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George Pólya: How to Solve It?

What is the difference between method and device?

A method is a device which you used twice.

Andrew Hamilton, rektor Oxford University, Respekt 7/2015

Je nutné ḿıt na paměti, že my studenty nep̌ripravujeme na konkrétńı

povoláńı, ale trénujeme jejich mysl, aby byli co nejlépe p̌ripraveni na

změny, jež nás nevyhnutelně čekaj́ı, a které budou nejsṕı̌s dosti

dramatické.
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COMPLEXITY OF PROBLEMS

AND ALGORITHMS



A strikingly modern thought
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“ As soon as an Analytic Engine exists, it will necessarily guide the future  
   course of the science.  Whenever any result is sought by its aid, the question  
   will arise—By what course of calculation can these results be arrived at by  
   the machine in the shortest time? ”    —  Charles Babbage (1864)

Analytic Engine

how many times do you 
have to turn the crank?



Models of computation:  Turing machines

Deterministic Turing machine.  Simple and idealistic model. 

 
 
 
 
 
 
 
 
Running time.  Number of steps. 

Memory.  Number of tape cells utilized. 

 
Caveat.  No random access of memory. 

独Single-tape TM requires ≥ n2 steps to detect n-bit palindromes. 

独Easy to detect palindromes in ≤ cn steps on a real computer.
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Models of computation:  word RAM

Word RAM. 

独Each memory location and input/output cell stores a w-bit integer. 

独Primitive operations: arithmetic/logic operations, read/write memory, 
array indexing, following a pointer, conditional branch, … 

 
 
 
 
 
 
 
 
 
Running time.  Number of primitive operations. 

Memory.  Number of memory cells utilized. 

 
Caveat.  At times, need more refined model (e.g., multiplying n-bit integers).
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…input

output …

. 

. 

.

memory

program

assume w ≥ log2 n

ia[i]

constant-time C-style operations 
(w = 64)



Brute force

Brute force.  For many nontrivial problems, there is a natural brute-force 

search algorithm that checks every possible solution. 

独Typically takes 2n steps (or worse) for inputs of size n. 

独Unacceptable in practice. 

 
 
 
 
 
 
 
 
 
 
 
 
Ex.  Stable matching problem: test all n! perfect matchings for stability.
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Desirable scaling property.  When the input size doubles, the algorithm 

should slow down by at most some constant factor C.  

 
 
 
Def.  An algorithm is poly-time if the above scaling property holds.

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

Polynomial running time

 7

choose C = 2d 

There exist constants c > 0 and d > 0 such that,
for every input of size n, the running time of the algorithm

is bounded above by c nd primitive computational steps.



Polynomial running time

We say that an algorithm is efficient if it has a polynomial running time. 

 
Theory.  Definition is (relatively) insensitive to model of computation. 

 
Practice.  It really works! 

独The poly-time algorithms that people develop have both 
small constants and small exponents. 

独Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem. 

Exceptions.  Some poly-time algorithms in the wild  
have galactic constants and/or huge exponents. 
 

Q.  Which would you prefer:  20 n120  or  n1 + 0.02 ln n  ? 
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Map graphs in polynomial time

Mikkel Thorup
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

mthorup@diku.dk

Abstract

Chen,Grigni, andPapadimitriou (WADS’97 andSTOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.

1. Introduction

Recently Chen, Grigni, and Papadimitriou [4, 5] suggested
the study of a modified notion of planarity. The basic frame-
work is the same as that of planar graphs. We are given a set of
non-overlapping faces in the plane, each being a disc homeo-
morphism. By non-overlapping, we mean that two faces may
only intersect in their boundaries. The plane may or may not
be completely covered by the faces. A traditional planar graph
is obtained as follows. The vertices are the faces, and two
faces are neighbors if their intersection contains a non-trivial
curve. Chen et.al. [4, 5] suggested simplifying the definition,
by saying that two faces are neighbors if and only if they in-
tersect in at least one point. They called the resulting graphs
“planar map graphs”. Here we will just call themmap graphs.
Note that there are non-planar map graphs, for as illustrated
in Figure 1, map graphs can contain arbitrarily large cliques.
We shall refer to the first type of clique as a flower with the
petals intersecting in a center. The second is a hamantash
based on three distinct corner points. Each of the three pairs
of corner points is connected by a side of parallel faces. In

Most of this work was done while the author visited MIT.
Chen et.al. called flowers for pizzas, but “flower” seems more natural.

Figure 1. Large cliques in maps

addition, the hamantach may have at most two triangle faces
touching all three corners. In [5] there is a classification of
all the different types of large cliques in maps. Chen et.al. [5]
showed that recognizing map graphs is in NP, hence that the
recognition can be done in singly exponential time. However,
they conjectured that, in fact, map graphs can be recognized in
polynomial time. They supported their conjecture by showing
that if we allow at most 4 faces to meet in any single point, the
resultingmap graphs can be recognized in polynomial time. In
this paper, we settle the general conjecture, showing that given
a graph, we can decide in polynomial time if it is a map graph.
The algorithm can easily be modified to draw a corresponding
map if it exists.

Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
to color the faces so that any two intersecting facesgot different
colors. For an account of colorful history, the reader is referred
to [7, 2.5]. In particular, the history provides an answer to a
problem of Chen et.al. [5]: if at most 4 facesmeet in any single
point, canwe color themapwith 6 colors? It is straightforward
to see that the resulting graphs are 1-planar, meaning that they
can be drawn in the plane such that each edge is crossed by at
most one other edge. Already in 1965, Ringel [9] conjectured
that all 1-planar graphs can be colored with 6 colors, and this
conjecture was settled in 1984 by Borodin [2], so the answer
to Chen et.al.’s problem is: yes.

Map metrics The shortest path metrics of map graphs are
commonly used in prizing systems, where you pay for cross-
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Worst-case analysis

Worst case.  Running time guarantee for any input of size n. 

独Generally captures efficiency in practice. 

独Draconian view, but hard to find effective alternative. 

 
 
Exceptions.  Some exponential-time algorithms are used widely in practice 

because the worst-case instances don’t arise.
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simplex algorithm Linux grep k-means algorithm



Other types of analyses

Probabilistic.  Expected running time of a randomized algorithm.  

Ex. The expected number of compares to quicksort n elements is ~ 2n ln n.  

 
 
 
 
Amortized.  Worst-case running time for any sequence of n operations. 

Ex.  Starting from an empty stack, any sequence of n push and pop 

operations takes O(n) primitive computational steps using a resizing array. 

 
 
 
 
 
 
Also.  Average-case analysis, smoothed analysis, competitive analysis, ...
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PROBLEM COMPLEXITY

algorithm complexity versus problem complexity

• lower bound of the problem complexity

• proof techniques

• upper bound of the problem complexity

• complexity of the particular algorithm solving the problem

• problem complexity

• given by a lower and upper bound

• tight bounds

7



LOWER BOUND PROOF TECHNIQUES

• information-theoretic arguments

• decision tree

• problem reduction

• adversary arguments

8



INFORMATION-THEORETIC ARGUMENTS

based on counting the number of items in the problems’ input that must

be processed and the number of output items that need to be produced

list all permutations of n-elements sequence

the number of permutation is n!; lower bound is Ω(n!); problem

complexity is Θ(n!)

evaluate a polynomial of degree n at a given point x

lower bound is Ω(n); problem complexity is Θ(n)

product of two n-by-n matrices

lower bound is Ω(n2) (size of the result); upper bound is O(nlog2 7);

problem complexity is ???

Traveling Salesperson

lower bound is Ω(n2) (number of graph edges); upper bound is

exponential; problem complexity is ???

9



DECISION TREES

• many algorithms work by comparing items of their inputs

• we study performance of such algorithms with a device called the

decision tree

• decision tree represents computations on inputs of length n

• each internal node represents a key comparison

• node’s degree is proportional to the number of possible answers and

node’s subtrees contain information about subsequent comparisons

• each leaf represents a possible outcome; the number of leaves must

be at least as large as the number of possible outcomes

• the algorithms’s work on a particular input of size n can be traced

by a path from the root to a leaf

10



DECISION TREES AND LOWER BOUNDS

• a tree with a given number of leaves has to be tall enough

• a tree with degree k and l leaves has depth at least dlogk le
• Ω(log l(n)) is the lower bound for problem complexity

(l(n) is the number of possible outputs for inputs of length n)
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DECISION TREES FOR SEARCHING A SORTED ARRAY

Input sorted sequence of numbers (x1, . . . , xn), number x

Output index i such that xi = x or NONE

• key comparisons

• n + 1 possible outcomes

• lower bound Ω(log n)

• lower bound is tight
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DECISION TREES FOR SORTING ALGORITHMS

Input sequence of pairwise different numbers (x1, . . . , xn)

Output permutation Π such that xΠ(1) < xΠ(2) < . . . < xΠ(n)

• key comparisons: xi < xj

• n! possible outcomes (number of permutations)

• lower bound Ω(log n!)

• log n! ∈ Ω(n log n) (viz Stirling formulae)

• lower bound is tight
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PROBLEM REDUCTION

if we know a lower bound for problem Q

and problem Q reduces to problem P

then lower bound for Q is as well a lower bound for P

Q element uniqueness problem in (x1, . . . , xn)?

P Euclidean minimum spanning tree problem

lower bound for the element uniqueness problem is Ω(n log n)

reduction graph with vertices (x1, 0), . . . (xn, 0)

checking whether the minimum spanning tree contains a zero-length

edge answers the question about uniqueness of the given numbers

claim lower bound for the Euclidean minimum spanning tree problem is

Ω(n log n) 14



ADVERSARY ARGUMENTS

The idea is that an all-powerful malicious adversary pretends to choose

an input for the algorithm. When the algorithm asks a question about

the input, the adversary answers in whatever way will make the algorithm

do the most work. If the algorithm does not ask enough queries before

terminating, then there will be several different inputs, each consistent

with the adversary’s answers, that should result in different outputs. In

this case, whatever the algorithm outputs, the adversary can ’reveal’ an

input that is consistent with its answers, but contradists the algorithm’s

output, an then claim that that was the input that he was using all

along.
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ADVERSARY FOR THE MAXIMUM PROBLEM

The adversary originally pretends that xi = i for all i , and answers all

comparison queries accordingly. Whenever the adversary reveals that xi < xj , he

marks xi as an item that the algorithm knows (or should know) is not the

maximum element. At most one element xi is marked after each comparison.

Note that xn is never marked. If the algorithm does less than n − 1 comparisons

before it terminates, the adversary must have at least one other unmarked

element xk 6= xn. In this case, the adversary can change the value of xk from k

to n + 1 making xk the largest element, without being inconsistent with any of

the comparisons that the algorithm has performed. However, xn is the maximum

element in the original input, and xk is the largest element in the modified

input, so the algorithm cannot possibly give the correct answer for both cases.

Any comparison-based algorithm solving the maximum element problem must

perform at least n − 1 comparisons.

The decision tree model gives lower bound log2 n. 16



ADVERSARY FOR THE MAXIM. AND MINIM. PROBLEM

Similar arguments as for the maximum problem. Whenever the adversary

reveals that xi < xj , he marks xi as an item that the algorithm knows is

not the maximum element, and he marks xj as an item that the

algorithm knows is not the minimum element. Whenever two already

marked elements are compared, at most one new mark can be added. If

the algorithm does less than bn/2c+ n − 2 comparisons before it

terminates, the adversary must have at least two elements that can be

both the maximum or both minimum, so the algorithm cannot possibly

give the correct answer .

Any comparison-based algorithm solving the maximum and minimum

element problem must perform at least bn/2c+ n − 2 comparisons.
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ALGORITHM COMPLEXITY
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ALGORITHM COMPLEXITY

ANALYSIS

RECURSIVE ALGORITHMS



5.  DIVIDE AND CONQUER

‣ mergesort 

‣ counting inversions 

‣ randomized quicksort 

‣ median and selection 

‣ closest pair of points

SECTION 9.3



Median and selection problems

Selection.  Given n elements from a totally ordered universe, find kth smallest. 

独Minimum: k = 1;  maximum: k = n. 

独Median:  k = ⎣(n + 1) / 2⎦. 

独O(n) compares for min or max. 

独O(n log n) compares by sorting. 

独O(n log k) compares with a binary heap. 

