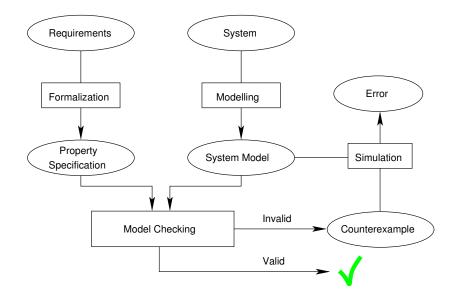
IA169 System Verification and Assurance

LTL Model Checking (continued)

Jiří Barnat

Model Checking – Schema



Where are we now?

Property Specification

- English text.
- Formulae of Linear Temporal Logic.

System Description

- Source code in programming language.
- Source code in modelling language.
- Kripke structure representing the state space.

Problem

- Kripke structure M
- LTL formula φ
- $M \models \varphi$?

Automata-Based Approach to LTL Model Checking

Observation One

- System is a set of (infinite) runs.
- Also referred to as formal language of infinite words.

Observation Two

• Two different runs are equal with respect to an LTL formula if they agree in the interpretation of atomic propositions (need not agree in the states).

• Let
$$\pi = s_0, s_1, \ldots$$
, then $I(\pi) \stackrel{def}{\Longleftrightarrow} I(s_0), I(s_1), I(s_2), \ldots$

Observation Three

- Every run either satisfies an LTL formula, or not.
- Every LTL formula defines a set of satisfying runs.

Reformulation as Language Problem

- Let $\Sigma = 2^{AP}$ be an alphabet.
- Language L_{sys} of all runs of system M is defined as follows.

$$L_{sys} = \{I(\pi) \mid \pi \text{ is a run in } M\}.$$

• Language L_{φ} of runs satisfying φ is defined as follows.

$$L_{\varphi} = \{ I(\pi) \mid \pi \models \varphi \}.$$

Observation

$$M\models\varphi\iff L_{sys}\subseteq L_{\varphi}$$

L_{sys} and L_{φ} expressed by Büchi automaton

Theorem

 For every LTL formula φ we can construct Büchi automaton A_φ such that L_φ = L(A_φ).

[Vardi and Wolper, 1986]

Theorem

• For every Kripke structure $M = (S, T, I, s_0)$ we can construct Büchi automaton A_{sys} such that $L_{sys} = L(A_{sys})$.

Construction of A_{sys}

- Let AP be a set of atomic propositions.
- Then $A_{sys} = (S, 2^{AP}, s_0, \delta, S)$, where $q \in \delta(p, a)$ if and only if $(p, q) \in T \land I(p) = a$.

Where we are now?

Property Specification

- English text.
- \bullet Formulae φ of Linear Temporal Logic.
- Buchi automaton accepting L_{φ} .

System Description

- Source code in programming language.
- Source code in modelling language.
- Kripke structure *M* representing the state space.
- Buchi automaton accepting L_{sys} .

Problem Reformulation

•
$$M \models \varphi \iff L_{sys} \subseteq L_{\varphi}$$

Notation

• co-L denotes complement of L with respect to Σ^{AP} .

Lemma

•
$$co-L(A_{\varphi}) = L(A_{\neg \varphi})$$
 for every LTL formula φ .

Reduction of $M \models \varphi$ to the emptiness of $L(A_{sys} \times A_{\neg \varphi})$

•
$$M \models \varphi \iff L_{sys} \subseteq L_{\varphi}$$

• $M \models \varphi \iff L(A_{sys}) \subseteq L(A_{\varphi})$
• $M \models \varphi \iff L(A_{sys}) \cap co - L(A_{\varphi}) = \emptyset$
• $M \models \varphi \iff L(A_{sys}) \cap L(A_{\neg \varphi}) = \emptyset$
• $M \models \varphi \iff L(A_{sys} \times A_{\neg \varphi}) = \emptyset$

Synchronous Product of Büchi Automata

Theorem

 Let A = (S_A, Σ, s_A, δ_A, F_A) and B = (S_B, Σ, s_B, δ_B, F_B) be Büchi automata over the same alphabet Σ. Then we can construct Büchi automaton A × B such that L(A × B) = L(A) ∩ L(B).

