://www.section508.gov/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/TR/WCAG20/

Interface and User Experience

• Don't display unfriendly errors directly to the
user.

• Add the attribute rel="nofollow" to user-
generated links to avoid spam.

• Build well-considered limits into your site -
This also belongs under Security.

http://en.wikipedia.org/wiki/Nofollow
http://www.codinghorror.com/blog/archives/001228.html
http://www.codinghorror.com/blog/archives/001228.html
http://www.codinghorror.com/blog/archives/001228.html

Interface and User Experience

• Learn how to do progressive enhancement or
graceful degradation.

• Redirect after a POST if that POST was
successful, to prevent a refresh from
submitting again.

• Don't make me think

http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Progressive_enhancement
https://en.wikipedia.org/wiki/Graceful_degradation
https://en.wikipedia.org/wiki/Graceful_degradation
https://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Post/Redirect/Get
http://www.sensible.com/dmmt.html
http://www.sensible.com/dmmt.html

Security

• It's a lot to digest but the OWASP
development guide covers Web Site security
from top to bottom.

• Know about Injection especially SQL injection
and how to prevent it.

• Never trust user input, nor anything else that
comes in the request (which includes cookies
and hidden form field values!).

http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection

Security

• Hash passwords using salt and use different
salts for your rows to prevent rainbow attacks.

• Use a slow hashing algorithm, such as bcrypt
(time tested) or scrypt (even stronger, but
newer) (1, 2), for storing passwords.

• Avoid using MD5 or SHA family directly.

http://security.stackexchange.com/q/21263/396
http://www.tarsnap.com/scrypt.html
http://it.slashdot.org/comments.pl?sid=1987632&cid=35149842

Security

• Don't try to come up with your own fancy
authentication system. It's such an easy thing
to get wrong in subtle and untestable ways
and you wouldn't even know it until after
you're hacked.

• Use SSL/HTTPS for login and any pages where
sensitive data is entered (like credit card info).

http://stackoverflow.com/questions/1581610/how-can-i-store-my-users-passwords-safely/1581919#1581919
http://stackoverflow.com/questions/1581610/how-can-i-store-my-users-passwords-safely/1581919#1581919
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
http://en.wikipedia.org/wiki/Https

Security

• Prevent session hijacking.

• Avoid cross site scripting (XSS).

• Avoid cross site request forgeries (CSRF).

• Avoid Clickjacking.

• Read The Google Browser Security Handbook.

• Read The Web Application Hacker's Handbook.

http://en.wikipedia.org/wiki/Session_hijacking#Prevention
http://en.wikipedia.org/wiki/Session_hijacking#Prevention
http://en.wikipedia.org/wiki/Session_hijacking#Prevention
http://en.wikipedia.org/wiki/Session_hijacking#Prevention
http://en.wikipedia.org/wiki/Session_hijacking#Prevention
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Clickjacking
http://code.google.com/p/browsersec/wiki/Main
http://amzn.com/0470170778
http://amzn.com/0470170778

Security

• Consider The principal of least/minimal
privilege. Try to run your app server as non-
root.

• Keep your system(s) up to date with the latest
patches.

• Make sure your database connection
information is secured.

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
http://security.stackexchange.com/questions/47576/do-simple-linux-servers-really-need-a-non-root-user-for-security-reasons
http://security.stackexchange.com/questions/47576/do-simple-linux-servers-really-need-a-non-root-user-for-security-reasons
http://security.stackexchange.com/questions/47576/do-simple-linux-servers-really-need-a-non-root-user-for-security-reasons

Performance

• Implement caching if necessary, understand
and use HTTP caching properly as well
as HTML5 Manifest.

• Optimize images - don't use a 20 Kb image for
a repeating background.

• Learn how to gzip/deflate content (deflate is
better).

http://www.mnot.net/cache_docs/
http://www.w3.org/TR/html5/offline.html
http://developer.yahoo.com/performance/rules.html#gzip
http://developer.yahoo.com/performance/rules.html#gzip
http://stackoverflow.com/questions/1574168/gzip-vs-deflate-zlib-revisited
http://stackoverflow.com/questions/1574168/gzip-vs-deflate-zlib-revisited

Performance

• Combine/concatenate multiple stylesheets or
multiple script files to reduce number of
browser connections and improve gzip ability
to compress duplications between files.

