IA169 System Verification and Assurance

Bounded Model Checking

Jiří Barnat

Satisfiability – SAT

• Finding a valuation of Boolean variables that makes a given formula of propositional logic true.

Satisfiability Modulo Theory – SMT

• Deciding satisfiability of a first-order formula with equality, predicates and function symbols that encode one or more theories.

Typical SMT Theories

- Unbounded integer and real arithmetic.
- Bounded integer arithmetic (bit-vectors).
- Theory of data structures (lists, arrays, ...).

ZZZ aka Z3

- Tool developed by Microsoft Research.
- WWW interface http://www.rise4fun.com/Z3
- Binary API for use in other tools and applications.

SMT-LIB

- Standardised language for SMT queries.
- Freely available library with a SMT implementation.

Observation

• Formula is valid if and only if its negation is not satisfiable.

Consequence

• SAT and SMT solvers can be used as tools for proving validity of formulated statements.

Model Synthesis

- SAT solvers not only decide satisfiability of formulas, but for satisfiable formulas also give the valuation which makes the formula true.
- Unlike theorem provers, they give a "counterexample" in case the statement to be proven is false.

Checking Safety Properties via SAT Reduction

Hypothesis

• If the system contains an error, it can be reproduced with only a small number of controlled steps.

Method Idea

• If we use model checking for error detection, it is sensible to check whether an error (a violation of specification) appears within first k steps of execution.

Literature

- Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu: Symbolic Model Checking without BDDs. TACAS 1999: 193-207, LNCS 1579.
- Henry A. Kautz, Bart Selman: Planning as Satisfiability.Proceedings of the 10th European conference on Artificial intelligence (ECAI'92): 359-363, 1992, Kluwer.

Prerequisites

- The set of prefixes of length k of all runs of a Kripke structure M can be encoded by a Boolean formula $[M]^k$.
- Violation of a safety property which can be observed within k steps of the system can be encoded as [¬φ]^k.

Reduction to SAT

- We check the satisfiability of $[M]^k \wedge [\neg \varphi]^k$.
- Satisfiability indicates the existence of a counterexample of length *k*.
- Unsatisfiability shows non-existence of a counterexample of length *k*.

Prerequisites

- Let M = (S, T, I) be a Kripke structure with initial state $s_0 \in S$.
- Arbitrary state s ∈ S can be represented by a bit vector of size n, that is state s = ⟨a₀, a₁,..., a_{n-1}⟩.

Encoding M with Boolean Formulae

- *lnit*(s) formula which is satisfiable for the valuation of variables a₁, a₂, ..., a_n that describe the state s₀.
- Trans(s, s') a formula which is satisfiable for a pair of state vectors s, s', iff the valuations a₁, a₂, ..., a_n, a'₁, a'₂, ..., a'_n describe states between which a transition (s, s') ∈ T exists.

Description of System Runs of Length k

- Run of length k consists of k + 1 states s_0, s_1, \ldots, s_k .
- The set of all runs of size k of the structure M is designated $[M]^k$ and described by the following formula:

$$[M]^k \equiv \textit{Init}(s_0) \land \bigwedge_{i=1}^k \textit{Trans}(s_{i-1}, s_i)$$

Example $[M]^3 \land [\neg \varphi]^3$ • $Init(s_0) \land Trans(s_0, s_1) \land Trans(s_1, s_2) \land Trans(s_2, s_3) \land \neg \varphi(s_3)$

Completeness of BMC

str. 10/31

Completeness of BMC for Detecting Safety Violations

Problem – Undetected Violation of a Safety Property

- The violation is not reachable using a path of length k.
- Paths shorter than k are not encoded in $[M]^k$.

Upper Bound on *k*

- If k ≥ d where d is the graph diameter, all possible error locations are covered.
- The diameter of the graph is bounded by 2ⁿ, where *n* is the number of bits of the state vector.

Solution

• Executing BMC iteratively for each $k \in [0, d]$.

Automated Detection of Graph Diameter

Facts

- Asking the user is unrealistic.
- Safe upper bounds are extremely overstated.
- We would like the verification procedure itself to detect whether *k* should be increased further.

Skeleton of an Algorithm for Complete BMC

$$k = 0$$

- while (true) do
 - if (counterexample of length k exists)

then return "Invalid"

if (all states are reachable within k steps)

then return "Valid"

$$k = k + 1$$

od

IA169 System Verification and Assurance - 08

Notation I

Prerequisites

- Kripke structure M = (S, T, I).
- States are described by bit vectors of fixed length.
- Trans is a SAT representation of a binary relation T.