Construction of $A \times B$

•
$$A \times B =$$

 $(S_A \times S_B \times \{0,1\}, \Sigma, (s_A, s_B, 0), \delta_{A \times B}, F_A \times S_B \times \{0\})$
• $(p', q', j) \in \delta_{A \times B}((p, q, i), a)$ for all
 $p' \in \delta_A(p, a)$
 $q' \in \delta_B(q, a)$
 $j = (i+1) \mod 2$ if $(i = 0 \land p \in F_A) \lor (i = 1 \land q \in F_B)$
 $j = i$ otherwise

Observation

- For the purpose of LTL model checking, we do not need general synchronous product of Büchi automata, since Büchi automaton A_{sys} is constructed in such a way that $F_A = S_A$, i.e. it has all states accepting.
- For such a special case the construction of product automata can be significantly simplified.

Construction of $A \times B$ when $F_A = S_A$

•
$$A \times B = (S_A \times S_B, \Sigma, (s_A, s_B), \delta_{A \times B}, S_A \times F_B)$$

•
$$(p',q') \in \delta_{A \times B}((p,q),a)$$
 for all
 $p' \in \delta_A(p,a)$
 $q' \in \delta_B(q,a)$

Observation

• Any finite automaton may visit accepting state infinitely many times only if it contains a cycle through that accepting state.

Decision Procedure for $M \models \varphi$?

- Build a product automaton $(A_{sys} \times A_{\neg \varphi})$.
- Check the automaton for presence of an accepting cycle.
- If there is a reachable accepting cycle then $M \not\models \varphi$.
- Otherwise $M \models \varphi$.

Detection of Accepting Cycles

Reachability in Directed Graph

- Depth-first or breadth-first search algorithm.
- O(|V| + |E|).

Algorithmic Solution to Accepting Cycle Detection

- Compute the set of accepting states in time $\mathcal{O}(|V| + |E|)$.
- Detect self-reachability for every accepting state in $\mathcal{O}(|F|(|V| + |E|))$.
- Overall time O(|V| + |E| + |F|(|V| + |E|)).

Can we do better?

• Yes, with **Nested DFS** algorithm in $\mathcal{O}(|V| + |E|)$.

Depth-First Search Procedure

```
proc Reachable(V, E, v_0)

Visited = \emptyset

DFS(v_0)

return (Visited)

end
```

```
proc DFS(vertex)
if vertex ∉ Visited
then /* Visits vertex */
Visited := Visited ∪ {vertex}
foreach { v | (vertex,v)∈ E } do
DFS(v)
od
/* Backtracks from vertex */
fi
```

Observation

• When running DFS on a graph all vertices can be classified into one of the three following categories (denoted with colours).

Colour Notation for Vertices

- White vertex Has not been visited yet.
- Gray vertex Visited, but yet not backtracked.
- Black vertex Visited and backtracked.

Recursion Stack

• Gray vertices form a path from the initial vertex to the vertex that is currently processed by the outer procedure.

Properties of DFS, G = (V, E) a $v_0 \in V$

Observation

• If two distinct vertices v_1, v_2 satisfy that

•
$$(v_0, v_1) \in E^*$$
,
• $(v_1, v_1) \notin E^+$,
• $(v_1, v_2) \in E^+$.

• Then procedure *DFS*(*v*₀) backtracks from vertex *v*₂ before it backtracks from vertex *v*₁.

DFS post-order

If (v, v) ∉ E⁺ and (v₀, v) ∈ E^{*}, then upon the termination of sub-procedure DFS(v), called within procedure DFS(v₀), all vertices u such that (v, u) ∈ E⁺ are visited and backtracked.

Observation

• If a sub-graph reachable from a given accepting vertex does not contain accepting cycle, then no accepting cycle starting in an accepting state outside the sub-graph can reach the sub-graph.

