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Motivation example

Fail-repair system

idle working done

repair error

start end
bug

service

ok

reset

What are the properties of the model?

G(working =⇒ F done) NO

G(working =⇒ F error) NO

FG(working ∨ error ∨ repair) NO
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Motivation example

Fail-repair system

idle working done

repair error

start
0.95

end
bug

0.05

service

ok

reset

What is the probability of reaching “done” from “working” with no
visit of “error”?

What is the probability of reaching “done” from “working” with at
most one visit of “error”?

What is the probability of reaching “done” from “working”?
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Section

Discrete-time Markov Chains (DTMC)
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Probabilistic models

Discrete-time Markov Chains (DTMC)

Standard model for probabilistic systems.

State-based model with probabilities on branching.

Based on the current state, the succeeding state is given by a
discrete probability distribution.

Markov property (“memorylessness”) — only the current state
determines the successors (the past states are irrelevant).

Probabilities on outgoing edges sums to 1 for each state.

Hence, each state has at least one outgoing edge (“no deadlock”).
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DTMC examples

Model of a queue

0 1 2 3 4
1/3 1/3 1/3 1/3

2/32/32/32/3

2/3 1/3

Queue for at most 4 items. In every time tick, a new item comes with
probability 1/3 and an item is consumed with probability 2/3.

What if a new item comes with probability p = 1/2 and an item is
consumed with probability q = 2/3?
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DTMC examples

Model of the new queue

0 1 2 3 4
p p(1− q) p(1− q) p(1− q)

qq(1− p)q(1− p)q(1− p)

1− p 1− q
(1−p)(1−q)

+ pq
(1−p)(1−q)

+ pq
(1−p)(1−q)

+ pq
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DTMC - formal definition

Discrete-time Markov Chain is given by

a set of states S,

an initial state s0 of S,

a probability matrix P : S × S → [0, 1], and

an interpretation of atomic propositions I : S → AP.

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
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Back to our questions

Fail-Repair System

idle working done

repair error

1 0.95
0.05

1

1

1

What is the probability of reaching “done” from “working”
with no visit of “error”?
What is the probability of reaching “done” from “working”
with at most one visit of “error”?
What is the probability of reaching “done” from “working”?
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Markov chain analysis

Transient analysis
distribution after k-steps
reaching/hitting probability
hitting time

Long run analysis
probability of infinite hitting
stationary (invariant) distribution
mean inter visit time
long run limit distribution
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Section

Property Specification
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Property specification languages
Recall some non-probabilistic specification languages:

LTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕU ϕ

CTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX ϕ | E [ϕU ϕ] | EG ϕ

Syntax of CTL∗

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E ψ
path formula ψ ::= ϕ | ¬ψ | ψ ∨ ψ | X ψ | ψU ψ
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Property specification languages
We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL
state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | P./bψ

path formula ψ ::= X ϕ | ϕU ϕ | ϕU≤k ϕ

where
b ∈ [0, 1] is a probability bound,
./∈ {≤, <,≥, >}, and
k ∈ N is a bound on the number of steps.

A PCTL formula is always a state formula.

αU≤k β is a bounded until saying that α holds until β within k steps.
For k = 3 it is equivalent to β ∨ (α ∧ X β) ∨ (α ∧ X (β ∨ α ∧ X β)).

Some tools also supports P=?ψ asking for the probability that the
specified behaviour will occur.
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PCTL examples
We can also use derived operators like G , F , ∧, ⇒, etc.

idle working done

repair error

1 0.95
0.05

1

1

1

Probabilistic reachability P≥1( F done )
probability of reaching the state done is equal to 1

Probabilistic bounded reachability P>0.99( F≤6 done )
probability of reaching the state done in at most 6 steps is > 0.99

Probabilistic until P<0.96( (¬error) U (done) )
probability of reaching done with no visit of error is less than 0.96
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Qualitative vs. quantitative properties

Qualitative PCTL properties
P./b ψ where b is either 0 or 1

Quantitative PCTL properties
P./b ψ where b is in (0, 1)
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Qualitative properties

