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The goal of this talk is to provide good enough answers to two rather fundamental 
questions: “What is Software Architecture” and “How is it related to quality of 

software?” 

Software architecture as a discipline. 

Can there be no architecture in a software system? 

Principles of good architecture according to Gilb, Martin and others.

Screaming architecture. 

Cost of change and expensive questions. Architecture as an artifact and as a 
process. We all know refactoring, is there "Rearchitecting"? 

Anatomy of development team and the role of software architect.



…AND HOPEFULLY SOME ANSWERS.
QUESTIONS FOR TODAY?



4

 What is Software Architecture?

 What is the role of Software Architecture in Software Quality 
Assurance?

 Any other business?
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A (software) product is a software system which delivers value to 
deliberately chosen stakeholders.
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Software Architecture provides answers to the most difficult technical 
questions about your product.

Ralph Johnson famously defined software architecture as “the 
important stuff (whatever that is).”
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Software Architecture is a discipline of Software Engineering 
determining the core principles behind your product.
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Principles apply to wide area of contexts. They are (almost) 
universal.

Patterns are heavily context dependent.



A MILLION DOLLAR QUESTION
CAN THERE BE NO ARCHITECTURE?



TOM GILB
COMPETITIVE ENGINEERING
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SOFTWARE ARCHITECTURE IS THE SERVANT OF HIGH-
PRIORITY STAKEHOLDER VALUES.

IS AS SIMPLE AS POSSIBLE, BUT NOT SIMPLER AND IS 
DESIGNED TO BE REPLACEABLE.

(Tom Gilb)
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 Stakeholders: vested interest / impact on the success of your 
product.

 Stakeholders are Internal vs. External
 Stakeholder prioritization along Power and Interest axes

 Who determines stakeholders?

 Who determines stakeholder values?

HIGH PRIORITY STAKEHOLDER VALUES
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 Stakeholder values translate (trace) into Product Qualities

 Quality is / has…
 Measurable (in hard numbers)
 Scale of Measure (lightyears)
 Tolerable Minimum
 Goal (rather Objective)
 Stretch Goal (this is when the goodness of your architecture shows up)

 Surprisingly, almost everything can be quantified and measured.
 Just do not try to measure people. Measure results or (if need be) 

processes.

STAKEHOLDER VALUES / PRODUCT QUALITIES
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Tag: Ease of Access.
Version: 11-Aug-2003.
Owner: Rating Model Project (Bill).
Scale: Speed for a defined [Employee Type] with defined [Experience] to get a defined [Client 
Type] operating successfully from the moment of a decision to use the application.
Alternative Scales: None known yet.
Qualifier Definitions:
* Employee Type: {Credit Analyst, Investment Banker, …}.
* Experience: {Never, Occasional, Frequent, Recent}.
* Client Type: {Major, Frequent, Minor, Infrequent}.
Meter Options:
* Test all frequent combinations of qualifiers at least twice. Measure speed for the 
combinations.
Known Usage: Project Capital Investment Proposals [2001, London].
Known Problems: None recorded yet.
Limitations: None recorded yet.

SAMPLE QUALITY
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 Is “Replaceability” a quality?

 How can we measure it?

 Cost of Change
 Really expensive changes!

DESIGNED TO BE REPLACEABLE
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WATERFALL VS. “AGILE” COST OF CHANGE
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 Do not try to predict everything, nobody is that smart!

 Iterative process with small increments and continuous validation 
provides insight.

 Close the feedback loop.

 Make it short.

MANAGING COST OF CHANGE



NEAL FORD ET AL
EVOLUTIONARY ARCHITECTURE
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 An initial part of an architect’s job is to understand the business 
or domain requirements for a proposed solution.

 Neal Ford et al: Building Evolutionary Architectures [O’Reilly, 
2018]

 Architecture is designed around architectural concerns (-ilities).
 Securability, Testability, Trustability, Usability, Scalability, 

Availability…

EVOLUTIONARY ARCHITECTURE
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The moral: introducing changes to a highly dynamic (eco) system 
can yield unpredictable results.

— Neal Ford, Building Evolutionary Architectures
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 By protecting the system with Fitness Functions.

 Fitness Function: An architectural fitness function provides 
an objective integrity assessment of some architectural 
characteristic( s).

HOW CAN WE INTRODUCE CHANGES...
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 Atomic vs. Holistic

 Static vs. Dynamic

 Automated vs. Manual

 Triggered vs. Continual

 Temporal

 Intentional vs. Emergent

 Domain Specific

FITNESS FUNCTIONS



UNCLE BOB MARTIN
SCREAMING / CLEAN ARCHITECTURE
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1. Independent of Frameworks.

2. Testable: all parts and as a whole.

3. Independent of UI.

4. Independent of the data store / database / object persistence.

5. Independent of any external impact.

PROPERTIES OF GOOD ARCHITECTURE
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 Dependencies (source code dependencies) can only point 
inwards.

 Assuming a layered / circular model, the outer layers / rings depend on 
the inner layer rings, not vice versa.

 This applies not only to behavior (classes, functions, services, etc.), but 
also to the data / conceptual model, entities, protocols, data formats, 
etc.

 Used hand in hand with the Dependency Inversion principle.

 Separation of Concepts to isolate and encapsulate knowledge 
and responsibility.