Applications.  Order statistics; find the “top k”; bottleneck paths, …  

Q.  Can we do it with O(n) compares? 

A.  Yes! Selection is easier than sorting.

43

max heap with k smallest



Randomized quickselect

独Pick a random pivot element p ∈ A. 

独3-way partition the array into L, M, and R. 

独Recur in one subarray—the one containing the kth smallest element.

44

QUICK-SELECT(A, k)                          


Pick pivot p ∈ A uniformly at random.

(L, M, R) ← PARTITION-3-WAY(A, p).

IF          (k  ≤  | L |)    RETURN QUICK-SELECT(L, k).

ELSE IF  (k  > | L | + | M |)  RETURN QUICK-SELECT(R, k – | L | – | M |)

ELSE IF  (k  =  | L |)    RETURN p.


T (i)

T (n − i − 1)

Θ(n)



Randomized quickselect analysis

Intuition.  Split candy bar uniformly  ⇒  expected size of larger piece is ¾. 
 
 

Def.  T(n, k) = expected # compares to select kth smallest in array of length ≤ n. 

Def.  T(n) = maxk T(n, k). 

Proposition.  T(n)  ≤  4 n. 
Pf.  [ by strong induction on n ] 

独Assume true for 1, 2, …, n – 1. 

独T(n) satisfies the following recurrence:

45

T(n)  ≤  T(3 n / 4)  + n    ⇒    T(n)  ≤  4 n

T(n)  ≤  n  + 1 / n [  2T(n / 2) + … + 2T(n – 3) + 2T(n – 2) + 2T(n – 1) ]

  ≤  n  + 1 / n [  8(n / 2) + … + 8(n – 3) + 8(n – 2) + 8(n – 1) ]

  ≤  n  + 1 / n (3n2)

  =  4 n.     ▪

can assume we always recur of 
 larger of two subarrays since T(n) 

is monotone non-decreasing

tiny cheat: sum should start at T(⎣n/2⎦)

inductive hypothesis

not rigorous: can’t assume 
E[T(i)]  ≤  T(E[i])



Selection in worst-case linear time

Goal.  Find pivot element p that divides list of n elements into two pieces so 

that each piece is guaranteed to have ≤  7/10 n elements. 

 
Q.  How to find approximate median in linear time? 

A.  Recursively compute median of sample of ≤  2/10 n elements.

46

Θ(1) if n = 1
T (7/10 n)  +   T (2/10 n)  +  Θ(n) otherwiseT(n)  =

two subproblems 
of different sizes!

⇒  T(n)  =  Θ(n)

we’ll need to show this



Choosing the pivot element

独Divide n elements into ⎣n / 5⎦ groups of 5 elements each (plus extra).

47

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54



Choosing the pivot element

独Divide n elements into ⎣n / 5⎦ groups of 5 elements each (plus extra). 

独Find median of each group (except extra). 

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

48

medians

n = 54



Choosing the pivot element

独Divide n elements into ⎣n / 5⎦ groups of 5 elements each (plus extra). 

独Find median of each group (except extra). 

独Find median of ⎣n / 5⎦ medians recursively. 

独Use median-of-medians as pivot element.

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

medians

49

median of 
medians 38 18 35

43

2328 40 19 31

15

28

n = 54



Median-of-medians selection algorithm

50

MOM-SELECT(A, k)                          


n ← | A |.

IF (n <  50)

RETURN  kth smallest of element of A via mergesort.

 
Group A into ⎣n / 5⎦ groups of 5 elements each (ignore leftovers).

B ← median of each group of 5.

p ← MOM-SELECT(B, ⎣n / 10⎦)

 
(L, M, R) ← PARTITION-3-WAY(A, p).

IF           (k  ≤  | L |)            RETURN MOM-SELECT(L, k).

ELSE IF  (k  > | L | + | M |)  RETURN MOM-SELECT(R, k – | L | – | M |)

ELSE                                  RETURN p.


median of medians



38 35

43

40 31

Analysis of median-of-medians selection algorithm

独At least half of 5-element medians ≤  p.

51

1029 37 2 1855 24 34 36

4422 1152 53 1312 420 27

2328 266 119 46 49 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of 
medians p 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



Analysis of median-of-medians selection algorithm

独At least half of 5-element medians ≤  p. 

独At least ⎣⎣n / 5⎦ / 2⎦ = ⎣n / 10⎦ medians ≤  p.

52

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

18

2328 19

15

28

n = 54

median of 
medians p

medians ≤ p



Analysis of median-of-medians selection algorithm

独At least half of 5-element medians ≤  p. 

独At least ⎣⎣n / 5⎦ / 2⎦ = ⎣n / 10⎦ medians ≤  p. 

独At least 3 ⎣n / 10⎦ elements ≤  p.

53n = 54

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

18

2328 19

15

28

14

16

3

10

11 13

9

1

1222

median of 
medians p

medians ≤ p



独At least half of 5-element medians ≥  p.

18

23 19

15

18

23 19

15

Analysis of median-of-medians selection algorithm

54

1029 3738 2 55 24 3534 36

4422 1152 53 1312 43 420 27

28 266 40 1 46 4931 8

914 35 54 4830 47 5132 21

3945 50 25 4116 17 722

38 35

43

28 40 3128

n = 54

median of 
medians p

medians



Analysis of median-of-medians selection algorithm

独At least half of 5-element medians ≥  p. 

独At least ⎣⎣n / 5⎦ / 2⎦ = ⎣n / 10⎦ medians ≥  p. 

55
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median of 
medians p

medians ≥ p



Analysis of median-of-medians selection algorithm

独At least half of 5-element medians ≥  p. 

独At least ⎣⎣n / 5⎦ / 2⎦ = ⎣n / 10⎦ medians ≥  p.  

独At least 3 ⎣n / 10⎦ elements ≥  p.
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1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 35

43

28 40 3128

5147
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29 34

46 49

53

54

45 50

32

n = 54

median of 
medians p

medians ≥ p

18

23 19

15



Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence. 

独Select called recursively with ⎣n / 5⎦ elements to compute MOM p. 

独At least 3 ⎣n / 10⎦ elements ≤  p.  

独At least 3 ⎣n / 10⎦ elements ≥  p.  

独Select called recursively with at most n  – 3 ⎣n / 10⎦ elements. 

 
Def.  C(n) = max # compares on any array of n elements. 

 
 
 
 
 
Intuition. 

独C(n) is going to be at least linear in n  ⇒  C(n) is super-additive. 

独Ignoring floors, this implies that  C(n) ≤  C(n / 5 + n − 3n / 10) + 11/5 n
       =  C(9n / 10) + 11/5 n

 ⇒ C(n)  ≤  22n.
57
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medians

recursive 
select

computing median of 5 
(≤ 6 compares per group) 

partitioning 
(≤ n compares)

C(n) � C (�n/5�) + C (n� 3�n/10�) + 11
5 n



Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence. 

独Select called recursively with ⎣n / 5⎦ elements to compute MOM p. 

独At least 3 ⎣n / 10⎦ elements ≤  p.  

独At least 3 ⎣n / 10⎦ elements ≥  p.  

独Select called recursively with at most n  – 3 ⎣n / 10⎦ elements. 

Def.  C(n) = max # compares on any array of n elements. 

 
 
 
 
 
Now, let’s solve given recurrence. 

独Assume n is both a power of 5 and a power of 10 ?  

独Prove that C(n) is monotone non-decreasing.
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median of 
medians

recursive 
select

computing median of 5 
(≤ 6 compares per group) 

partitioning 
(≤ n compares)

C(n) � C (�n/5�) + C (n� 3�n/10�) + 11
5 n



Consider the following recurrence 
 
 
 
 
Is C(n) monotone non-decreasing?

A. Yes, obviously.

B. Yes, but proof is tedious.

C. Yes, but proof is hard.

D. No.
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Divide-and-conquer:  quiz 4

C(19) = 165 
C(20) = 134.2

C(n) =

�
�
�

0 B7 n � 1

C(�n/5�) + C(n� 3�n/10�) + 11
5 n B7 n > 1
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Median-of-medians selection algorithm recurrence

Analysis of selection algorithm recurrence. 

独T(n) = max # compares on any array of ≤ n elements. 

独T(n) is monotone non-decreasing, but C(n) is not! 

 
 
 
 
Claim.  T(n)  ≤  44 n. 

Pf.  [ by strong induction ] 

独Base case:  T(n)  ≤  6 n for n  <  50 (mergesort). 

独Inductive hypothesis:  assume true for 1, 2, …, n – 1. 

独Induction step:  for n  ≥  50, we have either T(n)  ≤  T(n – 1)  ≤  44 n  or 

60

T(n) ≤  T(⎣n / 5⎦)  +  T(n – 3 ⎣n / 10⎦) +  11/5 n

≤  44 (⎣n / 5⎦)  +  44 (n – 3 ⎣n / 10⎦) +  11/5 n

=  44 n.    ▪
≤  44 (n / 5)  +  44 n – 44 (n / 4) +  11/5 n for  n ≥ 50,  3 ⎣n / 10⎦  ≥  n / 4

inductive 
hypothesis

T (n) �

�
�
�

6n B7 n < 50

max{ T (n� 1), T (�n/5�) + T (n� 3�n/10�) + 11
5 n) } B7 n � 50
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Suppose that we divide n elements into ⎣n / r⎦ groups of r elements each, 
and use the median-of-medians of these ⎣n / r⎦ groups as the pivot.
For which r is the worst-case running time of select O(n) ?

A. r  =  3

B. r  =  7

C. Both A and B.

D. Neither A nor B.
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Divide-and-conquer:  quiz 5

T(n)  =   T(n / 3)  +  T(n − 2n / 6)   +  Θ(n)   ⇒   T(n) = Θ(n log n)

T(n)  =   T(n / 7)  +  T(n − 4n / 14) +  Θ(n)   ⇒   T(n) = Θ(n)



Linear-time selection retrospective

Proposition.  [Blum–Floyd–Pratt–Rivest–Tarjan 1973]  There exists a 

compare-based selection algorithm whose worst-case running time is O(n). 
 
 
 
 
 
 
 
 
 
Theory. 

独Optimized version of BFPRT: ≤  5.4305 n compares. 

独Upper bound: [Dor–Zwick 1995]  ≤  2.95 n compares. 

独Lower bound: [Dor–Zwick 1999]  ≥ (2 + 2−80) n compares. 

 
Practice.  Constants too large to be useful.
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Time Bounds for Selection* 
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Department of Computer Science, Stanford University, Stanford, California 94305 

Received November 14, 1972 

The number of comparisons required to select the i-th smallest of n numbers is shown 
to be at most a linear function of n by analysis of a new selection algori thm--PICK. 
Specifically, no more than 5.4305 n comparisons are ever required. This bound is 
improved for extreme values of i, and a new lower bound on the requisite number 
of comparisons is also proved. 

1. INTRODUCTION 

In this paper we present a new selection algorithm, PICK, and derive by an analysis 
of its efficiency the (surprising) result that the cost of selection is at most a linear 
function of the number of input items. In addition, we prove a new lower bound 
for the cost of selection. 

The selection problem is perhaps best exemplified by the computation of medians. 
In general, we may wish to select the i-th smallest of a set of n distinct numbers, 
or the element ranking closest to a given percentile level. 

Interest in this problem may be traced to the realm of sports and the design of 
(traditionally, tennis) tournaments to select the first- and second-best players. In 
1883, Lewis Carroll published an article [1] denouncing the unfair method by which 
the second-best player is usually determined in a "knockout tournament" -- the loser 
of the final match is often not the second-best! (Any of the players who lost only 
to the best player may be second-best.) Around 1930, Hugo Steinhaus brought the 
problem into the realm of algorithmic complexity by asking for the minimum number 
of matches required to (correctly) select both the first- and second-best players 
from a field of n contestants. In 1932, J. Schreier [8] showed that no more than 
n + [logg(n)]- 2 matches are required, and in 1964, S. S. Kislitsin [6] proved 
this number to be necessary as well. Schreier's method uses a knockout tournament 
to determine the winner, followed by a second knockout tournament among the 

* This work was supported by the National Science Foundation under grant GJ-992. 
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Matching med-school students to hospitals

Goal.  Given a set of preferences among hospitals and med-school students, 

design a self-reinforcing admissions process. 