In DTMC where zero probability edges are erased, it holds that
P>0( X ϕ) is equivalent to EX ϕ

there is a next state satisfying ϕ
P≥1( X ϕ) is equivalent to AX ϕ

the next states satisfy ϕ
P>0( F ϕ) is equivalent to EF ϕ

there exists a finite path to a state satisfying ϕ

but

P≥1( F ϕ) is not equivalent to AF ϕ
(see, e.g., AF done on our running example)

There is no CTL formula equivalent to P≥1( F ϕ),
and no PCTL formula equivalent to AF ϕ.
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Quantitative - forward reachability

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


Probability distribution after k steps when starting in 1[
1 0 0 0 0

]
× P =

[
0 1 0 0 0

]
[
1 0 0 0 0

]
× P2 =

[
0 0 0.05 0 0.95

]
[
1 0 0 0 0

]
× P3 =

[
0 0 0 0.05 0.95

]
[
1 0 0 0 0

]
× P4 =

[
0 0.05 0 0 0.95

]
[
1 0 0 0 0

]
× P5 =

[
0 0 0.0025 0 0.9975

]
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Quantitative - backward reachability

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


Prob. of being in states 2 or 5 after k steps, i.e. P=?F =k(2 ∨ 5)

P ×
[
0 1 0 0 1

]T
=
[
1 0.95 0 1 1

]T
P2 ×

[
0 1 0 0 1

]T
=
[
0.95 0.95 1 0.95 1

]T
P3 ×

[
0 1 0 0 1

]T
=
[
0.95 1 0.95 0.95 1

]T
P4 ×

[
0 1 0 0 1

]T
=
[
1 0.9975 0.95 1 1

]T
P5 ×

[
0 1 0 0 1

]T
=
[
0.9975 0.9975 1 0.9975 1

]T
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"Up to" reachability

Computing P=? F≤6 3.

Is it
∑6

i=0 P=? F =i 3 ? 1 2 5

4 3

1 0.95

0.05

1
1 1

No, we are summing probabilities of repeated visits.
It is true when the model is changed such that repeated visits are
not possible. Alternativelly, we can make the target state
absorbing.

1 2 5

T 3

1 0.95

0.05

1
1

1

and it is
∑6

i=0 P=? F =i 3

1 2 5

4 3

1 0.95

0.05
1 1

1

and it is P=? F =6 3
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Unbounded reachability - optional slide

Unbounded reachability
Let p(s,A) be the probability of reaching a state in A from s.

It holds that:
p(s,A) = 1 for s ∈ A
p(s,A) =

∑
s′∈succ(s) P(s, s ′) ∗ p(s ′,A) for s 6∈ A

where succ(s) is a set of successors of s and P(s, s ′) is the
probability on the edge from s to s ′.

Theorem
The minimal non-negative solution of the above equations
equals to the probability of unbounded reachability.
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Section

Long Run Analysis
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Long run analysis

1 2 5

4 3

1 0.95

0.05

1
1 1

Recall that we reach the state 5(done) with probability 1.

1 2 5

4 3

1 0.95

0.05

1
1

0.5

0.5

What are the states visited infinitely often with probability 1?
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States visited infinitely often

Decompose the graph
representation onto
strongly connected
components.

Theorem 1

A state is not visited or visited infinitely often with
probability 1 if and only if it is in a bottom strongly
connected component.
All other states are visited finitely many times with
probability 1.

1This holds only in DTMC models with finitely many states.
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Frequency of visits

How often is a state visited
among the states visited
infinitely many times?

1 2 5

4 3

1 0.95

0.05

1
1

0.5

0.5

Theorem

limn→∞E
( # visits of state i during the first n steps

n

)
= πi

where π is a so called stationary (or steady-state or invariant or
equilibrium) distribution satisfying π × P = π.
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DTMC extensions - communication and nondeterminism

Last remark on some DTMC extensions.

Modules and synchronisation
modules
actions
rewards

Decision extension
Markov Decision Processes (MDP)
Pmin and Pmax properties
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