• Use CSS Image Sprites for small related images
like toolbars (because of next point)

• Minimize the total number of HTTP requests
required for a browser to render the page.

http://alistapart.com/articles/sprites

Performance

• Yahoo Exceptional Performance - lots of great
guidelines, including improving front-end
performance and their YSlow tool (requires
Firefox, Safari, Chrome or Opera).

• Google page speed (use with browser
extension) – a tool for performance profiling,
and it optimizes your images too.

http://developer.yahoo.com/performance/
http://developer.yahoo.com/performance/
http://developer.yahoo.com/yslow/
https://developers.google.com/speed/docs/best-practices/rules_intro
https://developers.google.com/speed/docs/best-practices/rules_intro
https://developers.google.com/speed/pagespeed/insights_extensions
https://developers.google.com/speed/pagespeed/insights_extensions

Performance

• Utilize Google Closure Compiler for JavaScript
and other minification tools.

• Make sure there’s a favicon.ico file in the root
of the site, i.e. /favicon.ico. Browsers will
automatically request it, even if the icon isn’t
mentioned in the HTML at all.

• If you don’t have a /favicon.ico, this will result
in a lot of 404s, draining your server’s
bandwidth.

http://developers.google.com/closure/compiler/
http://developer.yahoo.com/yui/compressor/
http://developer.yahoo.com/yui/compressor/
http://developer.yahoo.com/yui/compressor/
http://developer.yahoo.com/yui/compressor/
http://mathiasbynens.be/notes/rel-shortcut-icon
http://mathiasbynens.be/notes/rel-shortcut-icon

Technology

• Understand HTTP and things like GET, POST,
sessions, cookies, and what it means to be
"stateless".

• Write your XHTML/HTML and CSS according to
the W3C specifications and make sure
they validate.

• Understand how JavaScript is processed in the
browser.

http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://validator.w3.org/

Technology

• Understand how the JavaScript sandbox
works, especially if you intend to use iframes.

• JavaScript can and will be disabled, and that
AJAX is therefore an extension, not a baseline.

• NoScript is becoming more popular, mobile
devices may not work as expected, and
Google won't run most of your JavaScript
when indexing the site.

http://noscript.net/

Technology

• Learn the difference between 301 and 302
redirects (this is also an SEO issue).

• Consider using a Reset Style Sheet or
normalize.css.

• Consider using a service such as the Google
Libraries API to load frameworks.

http://www.bigoakinc.com/blog/when-to-use-a-301-vs-302-redirect/
http://www.bigoakinc.com/blog/when-to-use-a-301-vs-302-redirect/
http://stackoverflow.com/questions/167531/is-it-ok-to-use-a-css-reset-stylesheet
http://stackoverflow.com/questions/167531/is-it-ok-to-use-a-css-reset-stylesheet
http://necolas.github.com/normalize.css/
http://developers.google.com/speed/libraries/devguide
http://developers.google.com/speed/libraries/devguide

Bug fixing

• Understand you'll spend 20 % of your time
coding and 80 % of it maintaining, so code
accordingly.

• Set up a good error reporting solution.

• Have a system for people to contact you with
suggestions and criticisms.

Bug fixing

• Document how the application works for
future support staff and people performing
maintenance.

• Make frequent backups! (And make sure those
backups are functional).

• Have a restore strategy, not just a backup
strategy.

Bug fixing

• Use a version control system to store your
files, such as Subversion, Mercurial or Git.

• Don't forget to do your Acceptance Testing.

• Frameworks like Selenium can help.

http://subversion.apache.org/
http://mercurial.selenic.com/
http://git-scm.org/
http://seleniumhq.org/

Bug fixing

• Make sure you have sufficient logging in place
using frameworks such as log4j, log4net or log4r.

• If something goes wrong on your live site, you'll
need a way of finding out what.

• When logging make sure you capture both
handled exceptions, and unhandled exceptions.
Report/analyse the log output, as it'll show you
where the key issues are in your site.

http://logging.apache.org/log4j/
http://logging.apache.org/log4net/
http://log4r.rubyforge.org/