 
Unstable pair.  Hospital h and student s form an unstable pair if both: 

独h prefers s to one of its admitted students. 

独s prefers h to assigned hospital. 

 
Stable assignment.  Assignment with no unstable pairs. 

独Natural and desirable condition. 

独Individual self-interest prevents any hospital–student side deal.

3



Stable matching problem: input

Input.  A set of n hospitals H and a set of n students S. 

独Each hospital h ∈ H ranks students. 

独Each student s ∈ S ranks hospitals.

4

favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

one student per hospital (for now)



Perfect matching

Def.  A  matching M is a set of ordered pairs h–s with h ∈ H and s ∈ S s.t. 

独Each hospital h ∈ H appears in at most one pair of M. 

独Each student s ∈ S appears in at most one pair of M. 

Def.  A matching M is perfect if | M | = | H | = | S | = n.

5

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

a perfect matching M = { A–Z, B-Y, C-X }



Unstable pair

Def.  Given a perfect matching M, hospital h and student s form an 
unstable pair if both: 

独h prefers s to matched student. 

独s prefers h to matched hospital. 

Key point.  An unstable pair h–s could each improve by joint action.

6

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

A-Y is an unstable pair for matching M = { A–Z, B-Y, C-X }



Which pair is unstable in the matching { A–X, B–Z, C–Y } ?

A.  A–Y. 

B.  B–X. 

C.  B–Z. 

D.  None of the above.

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

7

Stable matching:  quiz 1

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago



Stable matching problem

Def.  A stable matching is a perfect matching with no unstable pairs. 

Stable matching problem.  Given the preference lists of n hospitals and  
n students, find a stable matching (if one exists).

9

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

a stable matching M = { A–X, B–Y, C–Z }



Stable roommate problem

Q.  Do stable matchings always exist? 

A.  Not obvious a priori. 

 
Stable roommate problem. 

独2 n people; each person ranks others from 1 to 2 n – 1. 

独Assign roommate pairs so that no unstable pairs. 
 
 
 
 
 
 
 
 

Observation.  Stable matchings need not exist.

10

1st 2nd 3rd

A B C D

B C A D

C A B D

D A B C

A–B, C–D  ⇒    B–C unstable 
A–C, B–D  ⇒    A–B unstable 
A–D, B–C  ⇒    A–C unstable

no perfect matching is stable
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Gale–Shapley deferred acceptance algorithm

An intuitive method that guarantees to find a stable matching.

12

GALE–SHAPLEY (preference lists for hospitals and students)                          


INITIALIZE  M to empty matching.

WHILE  (some hospital h is unmatched and hasn’t proposed to every student)

    s  ← first student on h’s list to whom h has not yet proposed.

    IF  (s is unmatched)

Add h–s to matching M.

ELSE IF  (s prefers h to current partner hʹ)

Replace hʹ–s with h–s in matching M.
ELSE

s rejects h.

RETURN stable matching M.




Proof of correctness:  termination

Observation 1.  Hospitals propose to students in decreasing order of 

preference. 

 
Observation 2.  Once a student is matched, the student never becomes 

unmatched; only “trades up.” 

 
Claim.  Algorithm terminates after at most n 2 iterations of WHILE loop. 

Pf.  Each time through the WHILE loop, a hospital proposes to a new student. 

Thus, there are at most n 2 possible proposals.  ▪

13

B

A

1st

V

W

2nd

X

Y

3rd

X

W

VE

D

C X

Y

V

W

W

V

Y

X

4th

Z

Z

5th

V

Y

Z

Z

Y

X

W

Z

W

V

1st

B

C

2nd

D

E

3rd

D

C

AZ

Y

X D

E

A

B

B

A

E

C

4th

A

B

5th

A

E

C

D

D

C

B

E

n(n-1) + 1 proposals



Proof of correctness:  perfect matching

Claim.  Gale–Shapley outputs a matching. 

Pf. 

独Hospital proposes only if unmatched.  ⇒  matched to ≤ 1 student 

独Student keeps only best hospital.        ⇒  matched to ≤ 1 hospital  

 
Claim.  In Gale–Shapley matching, all hospitals get matched. 

Pf.  [by contradiction] 

独Suppose, for sake of contradiction, that some hospital h ∈ H is  
unmatched upon termination of Gale–Shapley algorithm. 

独Then some student, say s ∈ S, is unmatched upon termination. 

独By Observation 2, s was never proposed to. 

独But, h proposes to every student, since h ends up unmatched.  ※ 

Claim.  In Gale–Shapley matching, all students get matched. 

Pf.  [by counting] 

独By previous claim, all n hospitals get matched. 

独Thus, all n students get matched.  ▪
14



Proof of correctness:  stability

Claim.  In Gale–Shapley matching M*, there are no unstable pairs. 

Pf.  Consider any pair h–s that is not in M*. 

独Case 1:  h never proposed to s. 
     ⇒  h prefers its Gale–Shapley partner sʹ to s.  
     ⇒  h–s is not unstable. 

独Case 2:  h proposed to s. 
     ⇒  s rejected h (either right away or later) 

     ⇒  s prefers Gale–Shapley partner hʹ to h. 

     ⇒  h–s is not unstable. 

独In either case, the pair h–s is not unstable.  ▪

15

hospitals propose in 

decreasing order 

of preference

students only trade up

  h – sʹ

hʹ – s

⋮

Gale–Shapley matching M*



Summary

Stable matching problem.  Given n hospitals and n students, and their 

preference lists, find a stable matching if one exists. 

 
Theorem.  [Gale–Shapley 1962]  The Gale–Shapley algorithm guarantees  
to find a stable matching for any problem instance. 

16



Do all executions of Gale–Shapley lead to the same stable matching?

A. No, because the algorithm is nondeterministic. 

B. No, because an instance can have several stable matchings.  

C. Yes, because each instance has a unique stable matching. 

D. Yes, even though an instance can have several stable matchings  
and the algorithm is nondeterministic.

17

Stable matching:  quiz 2
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For a given problem instance, there may be several stable matchings.  

1st 2nd 3rd

A X Y Z

B Y X Z

C X Y Z

1st 2nd 3rd

X B A C

Y A B C

Z A B C

1st 2nd 3rd

A X Y Z

B Y X Z

C X Y Z

1st 2nd 3rd

X B A C

Y A B C

Z A B C

1st 2nd 3rd

A X Y Z

B Y X Z

C X Y Z

1st 2nd 3rd

X B A C

Y A B C

Z A B C

Understanding the solution

19

an instance with two stable matchings:  S = { A-X, B-Y, C-Z } and S′ = { A-Y, B-X, C-Z } 



Def.  Student s is a valid partner for hospital h if there exists any stable 

matching in which h and s are matched. 

 
 
Ex. 

独Both X and Y are valid partners for A. 

独Both X and Y are valid partners for B. 

独Z is the only valid partner for C.

Understanding the solution

20

an instance with two stable matchings:  S = { A-X, B-Y, C-Z } and S′ = { A-Y, B-X, C-Z } 

1st 2nd 3rd

A X Y Z

B Y X Z

C X Y Z

1st 2nd 3rd

X B A C

Y A B C

Z A B C



Who is the best valid partner for W in the following instance? 

A.  

B.  

C.  

D.  

21

Stable matching:  quiz 3

6 stable matchings

{ A–W, B–X, C–Y, D–Z }

{ A–X, B–W, C–Y, D–Z }

{ A–X, B–Y, C–W, D–Z }

{ A–Z, B–W, C–Y, D–X }

{ A–Z, B–Y, C–W, D–X }

{ A–Y, B–Z, C–W, D–X }

1st 2nd 3rd 4th

A Y Z X W

B Z Y W X

C W Y X Z

D X Z W Y

1st 2nd 3rd 4th

W D A B C

X C B A D

Y C B A D

Z D A B C



Understanding the solution

Def.  Student s is a valid partner for hospital h if there exists any stable 

matching in which h and s are matched. 

Hospital-optimal assignment.  Each hospital receives best valid partner. 

独Is it a perfect matching? 

独Is it stable? 

Claim.  All executions of Gale–Shapley yield hospital-optimal assignment. 

Corollary.  Hospital-optimal assignment is a stable matching!
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Hospital optimality

Claim.  Gale–Shapley matching M* is hospital-optimal. 

Pf.  [by contradiction] 

独Suppose a hospital is matched with student other than best valid partner.  

独Hospitals propose in decreasing order of preference. 

    ⇒  some hospital is rejected by a valid partner during Gale–Shapley 

独Let h be first such hospital, and let s be the first valid  
partner that rejects h. 

独Let M be a stable matching where h and s are matched. 

独When s rejects h in Gale–Shapley, s forms (or re-affirms)  
commitment to a hospital, say hʹ. 

    ⇒  s prefers hʹ to h. 

独Let sʹ be partner of hʹ in M. 

独hʹ had not been rejected by any valid partner 
(including sʹ) at the point when h is rejected by s. 

独Thus, hʹ had not yet proposed to sʹ when hʹ proposed to s. 
    ⇒  hʹ prefers s to sʹ. 

独Thus, hʹ–s is unstable in M, a contradiction.  ▪
24

because this is the first 

rejection by a valid partner

h – s

⋮

stable matching M

hʹ – sʹ



Student pessimality

Q.  Does hospital-optimality come at the expense of the students?  

A.  Yes. 

 
Student-pessimal assignment.  Each student receives worst valid partner. 

 
Claim.  Gale–Shapley finds student-pessimal stable matching M*. 

Pf.  [by contradiction] 

独Suppose h–s matched in M* but h is not the worst valid partner for s. 

独There exists stable matching M in which s is paired with a hospital,  
say hʹ, whom s prefers less than h. 

    ⇒  s prefers h to hʹ. 

独Let sʹ be the partner of h in M. 

独By hospital-optimality, s is the best valid partner for h.  

    ⇒  h prefers s to sʹ. 

独Thus, h–s is an unstable pair in M, a contradiction.  ▪

25

 hʹ – s

⋮

stable matching M

h – sʹ
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Suppose each agent knows the preference lists of every other agent 
before the hospital propose-and-reject algorithm is executed.  
Which is true?

A. No hospital can improve by falsifying its preference list.

B. No student can improve by falsifying their preference list.

C. Both A and B.

D. Neither A nor B.

Stable matching:  quiz 4
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Extensions

Extension 1.  Some agents declare others as unacceptable. 

Extension 2.  Some hospitals have more than one position. 

Extension 3.  Unequal number of positions and students. 

 
 
 
 
Def.  Matching M is unstable if there is a hospital h and student s such that: 

独h and s are acceptable to each other; and 

独Either s is unmatched, or s prefers h to assigned hospital; and 

独Either h does not have all its places filled, or h prefers s to at least  
one of its assigned students. 

 
Theorem.  There exists a stable matching. 

Pf.  Straightforward generalization of Gale–Shapley algorithm.
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med-school student  

unwilling to work 

in Cleveland

≥ 43K med-school students;  
only 31K positions



Historical context

National resident matching program (NRMP). 

独Centralized clearinghouse to match med-school students to hospitals.  

独Began in 1952 to fix unraveling of offer dates. 

独Originally used the “Boston Pool” algorithm. 

独Algorithm overhauled in 1998. 