PRINCIPLES OF GOOD ARCHITECTURE
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ENTITIES
 Based on Concepts and 

Context of your system
 Some modeling approaches 

incorporate Conceptual and 
Context modeling

 These are the core elements of 
your problem domain
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USE CASES
 Use cases provide behavior 

specific to your application 
within the context of the 
entities.

 Originally referred to as 
“Application logic”.
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CONTROLLERS
 Translates Entity / Use Case 

data into representation 
suitable for persistence, 
integration or presentation.

 Driven by specific requirements 
of individual interfaces.

 Different data and behavior for 
persistence than for presentation.
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FRAMEWORKS AND DRIVERS
 Specific frameworks and 

technologies for persistence, 
presentation and integration.
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SCREAMING ARCHITECTURE
 Architecture of your product 

screams intent.

 In other words: structure, 
naming and dependencies are 
modeled along your problem 
domain.
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So what does the architecture of your application scream? When you look 
at the top level directory structure, and the source files in the highest level 

package; do they scream: Health Care System, or Accounting System, 
or Inventory Management System? Or do they scream: Rails, 

or Spring/Hibernate, or ASP?
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 Because software architecture is driven by stakeholder values / 
architectural concerns / quality requirements (names are not that 
important),

 the choices you make as a software architect largely determine 
the resulting quality of your software,

 in the form of limitations or constraints which may be difficult to 
eliminate later.

 Having proper architecture according to stakeholder values 
provides good foundation, nothing more, nothing less. No magic 
beans.

...AND THE QUALITY?



KENT BECK
FOUR RULES OF SIMPLE DESIGN
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 Tests Pass
 Tests: Repeatable, Traceable and Explicit
 Tests Pass not “Unit Tests Pass”
 Your test suite can always be bigger (coverage).
 Your test suite can always run faster (frequency).

 Expresses Intent
 Good naming and decomposition.
 Measurements are indicative and good for pinpointing the biggest 

culprits (interface cohesion, dependencies, abstraction leaks).
 SOLID helps this.
 Similar to Screaming Architecture

4 RULES OF SIMPLE DESIGN
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 Do Not Repeat Yourself (Lazy is Good ;-)
 In the meaning of knowledge duplication.
 Every piece of knowledge should have only one representation.
 Look back at the Clean Architecture and its separation of concepts.

 Small
 Code / module / service which is no longer used.
 Are there duplicate abstractions?
 Abstractions are tricky as they are usually not exact duplicates.
 Over-extraction.

4 RULES OF SIMPLE DESIGN (2)
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DESIGN IS (ALSO) A PROCESS

Remove Duplication

Abstractions, which were 
not known, emerge

Express intent
(Improve naming, etc.)

Structure, which was not 
visible previously, 

emerges

Joe 
Rainsberger: 
The Design 

Dynamo
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 SOLID Principles

 Single Responsibility Principle

 Open (for extension) / Closed (for modification)

 Liskov Substitution Principle

 Interface Segregation

 Dependency Inversion

WHAT ELSE?
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1. All architecture is design, but not all design is architecture.

2. What is architecture for one is design for another.

DESIGN VS. ARCHITECTURE



40

 Database?

 Which Messaging Bus?

 Shall we use Relational Database or an Object Database?

 What frameworks are we going to use?

 Which programming languages are we going to use?

 Which ORM are we going to use?

 Are we going to use Azure or Amazon cloud?

 How are we going to deploy clustering in Hadoop for high availability?

WHAT ARE THE DIFFICULT QUESTIONS?



PIN: 7803157
WWW.KAHOOT.IT



...AND THE ROLE OF THE SOFTWARE ARCHITECT
ANATOMY OF THE TEAM...
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Organisations which design systems are constrained to produce 

designs which are copies of the communication structures of 

these organisations.

—M. CONWAY

(Conway’s Rule)
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 Conway’s Rule basically means that our system is only as good as 
is the communication in your organization.

 One of the major driving ideas behind Microservices and in my 
humble opinion for all the wrong reasons.

 Different Architectural Flavors:
 2-, 3-, N-Tier
 Distributed / Remote Objects (CORBA, DCOM)
 Service Oriented architecture
 Microservices
 Serverless Architecture (Amazon Lambda, Azure Functions, etc.)
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 Software Architect is most importantly an Internal Stakeholder to 
the development / scrum / * team.

 Software Architect needs to be respected by Product Owner / 
Product Manager as such.

 The primary responsibility of the Software Architect is to protect 
key system qualities determined by (high priority) stakeholder 
values.

 And yes, sometimes you need to go against the team to achieve 
it. But preferably, you should not have to.

THE POSITION OF SOFTWARE ARCHITECT



OH GOD, AT LAST
SUMMARY
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 Software Architecture provides answers to difficult questions about 
a software system.

 Software Architecture is...
 property,
 artifact(s),
 process (starts at the beginning, never stops)

 Software Architecture is driven by stakeholder values.

 Do no resist change. Change is fact of life.
 You can say, that something is “difficult” or “expensive”. But never 

“impossible”. There are many people who do not know it and will happily 
do it, if you don’t.
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 We are still scratching the surface.

 We did not touch...
 Monitoring and Simulation (“Monitoring Driven Development”)
 Domain Driven Design
 How to properly automate validation tests?
 ...and much more.

WHAT ELSE?