Path of Length n

$$path(s_{[0..n]}) \equiv \bigwedge_{0 \le i < n} Trans(s_i, s_{i+1})$$

Validity of Statement Q Along the Entire Path

 $all.Q(s_{[0..n]})$

A Loop-Free Path

$$loopFree(s_{[0..n]}) \equiv path(s_{[0..n]}) \land \bigwedge_{0 \leq i < j \leq n} s_i \neq s_j$$

Existence of a Path of Length n From s_0 to s_n

$$path_n(s_0, s_n) \equiv \exists s_1 \dots s_{n-1}.path(s_{[0..n]})$$

Shortest Path

$$shortest(s_{[0..n]}) \equiv path(s_{[0..n]}) \land \neg (\bigvee_{0 \leq i < n} path_i(s_0, s_n))$$

Equivalent Problem Formulation

Verification

• We would like to show that no state that would violate the specification φ is reachable from the initial configuration, i.e. we want to show that

$$\forall i. \forall s_0 \dots s_i. (Init(s_0) \land path(s_{[0..i]}) \implies \varphi(s_i))$$

Alternatively

• We want to show that from an error state, the initial state is not reachable when going backwards

$$\forall i.\forall s_0 \dots s_i. \left(\mathsf{Init}(s_0) \Leftarrow \mathsf{path}(s_{[0..i]}) \land \neg \varphi(s_i) \right)$$

Equivalently

$$\forall i. \forall s_0 \dots s_i. \neg (\textit{Init}(s_0) \land \textit{path}(s_{[0..i]}) \land \neg \varphi(s_i))$$

IA169 System Verification and Assurance - 08

Termination Condition in the BMC Algorithm Skeleton

• No longer acyclic path from the initial state exists, that is, the following formula is unsatisfiable:

 $Init(s_0) \land IoopFree(s_{[0..i+1]})$

• Holds symmetrically for backwards reachability from error states.

$$\begin{array}{c|c} \textbf{Solution 1} \\ \bullet \ \texttt{not} \ \ \texttt{SAT}\Big(\ \ \textit{loopFree}(s_{[0..i+1]}) \ \land \ \ \textit{Init}(s_0) \ \Big) \\ \lor \\ \texttt{not} \ \ \texttt{SAT}\Big(\ \ \textit{loopFree}(s_{[0..i+1]}) \ \land \ \ \neg \varphi(s_{i+1}) \ \Big) \end{array}$$

Higher Efficiency Termination Criterion

- When using backward reachability from ¬φ states, paths that visit other ¬φ states do not need to be considered.
- Symmetrically holds also for forward reachability with multiple initial states: for completeness detection, paths that visit other initial states do not need to be considered.

Solution 2

• not SAT(
$$loopFree(s_{[0..i+1]}) \land lnit(s_0) \land all. \neg lnit(s_{[1..i+1]})$$
)
 \lor
not SAT($loopFree(s_{[0..i+1]}) \land \neg \varphi(s_{i+1}) \land all. \varphi(s_{[0..i]})$)

BMC not starting with k = 0

Observation

- For small values of *k*, SAT queries give neither a counterexample nor enable termination.
- We want to start BMC with k > 0.

Reformulating the Counterexample Test

• The original test for counterexample existence for a given *k*

$$\operatorname{SAT}(\operatorname{Init}(s_0) \land \operatorname{path}(s_{[0..k]}) \land \neg \varphi(s_k))$$

needs to be changed so that we do not miss counterexamples shorter than the initial value of k.

• New test for the existence of a counterexample:

$$SAT(Init(s_0) \land path(s_{[0..k]}) \land \neg all.\varphi(s_{[0..k]}))$$

k-induction in BMC

Observation

- The tests can be re-formulated so that they resemble the structure of mathematical induction.
- TAUT is a tautology test (unsatisfiability of negation).

Base Case

• Test for counterexample existence.

$$\operatorname{SAT}\left(\neg\left(\operatorname{\mathit{Init}}(s_o) \land \operatorname{\mathit{path}}(s_{[0..i]}) \implies \operatorname{\mathit{all}}.\varphi(s_{[0..i]})\right)\right)$$

Inductive Step

• Test for completeness.

$$\begin{array}{l} \operatorname{TAUT}\left(\neg \operatorname{Init}(s_{0}) \iff \operatorname{all.}\neg \operatorname{Init}(s_{[1..(i+1)]}) \land \operatorname{loopFree}(s_{[0..i+1]})\right) \\ \lor \\ \operatorname{TAUT}\left(\operatorname{loopFree}(s_{[0..i+1]}) \land \operatorname{all.}\varphi(s_{[0..i]}) \implies \varphi(s_{i+1})\right) \end{array}$$

IA169 System Verification and Assurance - 08

Acyclic vs Shortest Paths in BMC

Observation

- Graph diameter (d) is the length of the longest of the shortest paths between each pair of vertices in the graph.
- An acyclic path can be substantially longer than the graph diameter.