- med-school student optimal 

- deals with various side constraints  
(e.g., allow couples to match together)

30

stable matching no longer 

guaranteed to exist

hospitals began making 

offers earlier and earlier, 

up to 2 years in advance

The Redesign of the Matching Market for American Physicians:
Some Engineering Aspects of Economic Design

By ALVIN E. ROTH AND ELLIOTT PERANSON*

We report on the design of the new clearinghouse adopted by the National Resident
Matching Program, which annually fills approximately 20,000 jobs for new physi-
cians. Because the market has complementarities between applicants and between
positions, the theory of simple matching markets does not apply directly. However,
computational experiments show the theory provides good approximations. Fur-
thermore, the set of stable matchings, and the opportunities for strategic manipu-
lation, are surprisingly small. A new kind of “core convergence” result explains
this; that each applicant interviews only a small fraction of available positions is
important. We also describe engineering aspects of the design process. (JEL C78,
B41, J44)

The entry-level labor market for new physi-
cians in the United States is organized via a
centralized clearinghouse called the National
Resident Matching Program (NRMP). Each
year, approximately 20,000 jobs are filled in a
process in which graduating physicians and
other applicants interview at residency pro-
grams throughout the country and then compose
and submit Rank Order Lists (ROLs) to the
NRMP, each indicating an applicant’s prefer-
ence ordering among the positions for which
she has interviewed. Similarly, the residency
programs submit ROLs of the applicants they
have interviewed, along with the number of
positions they wish to fill. The NRMP processes
these ROLs and capacities to produce a match-
ing of applicants to residency programs.
The clearinghouse used in this market dates

from the early 1950’s. It replaced a decentral-
ized process that suffered a market failure when
residency programs and applicants started to
seek each other out individually through infor-
mal channels, earlier and earlier in advance of

employment, rather than waiting to participate
in the larger market. (By the 1940’s, contracts
were typically being signed two years in ad-
vance of employment.) Although the matching
algorithm has been adapted over time to meet
changes in the structure of medical employ-
ment, roughly the same form of clearinghouse
market mechanism has been used since 1951
(see Roth, 1984). The kind of market failure that
gave rise to this clearinghouse has since been
seen in many markets (Roth and Xiaolin Xing,
1994), a number of which have also organized
clearinghouses in response.
In the mid 1990’s, in an environment of rap-

idly changing health-care financing with many
implications for the medical labor market, the
market began to suffer a crisis of confidence
concerning whether the matching algorithm was
unreasonably favorable to employers at the ex-
pense of applicants, and whether applicants
could “game the system” by strategically ma-
nipulating the ROLs they submitted. The con-
troversy was most clearly expressed in an
exchange in Academic Medicine (Peranson and
Richard R. Randlett, 1995a, b; Kevin J.
Williams, 1995a, b). In reaction to this ex-
change, groups such as the American Medical
Student Association together with Ralph Nad-
er’s Public Citizen Health Research Group
(1995), and the Medical Student Section of the
American Medical Association (AMA-MSS,
1995) advocated that the matching algorithm be

* Roth: Department of Economics, and Graduate School
of Business Administration, Harvard University, Cam-
bridge, MA 02138 (e-mail: al_roth@harvard.edu); Peran-
son: National Matching Services, Inc., 595 Bay Street, Suite
301, Box 29, Toronto, ON M5G 2C2, Canada. We thank
Aljosa Feldin for able assistance with the theoretical com-
putations reported in Section VI. Parts of this work were
sponsored by the National Resident Matching Program, and
parts by the National Science Foundation.
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Lloyd Shapley.  Stable matching theory and Gale–Shapley algorithm. 

 
 
 
 
 
 
 
Alvin Roth.  Applied Gale–Shapley to matching med-school students with 

hospitals, students with schools, and organ donors with patients.

2012 Nobel Prize in Economics
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Lloyd Shapley

original applications: 
college admissions and 

opposite-sex marriage

Alvin Roth



New York City high school match

8th grader.  Ranks top-5 high schools. 

High school.  Ranks students (and limit). 

Goal.  Match 90K students to 500 high school programs.
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Questbridge national college match

Low-income student.  Ranks colleges. 

College.  Ranks students willing to admit (and limit). 

Goal.  Match students to colleges.
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Content delivery networks.  Distribute much of world’s content on web.  

User.  Preferences based on latency and packet loss. 

Web server.  Preferences based on costs of bandwidth and co-location. 

Goal.  Assign billions of users to servers, every 10 seconds.

A modern application

34

Algorithmic Nuggets in Content Delivery

Bruce M. Maggs Ramesh K. Sitaraman
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ABSTRACT
This paper “peeks under the covers” at the subsystems that
provide the basic functionality of a leading content deliv-
ery network. Based on our experiences in building one of
the largest distributed systems in the world, we illustrate
how sophisticated algorithmic research has been adapted to
balance the load between and within server clusters, man-
age the caches on servers, select paths through an overlay
routing network, and elect leaders in various contexts. In
each instance, we first explain the theory underlying the
algorithms, then introduce practical considerations not cap-
tured by the theoretical models, and finally describe what is
implemented in practice. Through these examples, we high-
light the role of algorithmic research in the design of com-
plex networked systems. The paper also illustrates the close
synergy that exists between research and industry where
research ideas cross over into products and product require-
ments drive future research.

1. INTRODUCTION
The top-three objectives for the designers and operators

of a content delivery network (CDN) are high reliability,
fast and consistent performance, and low operating cost.
While many techniques must be employed to achieve these
objectives, this paper focuses on technically interesting al-
gorithms that are invoked at crucial junctures to provide
provable guarantees on solution quality, computation time,
and robustness to failures. In particular, the paper walks
through the steps that take place from the instant that a
browser or other application makes a request for content
until that content is delivered, stopping along the way to
examine some of the most important algorithms that are
employed by a leading CDN.

One of our aims, as we survey the various algorithms, is
to demonstrate that algorithm design does not end when
the last theorem is proved. Indeed, in order to develop fast,
scalable, and cost-e↵ective implementations, significant in-
tellectual creativity is often required to address practical
concerns and messy details that are not easily captured by
the theoretical models or that were not anticipated by the
original algorithm designers. Hence, much of this paper fo-
cuses on the translation of algorithms that are the fruits of
research into industrial practice. In several instances, we
demonstrate the benefits that these algorithms provide by
describing experiments conducted on the CDN.

A typical request for content begins with a DNS query
issued by a client to its resolving name server (cf. Figure 1).
The resolving name server then forwards the request to the

Edge%Server%

Client%

Origin%

Authorita4ve%Name%Server%
%(Global%and%Local%Load%

Balancing)%

Overlay%
Rou4ng%

Content%

DNS%

Figure 1: A CDN serves content in response to a
client’s request.

CDN’s authoritative name server. The authoritative name
server examines the network address of the resolving name
server, or, in some cases, the edns-client-subnet provided by
the resolving name server [9], and, based primarily on this
address, makes a decision about which of the CDN’s clusters
to serve the content from. A variant of the stable marriage
algorithm makes this decision, with the aim of providing
good performance to clients while balancing load across all
clusters and keeping costs low. This algorithm is described
in Section 2.

But DNS resolution does not end here. The task of indi-
cating which particular web server or servers within the clus-
ter will serve the content is delegated to a second set of name
servers. Within the cluster, load is managed using a consis-
tent hashing algorithm, as described in Section 3. The web
server address or addresses are returned through the resolv-
ing name server to the client so that the client’s application,
such as a browser, can issue the request to the web server.
The web servers that serve content to clients are called edge
servers as they are located proximal to clients at the “edges”
of the Internet. As such, Akamai’s CDN currently has over
170,000 edge servers located in over 1300 networks in 102
countries and serves 15-30% of all Web tra�c.

When an edge server receives an HTTP request, it checks
to see if the requested object is already present in the server’s
cache. If not, the server begins to query other servers in

ACM SIGCOMM Computer Communication Review 52 Volume 45, Number 3, July 2015
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DATA STRUCTURES I, II, III, AND IV

I. Amortized Analysis 

II. Binary and Binomial Heaps 

III. Fibonacci Heaps 

IV. Union–Find



Data structures

Static problems.  Given an input, produce an output. 

Ex.  Sorting, FFT, edit distance, shortest paths, MST, max-flow, ... 

 
Dynamic problems.  Given a sequence of operations (given one at a time), 

produce a sequence of outputs. 

Ex.  Stack, queue, priority queue, symbol table, union–find, …. 

 
Algorithm.  Step-by-step procedure to solve a problem. 

Data structure.  Way to store and organize data. 

Ex.  Array, linked list, binary heap, binary search tree, hash table, …
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Appetizer

Goal.  Design a data structure to support all operations in O(1) time. 

・INIT(n):  create and return an initialized array (all zero) of length n. 

・READ(A, i):  return element i in array. 

・WRITE(A, i, value):  set element i in array to value. 
 
Assumptions. 

・Can MALLOC an uninitialized array of length n in O(1) time. 

・Given an array, can read or write element i in O(1) time. 

Remark.  An array does INIT in Θ(n) time and READ and WRITE in Θ(1) time.

3

true in C or C++, but not Java



Appetizer

Data structure.  Three arrays A[1.. n], B[1.. n], and C[1.. n], and an integer k. 

・A[i] stores the current value for READ (if initialized). 

・k = number of initialized entries. 

・C[j] = index of jth initialized element for j = 1, …, k. 

・If C[j] = i, then B[i] = j for j = 1, …, k. 
 
Theorem.  A[i] is initialized iff both 1 ≤ B[i] ≤ k and C[B[i]]  =  i. 
Pf.  Ahead.

4

1 2 3 4 5 6 7 8

? 22 55 99 ? 33 ? ?A[ ]

? 3 4 1 ? 2 ? ?B[ ]

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

k = 4

4 6 2 3 ? ? ? ?C[ ]



Appetizer

5

READ (A, i)                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

IF  (IS-INITIALIZED (A[i]))

RETURN A[i].  

ELSE

RETURN  0.                  
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

WRITE (A, i, value)                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

IF  (IS-INITIALIZED (A[i]))

A[i] ← value. 

ELSE

k ← k + 1.

A[i] ← value.

B[i] ← k.

C[k] ← i.                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________IS-INITIALIZED (A, i)                          



IF  (1 ≤ B[i]  ≤  k) and (C[B[i]] =  i)

RETURN true.  

ELSE

RETURN  false.                  


INIT (A, n)                          
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
_____________________________________________________________________________

k  ← 0.

A ← MALLOC(n).  

B ← MALLOC(n).  

C ← MALLOC(n).  
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
_____________________________________________________________________________



Appetizer

Theorem.  A[i] is initialized iff both 1 ≤ B[i] ≤  k and C[B[i]] =  i. 
Pf.   ⇒ 

・Suppose A[i] is the jth entry to be initialized. 

・Then C[j] = i and B[i] = j. 

・Thus, C[B[i]] =  i.

6

1 2 3 4 5 6 7 8

? 22 55 99 ? 33 ? ?A[ ]

? 3 4 1 ? 2 ? ?B[ ]

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

k = 4

4 6 2 3 ? ? ? ?C[ ]



Appetizer

Theorem.  A[i] is initialized iff both 1 ≤ B[i] ≤  k and C[B[i]] =  i. 
Pf.   ⇐ 

・Suppose A[i] is uninitialized.  

・If B[i]  < 1 or B[i]  >  k, then A[i] clearly uninitialized. 

・If 1 ≤  B[i]  ≤  k by coincidence, then we still can’t have C[B[i]] =  i 
because none of the entries C[1.. k] can equal i.  ▪  

7

1 2 3 4 5 6 7 8

? 22 55 99 ? 33 ? ?A[ ]

? 3 4 1 ? 2 ? ?B[ ]
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AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table



Amortized analysis

Worst-case analysis.  Determine worst-case running time of a data structure 

operation as function of the input size n. 

 
 
 
 
Amortized analysis.  Determine worst-case running time of a sequence  
of n data structure operations. 

 
Ex.  Starting from an empty stack implemented with a dynamic table, any 

sequence of n push and pop operations takes O(n) time in the worst case.

9

can be too pessimistic if the only way to 
encounter an expensive operation is when 

there were lots of previous cheap operations



Amortized analysis:  applications

・Splay trees. 

・Dynamic table. 

・Fibonacci heaps. 

・Garbage collection. 

・Move-to-front list updating. 

・Push–relabel algorithm for max flow. 

・Path compression for disjoint-set union. 

・Structural modifications to red–black trees. 

・Security, databases, distributed computing, ...

10
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Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
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AMORTIZED COMPUTATIONAL COMPLEXITY*
ROBERT ENDRE TARJANt

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain "self-adjusting" data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05

1. Introduction. Webster’s [34] defines "amortize" as "to put money aside at
intervals, as in a sinking fund, for gradual payment of (a debt, etc.)." We shall adapt
this term to computational complexity, meaning by it "to average over time" or, more
precisely, "to average the running times of operations in a sequence over the sequence."
The following observation motivates our study of amortization: In many uses of data
structures, a sequence of operations, rather than just a single operation, is performed,
and we are interested in the total time of the sequence, rather than in the times of
the individual operations. A worst-case analysis, in which we sum the worst-case times
of the individual operations, may be unduly pessimistic, because it ignores correlated
effects of the operations on the data structure. On the other hand, an average-case
analysis may be inaccurate, since the probabilistic assumptions needed to carry out
the analysis may be false. In such a situation, an amortized analysis, in which we
average the running time per operation over a (worst-case) sequence of operations,
can yield an answer that is both realistic and robust.

