
SOFTWARE ARCHITECTURE AND ITS ROLE IN
SOFTWARE QUALITY

ONDREJ KRAJICEK @ Y SOFT

PV260 SOFTWARE QUALITY

2

The goal of this talk is to provide good enough answers to two rather fundamental
questions: “What is Software Architecture” and “How is it related to quality of

software?”

Software architecture as a discipline.

Can there be no architecture in a software system?

Principles of good architecture according to Gilb, Martin and others.

Screaming architecture.

Cost of change and expensive questions. Architecture as an artifact and as a
process. We all know refactoring, is there "Rearchitecting"?

Anatomy of development team and the role of software architect.

…AND HOPEFULLY SOME ANSWERS.
QUESTIONS FOR TODAY?

4

 What is Software Architecture?

 What is the role of Software Architecture in Software Quality
Assurance?

 Any other business?

5

A (software) product is a software system which delivers value to
deliberately chosen stakeholders.

6

Software Architecture provides answers to the most difficult technical
questions about your product.

Ralph Johnson famously defined software architecture as “the
important stuff (whatever that is).”

7

Software Architecture is a discipline of Software Engineering
determining the core principles behind your product.

8

Principles apply to wide area of contexts. They are (almost)
universal.

Patterns are heavily context dependent.

A MILLION DOLLAR QUESTION
CAN THERE BE NO ARCHITECTURE?

TOM GILB
COMPETITIVE ENGINEERING

CONFIDENTIAL 11

SOFTWARE ARCHITECTURE IS THE SERVANT OF HIGH-
PRIORITY STAKEHOLDER VALUES.

IS AS SIMPLE AS POSSIBLE, BUT NOT SIMPLER AND IS
DESIGNED TO BE REPLACEABLE.

(Tom Gilb)

12

 Stakeholders: vested interest / impact on the success of your
product.

 Stakeholders are Internal vs. External
 Stakeholder prioritization along Power and Interest axes

 Who determines stakeholders?

 Who determines stakeholder values?

HIGH PRIORITY STAKEHOLDER VALUES

13

 Stakeholder values translate (trace) into Product Qualities

 Quality is / has…
 Measurable (in hard numbers)
 Scale of Measure (lightyears)
 Tolerable Minimum
 Goal (rather Objective)
 Stretch Goal (this is when the goodness of your architecture shows up)

 Surprisingly, almost everything can be quantified and measured.
 Just do not try to measure people. Measure results or (if need be)

processes.

STAKEHOLDER VALUES / PRODUCT QUALITIES

14

Tag: Ease of Access.
Version: 11-Aug-2003.
Owner: Rating Model Project (Bill).
Scale: Speed for a defined [Employee Type] with defined [Experience] to get a defined [Client
Type] operating successfully from the moment of a decision to use the application.
Alternative Scales: None known yet.
Qualifier Definitions:
* Employee Type: {Credit Analyst, Investment Banker, …}.
* Experience: {Never, Occasional, Frequent, Recent}.
* Client Type: {Major, Frequent, Minor, Infrequent}.
Meter Options:
* Test all frequent combinations of qualifiers at least twice. Measure speed for the
combinations.
Known Usage: Project Capital Investment Proposals [2001, London].
Known Problems: None recorded yet.
Limitations: None recorded yet.

SAMPLE QUALITY

15

 Is “Replaceability” a quality?

 How can we measure it?

 Cost of Change
 Really expensive changes!

DESIGNED TO BE REPLACEABLE

16

WATERFALL VS. “AGILE” COST OF CHANGE

17

 Do not try to predict everything, nobody is that smart!

 Iterative process with small increments and continuous validation
provides insight.

 Close the feedback loop.

 Make it short.

MANAGING COST OF CHANGE

NEAL FORD ET AL
EVOLUTIONARY ARCHITECTURE

19

 An initial part of an architect’s job is to understand the business
or domain requirements for a proposed solution.

 Neal Ford et al: Building Evolutionary Architectures [O’Reilly,
2018]

 Architecture is designed around architectural concerns (-ilities).
 Securability, Testability, Trustability, Usability, Scalability,

Availability…

EVOLUTIONARY ARCHITECTURE

20

The moral: introducing changes to a highly dynamic (eco) system
can yield unpredictable results.

— Neal Ford, Building Evolutionary Architectures

21

 By protecting the system with Fitness Functions.

 Fitness Function: An architectural fitness function provides
an objective integrity assessment of some architectural
characteristic(s).

HOW CAN WE INTRODUCE CHANGES...

22

 Atomic vs. Holistic

 Static vs. Dynamic

 Automated vs. Manual

 Triggered vs. Continual

 Temporal

 Intentional vs. Emergent

 Domain Specific

FITNESS FUNCTIONS

UNCLE BOB MARTIN
SCREAMING / CLEAN ARCHITECTURE

25

1. Independent of Frameworks.

2. Testable: all parts and as a whole.

3. Independent of UI.

4. Independent of the data store / database / object persistence.

5. Independent of any external impact.

PROPERTIES OF GOOD ARCHITECTURE

26

 Dependencies (source code dependencies) can only point
inwards.

 Assuming a layered / circular model, the outer layers / rings depend on
the inner layer rings, not vice versa.

 This applies not only to behavior (classes, functions, services, etc.), but
also to the data / conceptual model, entities, protocols, data formats,
etc.

 Used hand in hand with the Dependency Inversion principle.