The Key Idea

- Execute the inner procedures in a bottom-up manner.
- The inner procedures are called in the same order in which the outer procedure backtracks from accepting states, i.e. the ordering of calls follows a DFS post-order.

Detection of Accepting Cycles in $\mathcal{O}(|V| + |E|)$

```
proc Detection_of_accepting_cycles

Visited := \emptyset

DFS(v_0)

end

proc DFS(vertex)

if (vertex) \notin Visited

then Visited := Visited \cup {vertex}

for each \{s \in (vertex, c) \in F\} do
```

```
if (vertex) ∉ Visited
  then Visited := Visited ∪ {vertex}
  foreach {s | (vertex,s) ∈ E} do
    DFS(s)
    od
    if IsAccepting(vertex)
      then DetectCycle(vertex)
    fi
    fi
    end
```

Assumption On Early Termination

• The inner procedure reports the accepting cycle and terminates the whole algorithm if called for an accepting vertex that lies on an accepting cycle.

Consequences

• If the inner procedure called for an accepting vertex v reports no accepting cycle, then there is no accepting cycle in the graph reachable from vertex v.

Linear Complexity of Nested DFS Algorithm

• Employing DFS post-order it follows that vertices that have been visited by previous invocation of inner procedure may be safely skipped in any later invocation of the inner procedure.

$\mathcal{O}(|V| + |E|)$ Algorithm

- 1) Nested procedures are called in DFS post-order as given by the outer procedure, and are limited to vertices not yet visited by inner procedure.
- 2) All vertices are visited at most twice.

Theorem

• If the immediate successor to be processed by an inner procedure is grey (on the stack of the outer procedure), then the presence of an accepting cycle is guaranteed.

Application

• It is enough to reach a vertex on the stack of the outer procedure in the inner procedure in order to report the presence of an accepting cycle.

$\mathcal{O}(|V| + |E|)$ Algorithm

```
proc Detection_of_accepting_cycles
    Visited := Nested := in_stack := Ø
    DFS(v_0)
    Exit("Not Present")
end
```

```
proc DFS(vertex)
  if (vertex) ∉ Visited
     then Visited := Visited \cup {vertex}
     in_stack := in_stack \cup \{vertex\}
     foreach \{s \mid (vertex, s) \in E\} do
       DFS(s)
     od
     if IsAccepting(vertex)
       then DetectCycle(vertex)
     fi
     in_stack := in_stack \setminus \{vertex\}
  fi
end
```

```
proc DetectCycle (vertex)
if vertex ∉ Nested
then Nested := Nested ∪ {vertex}
foreach {s | (vertex,s) ∈ E} do
if s ∈ in_stack
then WriteOut(in_stack)
Exit("Present")
else DetectCycle(s)
fi
of
fi
end
```

Outer Procedure

- Time: $\mathcal{O}(|V| + |E|)$
- Space: $\mathcal{O}(|V|)$

Inner Procedures

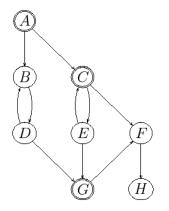
- Time (overall): $\mathcal{O}(|V| + |E|)$
- Space: $\mathcal{O}(|V|)$

Complexity

• Time: O(|V| + |E| + |V| + |E|) = O(|V| + |E|)

• Space:
$$\mathcal{O}(|V| + |V|) = \mathcal{O}(|V|)$$

Nested DFS – Example



- 1st DFS: A,B,D,B,G,F,H,H,F,G
 1st DFS stack: A,B,D,G
 visited: A,B,D,F,G,H / -
- 2nd DFS: G,F,H,H,F,G visited: A,B,D,F,G,H / F,G,H
- 1st DFS: G,D,B,C,E,C,G,E,F,C
 1st DFS stack: A,C
 visited: all / F,G,H
- 2nd DFS: C,E,C counterexample: A,C,E,C

visited state backtrack non-accepting state backtrack accepting state

Classification of Büchi Automata

str. 26/46

Terminal Büchi Automata

• All accepting cycles are self-loops on accepting states labelled with true.