To make the idea of amortization and the motivation behind it more concrete,
let us consider a very simple example. Consider the manipulation of a stack by a
sequence of operations composed of two kinds of unit-time primitives: push, which
adds a new item to the top of the stack, and pop, which removes and returns the top
item on the stack. We wish to analyze the running time of a sequence of operations,
each composed of zero or more pops followed by a push. Assume we start with an
empty stack and carry out m such operations. A single operation in the sequence can
take up to m time units, as happens if each of the first m- 1 operations performs no
pops and the last operation performs m 1 pops. However, altogether the m operations
can perform at most 2m pushes and pops, since there are only m pushes altogether
and each pop must correspond to an earlier push.

This example may seem too simple to be useful, but such stack manipulation
indeed occurs in applications as diverse as planarity-testing [14] and related problems
[24] and linear-time string matching [18]. In this paper we shall survey a number of
settings in which amortization is useful. Not only does amortized running time provide
a more exact way to measure the running time of known algorithms, but it suggests
that there may be new algorithms efficient in an amortized rather than a worst-case
sense. As we shall see, such algorithms do exist, and they are simpler, more efficient,
and more flexible than their worst-case cousins.

* Received by the editors December 29, 1983. This work was presented at the SIAM Second Conference
on the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

t Bell Laboratories, Murray Hill, New Jersey 07974.
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CHAPTER 17

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table



Binary counter

Goal.  Increment a k-bit binary counter (mod 2k). 
Representation.  aj = jth least significant bit of counter. 

 
 
 
 
 
 
 
 
 
 
 
 
Cost model.  Number of bits flipped.
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0 0 0 0 0 0 0 00
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0 0 0 0 0 0 1 13
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0 0 0 0 0 1 1 17
0 0 0 0 1 0 0 08
0 0 0 0 1 0 0 19
0 0 0 0 1 0 1 010
0 0 0 0 1 0 1 111
0 0 0 0 1 1 0 012
0 0 0 0 1 1 0 113
0 0 0 0 1 1 1 014
0 0 0 0 1 1 1 115
0 0 0 1 0 0 0 016

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]
Counter

value
Total
cost
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7
8
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15
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23
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31

0

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT
operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is
shown at the right. Notice that the total cost is always less than twice the total number of INCREMENT
operations.

operations on an initially zero counter causes AŒ1! to flip bn=2c times. Similarly,
bit AŒ2! flips only every fourth time, or bn=4c times in a sequence of n INCREMENT
operations. In general, for i D 0; 1; : : : ; k ! 1, bit AŒi ! flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i " k,
bit AŒi ! does not exist, and so it cannot flip. The total number of flips in the
sequence is thus
k!1X

iD0

j n

2i

k
< n

1X

iD0

1

2i

D 2n ;

by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.



Binary counter

Goal.  Increment a k-bit binary counter (mod 2k). 
Representation.  aj = jth least significant bit of counter. 

 
 
 
 
 
 
 
 
 
 
 
Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n k) bits. 

Pf.  At most k bits flipped per increment.  ▪
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operations.

operations on an initially zero counter causes AŒ1! to flip bn=2c times. Similarly,
bit AŒ2! flips only every fourth time, or bn=4c times in a sequence of n INCREMENT
operations. In general, for i D 0; 1; : : : ; k ! 1, bit AŒi ! flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i " k,
bit AŒi ! does not exist, and so it cannot flip. The total number of flips in the
sequence is thus
k!1X

iD0

j n

2i

k
< n

1X

iD0

1

2i

D 2n ;

by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.

overly pessimistic upper bound



Aggregate method (brute force)

Aggregate method.  Analyze cost of a sequence of operations.
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operations on an initially zero counter causes AŒ1! to flip bn=2c times. Similarly,
bit AŒ2! flips only every fourth time, or bn=4c times in a sequence of n INCREMENT
operations. In general, for i D 0; 1; : : : ; k ! 1, bit AŒi ! flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i " k,
bit AŒi ! does not exist, and so it cannot flip. The total number of flips in the
sequence is thus
k!1X

iD0

j n

2i

k
< n
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1
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D 2n ;

by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.



Binary counter:  aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations: 

・Bit 0 flips n times. 

・Bit 1 flips ⎣ n / 2⎦ times. 

・Bit 2 flips ⎣ n / 4⎦ times. 

・… 

Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n) bits. 

Pf. 

・Bit j flips ⎣ n / 2 j⎦ times. 

・The total number of bits flipped is 
 
 
 

Remark. Theorem may be false if initial counter is not zero.
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Accounting method (banker’s method)

Assign (potentially) different charges to each operation. 

・Di   = data structure after ith operation. 

・ci   = actual cost of ith operation. 

・ĉi   = amortized cost of ith operation  = amount we charge operation i. 

・When ĉi  >  ci, we store credits in data structure Di to pay for future ops;  
when ĉi  <  ci, we consume credits in data structure Di. 

・Initial data structure D0 starts with 0 credits. 

 
Credit invariant.  The total number of credits in the data structure ≥  0. 

16

can be more or less 
than actual cost
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ci � 0
our job is to choose suitable amortized 

costs so that this invariant holds



Accounting method (banker’s method)

Assign (potentially) different charges to each operation. 

・Di   = data structure after ith operation. 

・ci   = actual cost of ith operation. 

・ĉi   = amortized cost of ith operation  = amount we charge operation i. 

・When ĉi  >  ci, we store credits in data structure Di to pay for future ops;  
when ĉi  <  ci, we consume credits in data structure Di. 

・Initial data structure D0 starts with 0 credits. 

 
Credit invariant.  The total number of credits in the data structure ≥  0. 

 
 
 
Theorem.  Starting from the initial data structure D0, the total actual cost of 

any sequence of n operations is at most the sum of the amortized costs. 

Pf.  The amortized cost of the sequence of n operations is: 

 
Intuition.  Measure running time in terms of credits (time = money).

17

n�

i=1
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 
Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).

18
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 
Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j). 

・Flip bit j from 1 to 0:  pay for it with the 1 credit saved in bit j.
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 
Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j). 

・Flip bit j from 1 to 0:  pay for it with the 1 credit saved in bit j.
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 
Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j). 

・Flip bit j from 1 to 0:  pay for it with the 1 credit saved in bit j. 
 
Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n) bits. 

Pf.   

・Each INCREMENT operation flips at most one 0 bit to a 1 bit, 
so the amortized cost per INCREMENT  ≤  2.  

・Invariant  ⇒  number of credits in data structure  ≥  0.  

・Total actual cost of n operations  ≤  sum of amortized costs  ≤   2 n.  ▪

21
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Potential method (physicist’s method)

Potential function.  Φ(Di) maps each data structure Di to a real number s.t.: 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each data structure Di. 

 
Actual and amortized costs. 

・ci  = actual cost of ith operation. 

・ĉi   =  ci  +  Φ(Di)  –  Φ(Di–1)  = amortized cost of ith operation.

22



Potential method (physicist’s method)

Potential function.  Φ(Di) maps each data structure Di to a real number s.t.: 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each data structure Di. 

 
Actual and amortized costs. 

・ci  = actual cost of ith operation. 

・ĉi   =  ci  +  Φ(Di)  –  Φ(Di–1)  = amortized cost of ith operation. 

 
Theorem.  Starting from the initial data structure D0, the total actual cost of 

any sequence of n operations is at most the sum of the amortized costs. 

Pf.  The amortized cost of the sequence of operations is:
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di.

24
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di.

25
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di.

26
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di. 

 
 
Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n) bits. 

Pf. 

・Suppose that the ith INCREMENT operation flips ti bits from 1 to 0. 

・The actual cost ci  ≤  ti  + 1. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)
                ≤  ci  + 1 –  ti

                   ≤  2. 

・Total actual cost of n operations  ≤  sum of amortized costs ≤  2 n.   ▪

27

operation flips at most one bit from 0 to 1 
(no bits flipped to 1 when counter overflows)

potential method theorem

potential decreases by 1 for ti bits flipped from 1 to 0 
and increases by 1 for bit flipped from 0 to 1



Famous potential functions

Fibonacci heaps.

 
 
Splay trees. 

 
 
Move-to-front.

 
 
Preflow–push.  

 
 
Red–black trees.

28
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SECTION 17.4

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table



Multipop stack

Goal.  Support operations on a set of elements: 

・PUSH(S, x):  add element x to stack S. 

・POP(S):  remove and return the most-recently added element. 

・MULTI-POP(S, k):  remove the most-recently added k elements. 

 
 
 
 
 
 
 
 
 
 
 
Exceptions.  We assume POP throws an exception if stack is empty.

30

MULTI-POP(S, k)                       
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
___

FOR  i = 1 TO k  

POP(S).
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
___



Multipop stack

Goal.  Support operations on a set of elements: 

・PUSH(S, x):  add element x to stack S. 

・POP(S):  remove and return the most-recently added element. 

・MULTI-POP(S, k):  remove the most-recently added k elements. 

 
 
Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n2) time. 

Pf. 

・Use a singly linked list. 

・PoP and PUSH take O(1) time each. 

・MULTI-POP takes O(n) time.   ▪

31

overly pessimistic 
upper bound
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Multipop stack:  aggregate method

Goal.  Support operations on a set of elements: 

・PUSH(S, x):  add element x to stack S. 

・POP(S):  remove and return the most-recently added element. 

・MULTI-POP(S, k):  remove the most-recently added k elements. 

 
 
Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time. 

 
Pf. 

・An element is popped at most once for each time that it is pushed. 

・There are ≤ n PUSH operations.

・Thus, there are ≤ n POP operations 
(including those made within MULTI-POP).   ▪

32



Multipop stack:  accounting method

Credits.  1 credit pays for either a PUSH or POP.  
Invariant.  Every element on the stack has 1 credit. 

Accounting. 

・PUSH(S, x):  charge 2 credits. 
- use 1 credit to pay for pushing x now 
- store 1 credit to pay for popping x at some point in the future 

・POP(S):  charge 0 credits. 

 
Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

Pf. 

・Invariant  ⇒  number of credits in data structure  ≥  0.  

・Amortized cost per operation  ≤  2.  

・Total actual cost of n operations ≤  sum of amortized costs  ≤  2n.  ▪

33
accounting method theorem



Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 
Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 
Pf.  [Case 1: push] 

・Suppose that the ith operation is a PUSH. 

・The actual cost ci  = 1. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)  =  1  +  1  =  2.
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Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 
Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 
Pf.  [Case 2: pop] 

・Suppose that the ith operation is a POP. 

・The actual cost ci  = 1. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)  =  1  –  1  =  0.
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Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 
Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 
Pf.  [Case 3: multi-pop] 

・Suppose that the ith operation is a MULTI-POP of k objects. 

・The actual cost ci  = k. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)  =  k  –  k  =  0.  ▪
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Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 
Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 
Pf.  [putting everything together]  

・Amortized cost ĉi   ≤  2. 

・Sum of amortized costs ĉi  of the n operations  ≤  2 n. 

・Total actual cost ≤  sum of amortized cost ≤  2 n.   ▪
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potential method theorem

2 for push; 0 for pop and multi-pop
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FIBONACCI HEAPS

‣ preliminaries 

‣ insert 

‣ extract the minimum 

‣ decrease key 

‣ bounding the rank 

‣ meld and delete



Priority queues performance cost summary

 
 
Ahead.  O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

2

operation linked list binary heap binomial heap
Fibonacci heap 

†

MAKE-HEAP O(1) O(1) O(1) O(1)

IS-EMPTY O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

MELD O(1) O(n) O(log n) O(1)

FIND-MIN O(n) O(1) O(log n) O(1)

†  amortized



Fibonacci heaps

Theorem.  [Fredman–Tarjan 1986]  Starting from an empty Fibonacci heap, 

any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations  
involving n INSERT operations takes O(m + n log n) time. 

History.    

・Ingenious data structure and application of amortized analysis. 

・Original motivation:  improve Dijkstra’s shortest path algorithm 
from O(m log n) to O(m + n log n). 

・Also improved best-known bounds for all-pairs shortest paths, 

assignment problem, minimum spanning trees.