 Separation of Concepts to isolate and encapsulate knowledge
and responsibility.

PRINCIPLES OF GOOD ARCHITECTURE

27

ENTITIES
 Based on Concepts and

Context of your system
 Some modeling approaches

incorporate Conceptual and
Context modeling

 These are the core elements of
your problem domain

28

USE CASES
 Use cases provide behavior

specific to your application
within the context of the
entities.

 Originally referred to as
“Application logic”.

29

CONTROLLERS
 Translates Entity / Use Case

data into representation
suitable for persistence,
integration or presentation.

 Driven by specific requirements
of individual interfaces.

 Different data and behavior for
persistence than for presentation.

30

FRAMEWORKS AND DRIVERS
 Specific frameworks and

technologies for persistence,
presentation and integration.

31

SCREAMING ARCHITECTURE
 Architecture of your product

screams intent.

 In other words: structure,
naming and dependencies are
modeled along your problem
domain.

32

So what does the architecture of your application scream? When you look
at the top level directory structure, and the source files in the highest level

package; do they scream: Health Care System, or Accounting System,
or Inventory Management System? Or do they scream: Rails,

or Spring/Hibernate, or ASP?

33

 Because software architecture is driven by stakeholder values /
architectural concerns / quality requirements (names are not that
important),

 the choices you make as a software architect largely determine
the resulting quality of your software,

 in the form of limitations or constraints which may be difficult to
eliminate later.

 Having proper architecture according to stakeholder values
provides good foundation, nothing more, nothing less. No magic
beans.

...AND THE QUALITY?

KENT BECK
FOUR RULES OF SIMPLE DESIGN

35

 Tests Pass
 Tests: Repeatable, Traceable and Explicit
 Tests Pass not “Unit Tests Pass”
 Your test suite can always be bigger (coverage).
 Your test suite can always run faster (frequency).

 Expresses Intent
 Good naming and decomposition.
 Measurements are indicative and good for pinpointing the biggest

culprits (interface cohesion, dependencies, abstraction leaks).
 SOLID helps this.
 Similar to Screaming Architecture

4 RULES OF SIMPLE DESIGN

36

 Do Not Repeat Yourself (Lazy is Good ;-)
 In the meaning of knowledge duplication.
 Every piece of knowledge should have only one representation.
 Look back at the Clean Architecture and its separation of concepts.

 Small
 Code / module / service which is no longer used.
 Are there duplicate abstractions?
 Abstractions are tricky as they are usually not exact duplicates.
 Over-extraction.

4 RULES OF SIMPLE DESIGN (2)

37

DESIGN IS (ALSO) A PROCESS

Remove Duplication

Abstractions, which were
not known, emerge

Express intent
(Improve naming, etc.)

Structure, which was not
visible previously,

emerges

Joe
Rainsberger:
The Design

Dynamo

38

 SOLID Principles

 Single Responsibility Principle

 Open (for extension) / Closed (for modification)

 Liskov Substitution Principle

 Interface Segregation

 Dependency Inversion

WHAT ELSE?

39

1. All architecture is design, but not all design is architecture.

2. What is architecture for one is design for another.

DESIGN VS. ARCHITECTURE

40

 Database?

 Which Messaging Bus?

 Shall we use Relational Database or an Object Database?

 What frameworks are we going to use?

 Which programming languages are we going to use?

 Which ORM are we going to use?

 Are we going to use Azure or Amazon cloud?

 How are we going to deploy clustering in Hadoop for high availability?

WHAT ARE THE DIFFICULT QUESTIONS?

PIN: 7803157
WWW.KAHOOT.IT

...AND THE ROLE OF THE SOFTWARE ARCHITECT
ANATOMY OF THE TEAM...

43

Organisations which design systems are constrained to produce

designs which are copies of the communication structures of

these organisations.

—M. CONWAY

(Conway’s Rule)

44

 Conway’s Rule basically means that our system is only as good as
is the communication in your organization.

 One of the major driving ideas behind Microservices and in my
humble opinion for all the wrong reasons.

 Different Architectural Flavors:
 2-, 3-, N-Tier
 Distributed / Remote Objects (CORBA, DCOM)
 Service Oriented architecture
 Microservices
 Serverless Architecture (Amazon Lambda, Azure Functions, etc.)

45

 Software Architect is most importantly an Internal Stakeholder to
the development / scrum / * team.

 Software Architect needs to be respected by Product Owner /
Product Manager as such.

 The primary responsibility of the Software Architect is to protect
key system qualities determined by (high priority) stakeholder
values.

 And yes, sometimes you need to go against the team to achieve
it. But preferably, you should not have to.

THE POSITION OF SOFTWARE ARCHITECT

OH GOD, AT LAST
SUMMARY

CONFIDENTIAL 47

 Software Architecture provides answers to difficult questions about
a software system.

 Software Architecture is...
 property,
 artifact(s),
 process (starts at the beginning, never stops)

 Software Architecture is driven by stakeholder values.

 Do no resist change. Change is fact of life.
 You can say, that something is “difficult” or “expensive”. But never

“impossible”. There are many people who do not know it and will happily
do it, if you don’t.

CONFIDENTIAL 48

 We are still scratching the surface.

 We did not touch...
 Monitoring and Simulation (“Monitoring Driven Development”)
 Domain Driven Design
 How to properly automate validation tests?
 ...and much more.

WHAT ELSE?