BMC with Shortest Paths

- BMC is correct if *loopFree* is replaced with *shortest*.
- The *shortest* predicate, however, needs quantifiers and is as such not a purely SAT application.

For more details, see ...

 Mary Sheeran, Satnam Singh, and Gunnar Stålmarck: Checking Safety Properties Using Induction and a SAT-Solver, FMCAD 2000, 108-125, LNCS 1954, Springer.

LTL and BMC

IA169 System Verification and Assurance - 08

str. 21/31

Observation 1

- LTL is only well-defined for infinite runs.
- For evaluating LTL on finite paths, we use three-value logic (true, false, cannot say).
- Validity of some LTL formulas cannot be decided on any finite path (eg. *GF a*).

Observation 2

- Cycles that consist of only a few states are unrolled by BMC to acyclic paths of length *k*.
- We allow encoding lasso-shaped paths.
- That is, (k, l)-cyclic paths.

(k,l)-cyclic runs

• A run $\pi = s_0 s_1 s_2 \dots$ of a Kripke structure $M = (S, T, I, s_0)$ is (k, I)-cyclic if

$$\pi = (s_0 s_1 s_2 \dots s_{l-1})(s_l \dots s_k)^{\omega},$$

where $0 < l \le k$ a $s_{l-1} = s_k$.

Observation

- If π is (k, l)-cyclic, π is also (k + 1, l + 1)-cyclic.
- Treating finite paths as (k, k)-cyclic is incorrect (could create a non-existent run in M).
- Every path of length k is either acyclic or (k, l)-cyclic.

Semantics of LTL on Finite Prefixes of Runs

Semantics of LTL for Finite Prefixes

- Let π be a run of a Kripke structure M.
- k is given.
- $\pi = \pi^0$

$$\begin{aligned} \pi^{i} &\models_{nl} X \varphi \quad \text{iff} \quad i < k \land \pi^{i+1} \models_{nl} \varphi \\ \pi^{i} &\models_{nl} \varphi U \psi \quad \text{iff} \quad \exists j.i \leq j \leq k, \pi^{j} \models_{nl} \psi \text{ and} \\ \forall m.i \leq m < j, \pi^{i} \models_{nl} \varphi \end{aligned}$$

Semantics of \models_k for LTL in BMC

- For (k, l)-cyclic paths, $\pi \models_k \varphi \iff \pi \models \varphi$ holds.
- For acyclic paths, $\pi \models_k \varphi \iff \pi^0 \models_{nl} \varphi$ holds.

•
$$\models_k \Longrightarrow \models_{k+1}$$
, \models_k approximates \models

BMC for LTL

Goal

 We construct a Boolean formula [M, φ, k] which is satisfiable iff Kripke structure M has a run π such that π ⊨_k φ.

•
$$[M, \varphi, k] \equiv [M]^k \wedge [\varphi, k]$$

Encoding

• $[M]^k$ encodes all paths of length k

•
$$[\varphi, k] \equiv [\varphi, k]_0 \vee \bigvee_{l=1}^k {}_l[\varphi, k]_0$$

- _[arphi,k]_0 encodes that the path is acyclic and $\models_{\mathit{nl}} \varphi$
- $_{I}[arphi,k]_{0}$ encodes that the path is (k, I)-cyclic and $\models arphi$

Fragment LTL-X

- Reduces the number of transitions (smaller SAT instance).
- Similar to partial order reduction.

For the Interested

- Keijo Heljanko: Bounded Model Checking for Finite-State Systems http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf
- Keijo Heljanko and Tommi Junttila: Advanced Tutorial on Bounded Model Checking http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/ lecture1.pdf

Conclusions on BMC

str. 27/31

Advantages of BMC

General

- Reduces to a standard SAT problem, advances in SAT solving help with BMC.
- Often finds counterexamples of minimal length (not always).
- Boolean formulas can be more compact than OBDD representation.

Verification of HW

• Thanks to k-induction, a very successful method.

Verification of SW

• Currently, according to Software Verification Competition (TACAS 2014), BMC in connection with SMT is currently among the best software verification methods (actually falsification).

General

- Not complete in general.
- Large SAT instances are still unsolvable.

Verification of SW

- Encoding an entire CFG as a SAT instance is currently unrealistic.
- K-induction cannot be used (the graph is incomplete, no back edges).
- Problems with dynamic data structure analysis.
- Loop analysis is hard.
- Inefficient for full arithmetic (partially solved by SMT).

Tools

- CBMC BMC for ANSI-C.
- ESBMC uses SMT, built on top of CBMC.
- LLBMC BMC for LLVM bitcode.

Food for Thought...

- What differentiates modern SMT-BMC from symbolic execution?
- Boundaries are not clear.

Homework

• Study structure and results of Software Verification Competition (TACAS).