4



Fibonacci heap:  structure

・Set of heap-ordered trees.

7

723

30

17

35

26 46

24

39

4118 52

3

44

heap-ordered tree

each child no smaller 
than its parent

root

heap H



Fibonacci heap:  structure

・Set of heap-ordered trees. 

・Set of marked nodes.

8

723

30

17

35

26 46

24

39

4118 52

3

44

min

used to keep trees bushy 
(stay tuned)

39

18

markedheap H
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Fibonacci heap:  structure

Heap representation. 

・Store a pointer to the minimum node. 

・Maintain tree roots in a circular, doubly-linked list.

9

723

30

17

35

26 46

24

39

4118 52

3

44

min

39

18

heap H

26



Fibonacci heap:  representation

Node representation.  Each node stores: 

・A pointer to its parent. 

・A pointer to any of its children. 

・A pointer to its left and right siblings. 

・Its rank = number of children. 

・Whether it is marked.

10

723

30

17

35

26 46

24

39

4118 52

3

44

min

39

18

heap H children are in a  
circular doubly-linked list

26

rank = 3



Fibonacci heap:  representation

Operations we can do in constant time: 

・Determine rank of a node. 

・Find the minimum element. 

・Merge two root lists together. 

・Add or remove a node from the root list. 

・Remove a subtree and merge into root list. 

・Link the root of a one tree to root of another tree.

11

723

30

17

35

26 46

24

39

4118 52

3

44

min

39

18

heap H

26

rank = 3



Fibonacci heap:  notation

12

723

30

17

35

26 46

24

39

4118 52

3

44

min

39

18

rank(H) = 3    trees(H) = 5 marks(H) = 3n = 14

notation meaning

n number of nodes

rank(x) number of children of node x

rank(H) max rank of any node in heap H

trees(H) number of trees in heap H

marks(H) number of marked nodes in heap H

heap H

26

rank = 3rank = 1



Fibonacci heap:  potential function

Potential function.  

13

723

30

17

35

26 46

24

39

4118 52

3

44

min

39

18

trees(H) = 5 marks(H) = 3Φ(H) = 5 + 2⋅3 = 11

heap H

 Φ(H)  = trees(H) + 2 ⋅ marks(H)
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FIBONACCI HEAPS

‣ preliminaries 
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‣ extract the minimum 
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‣ bounding the rank 

‣ meld and delete



Fibonacci heap:  insert

・Create a new singleton tree. 

・Add to root list; update min pointer (if necessary).
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Fibonacci heap:  insert

・Create a new singleton tree. 

・Add to root list; update min pointer (if necessary).
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Fibonacci heap:  insert analysis

Actual cost.  ci  = O(1). 
 
Change in potential.  ∆Φ  =  Φ(Hi) – Φ(Hi–1)  =  +1. 

 
Amortized cost.  ĉi  =  ci  +  ∆Φ  = O(1).

17

723

30

17

35

26 46

24

39

4118 52

3

44

min

heap H

21

39

18

 Φ(H)  = trees(H) + 2 ⋅ marks(H)

26

one more tree; 
no change in marks
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‣ preliminaries 

‣ insert 

‣ extract the minimum 

‣ decrease key 

‣ bounding the rank 

‣ meld and delete



Linking operation

Useful primitive.  Combine two trees T1 and T2 of rank k. 

・Make larger root be a child of smaller root. 

・Resulting tree T ʹ has rank k + 1.

19

39

4118 52

3

4477

56 24

15

tree T1 tree T2

39

4118 52

3

44

77

56 24

15

tree T′

still heap-ordered

33

33



Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.

21

39

411723 18 52

30

7

35

26 46

24

44

min

2626



Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.

23
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rank
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.

27

39

4118 52

30

7

35

26 46

24

44

min
current

rank
link 17 to 7

17

232626

0 1 2 3



Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min. 

・Consolidate trees so that no two roots have same rank.
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stop (no two trees have same rank)
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Fibonacci heap:  extract the minimum analysis

Actual cost.  ci  = O(rank(H)) + O(trees(H)). 

・O(rank(H)) to meld min’s children into root list. 

・O(rank(H))  +  O(trees(H)) to update min. 

・O(rank(H))  +  O(trees(H)) to consolidate trees. 

 
Change in potential.  ∆Φ  ≤  rank(Hʹ)  + 1 –  trees(H). 

・No new nodes become marked. 

・trees(Hʹ)  ≤  rank(Hʹ) + 1. 

 
Amortized cost.  O(log n). 

・ĉi  =  ci  + ∆Φ  = O(rank(H)) + O(rank(Hʹ)). 

・The rank of a Fibonacci heap with n elements is O(log n).

36

 Φ(H)  = trees(H)  +  2 ⋅ marks(H)

≤ rank(H) + trees(H) – 1 root nodes

number of roots decreases by 1 after 
each linking operation

≤ rank(H) children

no two trees have same rank after consolidation

Fibonacci lemma 
(stay tuned)



Fibonacci heap vs. binomial heaps

Observation.  If only INSERT and EXTRACT-MIN operations, then all trees are 

binomial trees. 

 
 
 
 
 
 
 
 
 
Binomial heap property.  This implies rank(H)  ≤  log2 n. 

 
Fibonacci heap property.  Our DECREASE-KEY implementation will not preserve 

this property, but we will implement it in such a way that rank(H) ≤  logφ n.

37
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Fibonacci heap: decrease key

Intuition for deceasing the key of node x. 

・If heap-order is not violated, decrease the key of x. 

・Otherwise, cut tree rooted at x and meld into root list.

39
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Fibonacci heap: decrease key

Intuition for deceasing the key of node x. 

・If heap-order is not violated, decrease the key of x. 

・Otherwise, cut tree rooted at x and meld into root list.

40
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Fibonacci heap: decrease key

Intuition for deceasing the key of node x. 

・If heap-order is not violated, decrease the key of x. 

・Otherwise, cut tree rooted at x and meld into root list.

41

decrease-key of 22 to 4
decrease-key of 48 to 3
decrease-key of 31 to 2
decrease-key of 17 to 1
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Fibonacci heap: decrease key

Intuition for deceasing the key of node x. 

・If heap-order is not violated, decrease the key of x. 

・Otherwise, cut tree rooted at x and meld into root list. 

・Problem:  number of nodes not exponential in rank.

42
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rank = 4, nodes = 5



Fibonacci heap: decrease key

Intuition for deceasing the key of node x. 

・If heap-order is not violated, decrease the key of x. 

・Otherwise, cut tree rooted at x and meld into root list. 

・Solution:  as soon as a node has its second child cut, 
cut it off also and meld into root list (and unmark it).
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Fibonacci heap: decrease key

Case 1.  [heap order not violated] 

・Decrease key of x. 

・Change heap min pointer (if necessary).
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Fibonacci heap: decrease key

Case 1.  [heap order not violated] 

・Decrease key of x. 

・Change heap min pointer (if necessary).
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Fibonacci heap: decrease key

Case 2a.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2a.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2a.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2a.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2a.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2b.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2b.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2b.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2b.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2b.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2b.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key

Case 2b.  [heap order violated] 

・Decrease key of x. 

・Cut tree rooted at x, meld into root list, and unmark. 

・If parent p of x is unmarked (hasn’t yet lost a child), mark it; 
Otherwise, cut p, meld into root list, and unmark 
(and do so recursively for all ancestors that lose a second child).
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Fibonacci heap: decrease key analysis

Actual cost.  ci  = O(c), where c is the number of cuts. 

・O(1) time for changing the key. 

・O(1) time for each of c cuts, plus melding into root list. 

 
Change in potential.  ∆Φ  =  O(1)  –  c. 

・trees(Hʹ)  = trees(H) +  c. 

・marks(Hʹ)  ≤  marks(H)  –  c  +  2. 

・ΔΦ  ≤  c  +  2 ⋅ (-c + 2)  =  4  –  c. 
 
Amortized cost.  ĉi  =  ci  +  ∆Φ  = O(1).
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 Φ(H)  = trees(H) + 2 ⋅ marks(H)

each cut (except first) unmarks a node 
last cut may or may not mark a node



SECTION 19.4

FIBONACCI HEAPS

‣ preliminaries 

‣ insert 

‣ extract the minimum 

‣ decrease key 

‣ bounding the rank 

‣ meld and delete



Analysis summary

Insert.   O(1). 
Delete-min.  O(rank(H)) amortized. 

Decrease-key. O(1) amortized. 

 
 
 
Fibonacci lemma.  Let H be a Fibonacci heap with n elements.  
Then, rank(H) = O(log n).

60

number of nodes is 
exponential in rank



Bounding the rank

Lemma 1.  Fix a point in time. Let x be a node of rank k, and let y1, …, yk  

denote its current children in the order in which they were linked to x.  
Then: 

 
 
 
 
 
 
Pf.   

・When yi was linked into x, x had at least i  – 1 children y1, …, yi–1. 

・Since only trees of equal rank are linked, at that time 
rank(yi)  =  rank(x)  ≥  i  – 1. 

・Since then, yi  has lost at most one child (or yi would have been cut). 

・Thus, right now rank(yi)  ≥   i  –  2.  ▪
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Bounding the rank

Lemma 1.  Fix a point in time. Let x be a node of rank k, and let y1, …, yk  

denote its current children in the order in which they were linked to x.  
Then: 

Def.  Let Tk be smallest possible tree of rank k satisfying property.   

62

T0 T1 T2 T3 T4 T5
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Bounding the rank

Lemma 1.  Fix a point in time. Let x be a node of rank k, and let y1, …, yk  

denote its current children in the order in which they were linked to x.  
Then: 

Def.  Let Tk be smallest possible tree of rank k satisfying property.   
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T4 T5

F6 = 8 F7 = 13

T6

F8 = F6 + F7 = 8 + 13 = 21

x

y1 y2 yk…

rank(yi) �
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Bounding the rank

Lemma 2.  Let sk be minimum number of elements in any Fibonacci heap of 

rank k. Then sk   ≥  Fk+2, where Fk is the kth Fibonacci number. 

 
Pf.  [by strong induction on k] 

・Base cases: s0 = 1 and s1 = 2. 

・Inductive hypothesis:  assume si  ≥  Fi+2 for i = 0, …, k – 1. 

・As in Lemma 1, let let y1, …, yk  denote its current children in the order in 

which they were linked to x.

64

sk ≥ 1  + 1 +  (s0  +  s1  + … +  sk–2) (Lemma 1)

≥ (1  + F1)  +  F2  +  F3  + … +  Fk (inductive hypothesis)

= Fk+2.   ▪ (Fibonacci fact 1)



Bounding the rank

Fibonacci lemma.  Let H be a Fibonacci heap with n elements.  
Then, rank(H)  ≤  logφ n,  where φ is the golden ratio =  (1 + √5) / 2 ≈ 1.618. 

 
Pf. 

・Let H is a Fibonacci heap with n elements and rank k. 

・Then  n  ≥   Fk+2   ≥   φk. 
 
 

・Taking logs, we obtain rank(H) = k  ≤  logφ n.  ▪

65

Lemma 2 Fibonacci 
Fact 2



Fibonacci fact 1

Def.  The Fibonacci sequence is:  0, 1, 1, 2, 3, 5, 8, 13, 21, … 

 
 
 
 
 
Fibonacci fact 1.  For all integers k ≥ 0,  Fk+2  =  1 + F0 + F1 + … + Fk. 

Pf.  [by induction on k] 

・Base case: F2 = 1 + F0 = 2. 

・Inductive hypothesis:  assume Fk+1  =  1 + F0 + F1 + … + Fk–1.
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Fk+2 = Fk   +   Fk+1 (definition)

= Fk   +  (1 + F0 + F1 + … + Fk–1) (inductive hypothesis)

= 1 + F0 + F1 + … + Fk–1 + Fk.   ▪ (algebra)

Fk =

�
��
��

0 k = 0

1 k = 1

Fk�1 + Fk�2 k � 2



Fibonacci fact 2

Def.  The Fibonacci sequence is:  0, 1, 1, 2, 3, 5, 8, 13, 21, … 

 
 
 
 
 
Fibonacci fact 2.   Fk+2  ≥  φk, where φ  =  (1 + √5) / 2 ≈ 1.618. 