Weak Büchi Automata

• Every strongly connected component of the automaton is composed either of accepting states, or of non-accepting states.

Impact on Verification Procedure

Automaton $A_{\neg\varphi}$

- For a number of LTL formulae φ is $A_{\neg \varphi}$ terminal or weak.
- $A_{\neg \varphi}$ is typically quite small.
- Type of $A_{\neg \varphi}$ can be pre-computed prior verification.
- Types of components of $A_{\neg \varphi}$
 - Non-accepting Contains no accepting cycles.
 - Strongly accepting Every cycle is accepting.
 - Partially accepting Some cycles are accepting and some are not.

Product Automaton

- The graph to be analysed is a graph of product automaton $A_S \times A_{\neg \varphi}$.
- Types of components of A_S × A_{¬φ} are given by the corresponding components of A_{¬φ}.

$A_{\neg\varphi}$ is terminal Büchi automaton

- For the proof of existence of accepting cycle it is enough to proof reachability of any state that is accepting in $A_{\neg\varphi}$ part.
- Verification process is reduced to the reachability problem.

"Safety" Properties

- Those properties φ for which $A_{\neg \varphi}$ is a terminal BA.
- Typical phrasing: "Something bad never happens."
- Reachability is enough to proof the property.

$A_{\neg \varphi}$ is weak Büchi automaton

- Contains no partially accepting components.
- For the proof of existence of accepting cycle it is enough to proof existence of reachable cycle in a strongly accepting component.
- Can be detected with a single DFS procedure.
- Time-optimal algorithm exists that does not rely on DFS.

"Weak" LTL Properties

- Those properties φ for which $A_{\neg\varphi}$ is a weak BA.
- Typically, responsiveness: $G(a \implies F(b))$.

Classification

• Every LTL formula belongs to one of the following classes: Reactivity, Recurrence, Persistance, Obligation, Safety, Guarantee

Interesting Relations

- Guarantee class properties can be described with a terminal Büchi automaton.
- Persistance, Obligation, and Safety class properties can be described with a weak Büchi automaton.

Negation in Verification Process ($\varphi \mapsto A_{\neg \varphi}$)

- $\bullet \ \varphi \in \mathsf{Safety} \iff \neg \varphi \in \mathsf{Guarantee}.$
- $\bullet \ \varphi \in {\rm Recurrence} \ \Longleftrightarrow \ \neg \varphi \in {\rm Persistance}.$

Classification of LTL Properties



Fighting State Space Explosion

State Space Explosion Problem

What is State Space Explosion

- System is usually given as a composition of parallel processes.
- Depending on the order of execution of actions of parallel processes various intermediate states emerge.
- The number of reachable states may be up to exponentially larger than the number of lines of code.

Consequence

- Main memory cannot store all states of the product automaton as they are too many.
- Algorithms for accepting cycle detection suffer for lack of memory.

Some Methods to Fight State Space Explosion

State Compression

- Lossless compression.
- Lossy compression Heuristics.

On-The-Fly Verification

Symbolic Representation of State Space

Reduced Number of States the Product Automaton

- Introduction of atomic blocks.
- Partial order on execution of process actions.
- Avoid exploration of symmetric parts.

Parallel and Distributed Verification

On-The-Fly Verification

Observation

• Product automaton graph is defined implicitly with:

- |*F*|_*init*() Returns initial state of automaton.
- $|F|_succs(s)$ Gives immediate successors of a given state.
- |Accepting|(s) Gives whether a state is accepting or not.

On-The-Fly Verification

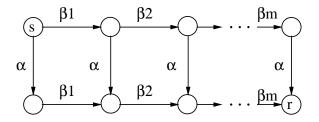
- Some algorithms may detect the presence of accepting cycle without the need of complete exploration of the graph.
- Hence, $\mathcal{M} \models \varphi$ can be decided without the full construction of $A_{sys} \times A_{\neg \varphi}$.
- This is referred to as to on-the-fly verification.