Pf.  [by induction on k] 

・Base cases:  F2 = 1 ≥ 1,  F3 = 2  ≥  φ. 

・Inductive hypotheses:  assume Fk  ≥  φk  and Fk+1 ≥  φk + 1

67

Fk+2 = Fk   +   Fk+1 (definition)

≥ φk – 1  +  φk – 2 (inductive hypothesis)

= φk – 2 (1 +  φ) (algebra)

= φk – 2  φ2 (φ2 = φ + 1)

= φk.   ▪ (algebra)

Fk =

�
��
��

0 k = 0

1 k = 1

Fk�1 + Fk�2 k � 2



SECTION 19.2, 19.3

FIBONACCI HEAPS

‣ preliminaries 

‣ insert 

‣ extract the minimum 

‣ decrease key 

‣ bounding the rank 

‣ meld and delete



Fibonacci heap:  meld

Meld.  Combine two Fibonacci heaps (destroying old heaps). 

Recall.  Root lists are circular, doubly-linked lists. 
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Fibonacci heap:  meld

Meld.  Combine two Fibonacci heaps (destroying old heaps). 

Recall.  Root lists are circular, doubly-linked lists.
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Fibonacci heap:  meld analysis

Actual cost.  ci  = O(1). 
Change in potential.  ∆Φ  =  0. 

Amortized cost.  ĉi  =  ci  +  ∆Φ  = O(1).
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 Φ(H)  = trees(H) + 2 ⋅ marks(H)



Fibonacci heap:  delete

Delete.  Given a handle to an element x, delete it from heap H. 

・DECREASE-KEY(H, x, -∞). 

・EXTRACT-MIN(H). 

Amortized cost.  ĉi  = O(rank(H)). 

・O(1) amortized for DECREASE-KEY. 

・O(rank(H)) amortized for EXTRACT-MIN.
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 Φ(H)  = trees(H) + 2 ⋅ marks(H)



Priority queues performance cost summary

 
 
Accomplished.  O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

74

operation linked list binary heap binomial heap
Fibonacci heap 

†

MAKE-HEAP O(1) O(1) O(1) O(1)

IS-EMPTY O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

MELD O(1) O(n) O(log n) O(1)

FIND-MIN O(n) O(1) O(log n) O(1)

†  amortized



Heaps of heaps

・b-heaps. 

・Fat heaps. 

・2–3 heaps. 

・Leaf heaps. 

・Thin heaps. 

・Skew heaps. 

・Splay heaps. 

・Weak heaps. 

・Leftist heaps. 

・Quake heaps. 

・Pairing heaps. 

・Violation heaps. 

・Run-relaxed heaps. 

・Rank-pairing heaps. 

・Skew-pairing heaps. 

・Rank-relaxed heaps. 

・Lazy Fibonacci heaps.
76
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UNION–FIND

‣ naïve linking 

‣ link-by-size 

‣ link-by-rank 

‣ path compression 

‣ link-by-rank with path compression 

‣ context



Disjoint-sets data type

Goal.  Support three operations on a collection of disjoint sets. 

・MAKE-SET(x):  create a new set containing only element x. 

・FIND(x):  return a canonical element in the set containing x. 

・UNION(x, y):  replace the sets containing x and y with their union. 

 
Performance parameters.  

・m = number of calls to MAKE-SET, FIND, and UNION. 

・n = number of elements = number of calls to MAKE-SET. 

 
Dynamic connectivity.  Given an initially empty graph G, 
support three operations. 

・ADD-NODE(u):  add node u. 

・ADD-EDGE(u, v):  add an edge between nodes u and v. 

・IS-CONNECTED(u, v):  is there a path between u and v ?

2

1 UNION operation

2 FIND operations

1 MAKE-SET operation

disjoint sets = 
   connected components



Disjoint-sets data type:  applications

Original motivation.  Compiling EQUIVALENCE, DIMENSION, and COMMON 

statements in Fortran. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  This 1964 paper also introduced key data structure for problem.

3

An Improved Equivalence 
Algorithm 
BERNARD A. GALLER AND MICHAEL J. FISHER 
University of Michigan, Ann Arbor, Michigan 

An algorithm for assigning storage on the basis of EQUIV- 
ALENCE, DIMENSION and COMMON declarations is pre- 
sented. The algorithm is based on a tree structure, and has 
reduced computation time by 40 percent over a previously 
published algorithm by identifying all equivalence classes 
with one scan of the EQUIVALENCE declarations. The method 
is applicable in any problem in which it is necessary to identify 
equivalence classes, given the element pairs defining the 
equivalence relation. 

An algorithm for the assignment of storage on the basis 
of the EQUIVALENCE declaration found in such lan- 
guages as FORTRAN and MAD was presented in [1]. The 
algorithm given here, which uses a tree structure, is a 
considerable improvement over the previous one, and 
the two algorithms furnish a clear-cut example of the 
ben:fits which can be realized through the use of such 
metkods. (Comparison tests have shown that  the new 
method reduces the execution time of the algorithm by as 
much as 40 percent.) The notation and statement of the 
problem have been made as similar to that  of [1] as possible 
to facilitate comparison, and is reviewed here for com- 
pleteness. 

Figure 1 shows a general equivalence algorithm, suitable 
for identification of equivalence classes in any context. 
Figures 2 and 3 use this same algorithm for the address 
assignment problem considered in [1], retaining additional 
information (D, d, do, R, H and H ' )  during the con- 
struction of the trees to facilitate the address assignment 
at the end. 

The problem may then be stated as follows: In some 
algebraic (or any other) languages, one may write EQUIV- 
ALEIX~CE declarations of the form: 

EQUIVALENCE (X, Y, Zi), (Z, Ws), (V, V) (1) 

where the entries consist of names of variables, subscripted 
array names or unsubscripted array names (which are 
assumed to represent the element of the array which has 
subscript zero). Some of the variables or arrays which 
occur here may have already been assigned to specific 
locations in storage; others have not yet  been assigned. 
The entries are grouped by means of parentheses, the 
groups being separated by commas. For example, state- 
ment (1) would assign X, Y and Z1 to the same location, 
then Z( ~ Z0) and W5 to another location, and U and V 
to yet  another location (unless either U or V is made 
equivalent to one of the other variables or arrays by some 

Presented at the ACM National Conference, Denver, Colorado, 
1963. 

other EQUIVALENCE declaration). We must exhibit 
an algorithm which will result in a storage assignment for 
each variable and array occurring in any EQUIVALENCE 
statement. 

Of course, the groups may be highly linked, such as in the 
following statement. 

EQUIVALENCE (X, Y2 ), (Q, J, K), (Y3, Z1 ), 
(U, V), (Y, Q), (U3, M10, N) (2) 

We shall use this example to illustrate the algorithm 
presented here. Assume that  K has been assigned to loca- 
tion 100 by some other declaration and that  the dimensions 
of Y, Z, M and U are 10, 4, 12 and 5, respectively. (In 
other words, since the zero subscript is allowed here, 
the highest subscripts occurring for Y, Z, M and U are 
9, 3, 11 and 4, respectively.) There is no loss in generality 
if we assume (and we do) that  every other variable is 
also an array of dimension 1. 

The algorithm has as input a collection of n groups 
of subscripted array names. We shall call the groups 
G1, " " ,  Gn, and for the group Gi ,  we shall label the 
mi array names gil,  gi2, • • • , gimi • Associated with each 
array name glj will be its subscript s(gii) and its dimen- 
sion d(gii). I t  will be convenient to use five auxiliary 
vectors, called the E, R, S, H, and H '  vectors, respectively. 
These vectors must be large enough to hold all distinct 
array names appearing in the EQUIVALENCE state- 
ments. The number of entries in the E-vector will be 

• " = • 

F 

t = i T 

¢5 
Fm.  1 

Volume 7 / Number 5 / May, 1964 C o m m u n i c a t i o n s  o f  t h e  ACM 301 



Disjoint-sets data type:  applications

Applications. 

・Percolation. 

・Kruskal’s algorithm. 

・Connected components. 

・Computing LCAs in trees. 

・Computing dominators in digraphs. 

・Equivalence of finite state automata. 

・Checking flow graphs for reducibility. 

・Hoshen–Kopelman algorithm in physics. 

・Hinley–Milner polymorphic type inference. 

・Morphological attribute openings and closings. 

・Matlab’s BW-LABEL function for image processing. 

・Compiling EQUIVALENCE, DIMENSION and COMMON statements in Fortran. 

・...

4



UNION–FIND

‣ naïve linking 

‣ link-by-size 

‣ link-by-rank 

‣ path compression 

‣ link-by-rank with path compression 

‣ context



Disjoint-sets data structure

Parent-link representation.  Represent each set as a tree of elements. 

・Each element has an explicit parent pointer in the tree. 

・The root serves as the canonical element (and points to itself). 

・FIND(x):  find the root of the tree containing x. 

・UNION(x, y):  merge trees containing x and y.
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parent of 3 is 8
root
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Disjoint-sets data structure

Parent-link representation.  Represent each set as a tree of elements. 

・Each element has an explicit parent pointer in the tree. 

・The root serves as the canonical element (and points to itself). 

・FIND(x):  find the root of the tree containing x. 

・UNION(x, y):  merge trees containing x and y.

7

root
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7

349

8

UNION(3, 5)



Array representation.  Represent each set as a tree of elements. 

・Allocate an array parent[] of length n.  

・parent[i] = j means parent of element i is element j. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  For brevity, we suppress arrows and self loops in figures.

0 1 2 3 4 5 6 7 8 9

Disjoint-sets data structure

8

7 5 7 8 8 7 5 7 8 8parent[]

must know number of elements n a priori

349

61

5 20

parent of 3 is 8
root

78



Naïve linking

Naïve linking.  Link root of first tree to root of second tree. 
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Naïve linking

Naïve linking.  Link root of first tree to root of second tree. 
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Naïve linking

Naïve linking.  Link root of first tree to root of second tree. 

11

FIND(x)                          

________________________________________________________________

WHILE  (x ≠ parent[x]) 
x  ←  parent[x].

RETURN x.

UNION(x, y)                          
_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________

r  ←  FIND(x).                          

s  ←  FIND(y).

parent[r]  ←  s.

MAKE-SET(x) 

________________________________________________________________

parent[x]  ←  x. 



Naïve linking: analysis

Theorem.  Using naïve linking, a UNION or FIND operation can take Θ(n) time 

in the worst case, where n is the number of elements. 

  
Pf.  

・In the worst case, FIND takes time proportional to the height of the tree. 

・Height of the tree is n – 1 after the sequence of union operations: 

UNION(1, 2), UNION(2, 3), …, UNION(n – 1, n).

12

max number of links on any 
path from root to leaf node

⋮

3

n

1

2

height = n-1height = 3height = 2
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‣ link-by-rank 
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‣ link-by-rank with path compression 
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Link-by-size

Link-by-size.  Maintain a tree size (number of nodes) for each root node. 
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

14
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UNION(5, 3)
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Link-by-size

Link-by-size.  Maintain a tree size (number of nodes) for each root node. 
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

15

34

8

9 61

5 20

7

UNION(5, 3)
size = 10



Link-by-size

Link-by-size.  Maintain a tree size (number of nodes) for each root node. 
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

16

FIND(x)                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

WHILE  (x ≠ parent[x]) 
x  ←  parent[x].

RETURN x.

UNION(x, y)                          


r  ←  FIND(x).                          

s  ←  FIND(y).

IF  (r = s)  RETURN.
ELSE IF  (size[r]  > size[s])

parent[s]  ←  r.

size[r]  ← size[r] + size[s].

ELSE  
parent[r]  ←  s.

size[s]  ← size[r] + size[s].

MAKE-SET(x) 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

parent[x]  ←  x.                          

size[x]  ←  1.

link-by-size



Link-by-size:  analysis

Property.  Using link-by-size, for every root node r :  size[r]  ≥  2 height(r). 

Pf.  [ by induction on number of links ] 

・Base case:  singleton tree has size 1 and height 0. 

・Inductive hypothesis: assume true after first i links. 

・Tree rooted at r changes only when a smaller (or equal) size tree  
rooted at s is linked into r. 