Partial Order Reduction

Example

- Consider a system made of processes A and B.
- A can do a single action α, while B is a sequence of actions β, e.g. β₁,..., β_m.

Unreduced State Space:

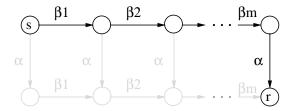


Property to be verifed: Reachability of state r.

Partial Order Reduction

Observation

- Runs (αβ₁β₂...β_m), (β₁αβ₂...β_m), ..., (β₁β₂...β_mα) are equivalent with respect to the property.
- It is enough to consider only a representative from the equivalence class, say, e.g. $(\beta_1\beta_2...\beta_m\alpha)$.



• The representative is obtained by postponing of action α .

Reduction Principle

- Do not consider all immediate successor during state space exploration, but pick carefully only some of them.
- Some states are never generated, which results in a smaller state space graph.

Technical Realisation

- To pick correct but optimal subset of successors is as difficult as to generate the whole state space. Hence, heuristics are used.
- The reduced state space must contain an accepting cycle if and only if the unreduced state space does so.
- LTL formula must not use X operator (subclass of LTL).

Principle

- Employ aggregate power of multiple CPUs.
- Increased memory and computing power.

Problem of Nested DFS

- Typical implementation relies on hashing mechanism, hence, the main memory is accessed extremely randomly. Should memory demands exceeds the amount of available memory, **thrashing** occurs.
- Mimicking serial Nested DFS algorithm in a distributed-memory setting is extremely slow. (Token-based approach).
- It unknown whether the DFS post-order can be computed by a time-optimal scale-able parallel algorithm (Still an open problem.)

Parallel Algorithms for Distributed-Memory Setting

Observation

- Instead of DFS other graph procedures are used.
- Tasks such as breadth-first search, or value propagation can be efficiently computed in parallel.
- Parallel algorithms do not exhibit optimal complexity.

	Complexity	Optimal	On-The-Fly
Nested DFS	O(V+E)	Yes	Yes
OWCTY			
general Büchi automata	O(V.(V+E))	No	No
weak Büchi automata	O(V+E)	Yes	No
MAP	O(V.V.(V+E))	No	Partially
OWCTY+MAP			
general Büchi automata	O(V.(V+E))	No	Partially
weak Büchi automata	O(V+E)	Yes	Partially

IA169 System Verification and Assurance - 04

Model Checking – Summary

str. 42/46

Properties Validity

- Property to be verified may be violated by a single particular (even extremely unlikely) run of the system under inspection.
- The decision procedure relies on exploration of state space graph of the system.

State Space Explosion

- Unless thee are other reasons, all system runs have to be considered.
- The number of states, that system can reach is up to exponentially larger than the size of the system description.
- Reasons: Data explosion, asynchronous parallelism.

General Technique

• Applicable to Hardware, Software, Embedded Systems, Model-Based Development, ...

Mathematically Rigorous Precision

• The decision procedure results with $\mathcal{M} \models \varphi$, if and only if, it is the case.

Tool for Model Checking – Model Checkers

- The so called "Push-Button" Verification.
- No human participation in the decision process.
- Provides users with witnesses and counterexamples.

Disadvantages of Model Checking

Not Suitable for Everything

- Not suitable to show that a program for computing factorial really computes *n*! for a given *n*.
- Though it is perfectly fine to check that for a value of 5 it always returns the value of 120.

Often Relies on Modelling

- Need for model construction.
- Validity of a formula is guaranteed for the model, not the modelled system.

Size of the State Space

- Applicable mostly to system with finite state space.
- Due to state space explosion, practical applicability is limited.

Verifies Only What Has Been Specified

• Issues not covered with formulae need not be discovered. IA169 System Verification and Assurance – 04

str. 45/46

Homework

• Analysis with DIVINE model checker on a more complex example (some homework from previous course on secure coding).