・Case 1. [ height(r)  >  height(s) ]

17

s

size = 3
(height = 1)

r

size = 8
(height = 2)

sizeʹ[r] > size[r]

≥ 2 height(r)

= 2 height ʹ(r).

inductive hypothesis



Link-by-size:  analysis

Property.  Using link-by-size, for every root node r :  size[r]  ≥  2 height(r). 

Pf.  [ by induction on number of links ] 

・Base case:  singleton tree has size 1 and height 0. 

・Inductive hypothesis: assume true after first i links. 

・Tree rooted at r changes only when a smaller (or equal) size tree  
rooted at s is linked into r. 

・Case 2. [ height(r)  ≤  height(s) ] 

18

s

size = 4
(height = 2)

sizeʹ[r] = size[r] + size[s]

≥ 2 size[s]

≥ 2 ⋅ 2 height(s)

= 2 height(s) + 1

= 2 heightʹ(r).   ▪r

size = 6
(height = 1)

link-by-size

inductive hypothesis



Link-by-size:  analysis

Theorem.  Using link-by-size, any UNION or FIND operation takes O(log n) time 

in the worst case, where n is the number of elements. 

 Pf. 

・The running time of each operation is bounded by the tree height. 

・By the previous property, the height is  ≤  ⎣lg n⎦.  ▪ 
 
 
 
 
Note.  The UNION operation takes O(1) time except for its two calls to FIND.

19

lg n = log2 n



A tight upper bound

Theorem.  Using link-by-size, a tree with n nodes can have height = lg n. 

 Pf. 

・Arrange 2k – 1 calls to UNION to form a binomial tree of order k. 

・An order-k binomial tree has 2k nodes and height k.  ▪

20
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Link-by-rank

Link-by-rank.  Maintain an integer rank for each node, initially 0. Link root of 

smaller rank to root of larger rank; if tie, increase rank of new root by 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  For now, rank = height.
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Link-by-rank

Link-by-rank.  Maintain an integer rank for each node, initially 0. Link root of 

smaller rank to root of larger rank; if tie, increase rank of new root by 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  For now, rank = height.

23

34

8

9 16

5 20

7

rank = 2



Link-by-rank

Link-by-rank.  Maintain an integer rank for each node, initially 0. Link root of 

smaller rank to root of larger rank; if tie, increase rank of new root by 1.

24

FIND(x)                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

WHILE (x ≠ parent[x])
x  ←  parent[x].

RETURN x.

UNION(x, y)                          


r  ←  FIND(x).                          

s  ←  FIND(y).

IF  (r = s)  RETURN.
ELSE IF (rank[r]  > rank[s])

parent[s]  ←  r.

ELSE IF (rank[r]  <  rank[s])
parent[r]  ←  s.

ELSE  
parent[r]  ←  s.

rank[s]  ←  rank[s]  +  1.

MAKE-SET(x)                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

parent[x]  ←  x.                          

rank[x]  ←  0.

link-by-rank



Link-by-rank:  properties

PROPERTY 1.  If x is not a root node, then rank[x]  <  rank[parent[x]]. 
Pf.  A node of rank k is created only by linking two roots of rank k – 1.  ▪ 
 
PROPERTY 2.  If x is not a root node, then rank[x] will never change again. 

Pf.  Rank changes only for roots; a nonroot never becomes a root.  ▪
 
PROPERTY 3.  If parent[x] changes, then rank[parent[x]] strictly increases. 

Pf.  The parent can change only for a root, so before linking parent[x] = x. 
After x is linked-by-rank to new root r we have rank[r]  >  rank[x].   ▪
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Link-by-rank:  properties

PROPERTY 4.  Any root node of rank k has ≥ 2k nodes in its tree. 

Pf.  [ by induction on k ] 

・Base case: true for k = 0. 

・Inductive hypothesis: assume true for k – 1. 

・A node of rank k is created only by linking two roots of rank k – 1. 

・By inductive hypothesis, each subtree has  ≥ 2k – 1 nodes 

       ⇒ resulting tree has ≥ 2k nodes. ▪ 
 
PROPERTY 5.  The highest rank of a node is ≤  ⎣lg n⎦. 
Pf.  Immediate from PROPERTY 1 and PROPERTY 4.  ▪
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Link-by-rank:  properties

PROPERTY 6.  For any integer k ≥ 0, there are ≤  n / 2k nodes with rank k. 
Pf. 

・Any root node of rank k has ≥ 2k descendants.  [PROPERTY 4] 

・Any nonroot node of rank k has ≥ 2k descendants because: 
- it had this property just before it became a nonroot  [PROPERTY 4] 
- its rank doesn’t change once it became a nonroot  [PROPERTY 2] 
- its set of descendants doesn’t change once it became a nonroot 

・Different nodes of rank k can’t have common descendants. [PROPERTY 1]  

▪
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Link-by-rank:  analysis

Theorem.  Using link-by-rank, any UNION or FIND operation takes O(log n) time 

in the worst case, where n is the number of elements. 

 Pf. 

・The running time of UNION and FIND is bounded by the tree height. 

・By PROPERTY 5, the height is ≤  ⎣lg n⎦.  ▪
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Path compression

Path compression.  When finding the root r of the tree containing x, 
change the parent pointer of all nodes along the path to point directly to r.
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Path compression

Path compression.  When finding the root r of the tree containing x, 
change the parent pointer of all nodes along the path to point directly to r.

31

1211

9

10

8

6 7

3

x

2

54

0

1

r



Path compression

Path compression.  When finding the root r of the tree containing x, 
change the parent pointer of all nodes along the path to point directly to r.
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Path compression.  When finding the root r of the tree containing x, 
change the parent pointer of all nodes along the path to point directly to r.

Path compression
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Path compression

Path compression.  When finding the root r of the tree containing x, 
change the parent pointer of all nodes along the path to point directly to r.
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Path compression

Path compression.  When finding the root r of the tree containing x, 
change the parent pointer of all nodes along the path to point directly to r.
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Path compression

Path compression.  When finding the root r of the tree containing x, 
change the parent pointer of all nodes along the path to point directly to r. 
 
 
 
 
 
 
 
 
 
 
 
Note.  Path compression does not change the rank of a node;  
so height(x)  ≤  rank[x] but they are not necessarily equal.
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FIND(x)                          


IF (x ≠ parent[x]) 
parent[x]  ←  FIND(parent[x]).

RETURN parent[x].

this FIND implementation 
changes the tree structure (!)



Path compression

Fact.  Path compression with naïve linking can require Ω(n) time to perform 

a single UNION or FIND operation, where n is the number of elements. 

 
Pf.  The height of the tree is n – 1 after the sequence of union operations: 

UNION(1, 2), UNION(2, 3), …, UNION(n – 1, n).  ▪ 
 
 
 
Theorem.  [Tarjan–van Leeuwen 1984]  Starting from an empty data 

structure, path compression with naïve linking performs any intermixed 

sequence of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n 

elements in O(m log n) time. 

 
Pf.  Nontrivial (but omitted).
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Link-by-rank with path compression:  properties

PROPERTY.  The tree roots, node ranks, and elements within a tree are the 

same with or without path compression. 

 
Pf.  Path compression does not create new roots, change ranks, or move 

elements from one tree to another.   ▪
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Link-by-rank with path compression:  properties

PROPERTY.  The tree roots, node ranks, and elements within a tree are the 

same with or without path compression. 

 
COROLLARY.  PROPERTY 2, 4–6 hold for link-by-rank with path compression. 

PROPERTY 1.  If x is not a root node, then rank[x]  <  rank[parent[x]]. 
PROPERTY 2.  If x is not a root node, then rank[x] will never change again.

PROPERTY 3.  If parent[x] changes, then rank[parent[x]] strictly increases. 

PROPERTY 4.  Any root node of rank k has ≥ 2k nodes in its tree. 

PROPERTY 5.  The highest rank of a node is ≤  ⎣lg n⎦. 
PROPERTY 6.  For any integer k ≥ 0, there are ≤  n / 2k nodes with rank k. 
 
 
 
Bottom line.  PROPERTY 1–6 hold for link-by-rank with path compression.  
(but we need to recheck PROPERTY 1 and PROPERTY 3)
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Link-by-rank with path compression:  properties

PROPERTY 3.  If parent[x] changes, then rank[parent[x]] strictly increases. 

Pf.  Path compression can make x point to only an ancestor of parent[x].  
 
PROPERTY 1.  If x is not a root node, then rank[x]  <  rank[parent[x]]. 
Pf.  Path compression doesn’t change any ranks, but it can change parents. 

If parent[x] doesn’t change during a path compression, the inequality 

continues to hold; if parent[x] changes, then rank[parent[x]] strictly increases.
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Iterated logarithm function

Def.  The iterated logarithm function is defined by: 

 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  We have lg* n  ≤  5 unless n exceeds the # atoms in the universe.
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n lg* n

1 0

2 1

[3, 4] 2

[5, 16] 3

[17, 65536] 4

[65537, 265536] 5

iterated lg function 

lg� n =

�
0 n � 1
1 + lg�(lg n)



Analysis

Divide nonzero ranks into the following groups: 

・{ 1 }

・{ 2 }

・{ 3, 4 }

・{ 5, 6, …, 16 }

・{ 17, 18, …, 216 }

・{ 65537, 65538, …, 265536}

・...
 
Property 7.  Every nonzero rank falls within one of the first lg* n groups. 

Pf.  The rank is between 0 and ⎣lg n⎦.  [PROPERTY 5]
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Creative accounting

Credits.  A node receives credits as soon as it ceases to be a root.  
If its rank is in the interval { k + 1, k + 2, …, 2k }, we give it 2k credits.  

 
Proposition.  Number of credits disbursed to all nodes is  ≤  n lg* n. 

Pf.  

・By PROPERTY 6, the number of nodes with rank ≥ k + 1 is at most 
 

・Thus, nodes in group k need at most n credits in total. 

・There are ≤  lg* n groups.  [PROPERTY 7]   ▪
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Running time of FIND

Running time of FIND.  Bounded by number of parent pointers followed. 

・Recall: the rank strictly increases as you go up a tree.  [PROPERTY 1] 

・Case 0:  parent[x] is a root  ⇒ only happens for one link per FIND.  

・Case 1:  rank[parent[x]] is in a higher group than rank[x].  

・Case 2:  rank[parent[x]] is in the same group as rank[x].  
 
Case 1.  At most lg* n nodes on path can be in a higher group.  [PROPERTY 7] 

 
Case 2.  These nodes are charged 1 credit to follow parent pointer. 

・Each time x pays 1 credit, rank[parent[x]] strictly increases.  [PROPERTY 1] 

・Therefore, if rank[x] is in the group { k + 1, …, 2k }, the rank of its parent  
will be in a higher group before x pays 2k credits. 

・Once rank[parent[x]] is in a higher group than rank[x], it remains so 

because: 
- rank[x] does not change once it ceases to be a root. [PROPERTY 2] 
- rank[parent[x]] does not decrease. [PROPERTY 3] 
- thus, x has enough credits to pay until it becomes a Case 1 node.   ▪
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Link-by-rank with path compression

Theorem.  Starting from an empty data structure, link-by-rank with path 

compression performs any intermixed sequence of m ≥ n MAKE-SET, UNION, 

and FIND operations on a set of n elements in O(m log*n) time.
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Link-by-size with path compression

Theorem.  [Fischer 1972]  Starting from an empty data structure, 
link-by-size with path compression performs any intermixed sequence  
of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n elements  
in O(m log log n) time. 
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Link-by-size with path compression

Theorem.  [Hopcroft–Ullman 1973]  Starting from an empty data structure, 

link-by-size with path compression performs any intermixed sequence  
of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n elements  
in O(m log*n) time.
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SIAM J. COMPUT.
Vol. 2, No. 4, December 1973

SET MERGING ALGORITHMS*
J. E. HOPCROFT" AND J. D. ULLMAN{

Abstract. This paper considers the problem of merging sets formed from a total of n items in such
a way that at any time, the name of a set containing a given item can be ascertained. Two algorithms
using different data structures are discussed. The execution times of both algorithms are bounded by a
constant times nG(n), where G(n) is a function whose asymptotic growth rate is less than that of any
finite number of logarithms of n.

Key words, algorithm, algorithmic analysis, computational complexity, data structure, equivalence
algorithm, merging, property grammar, set, spanning tree

1. Introduction. Let us consider the problem of efficiently merging sets
according to an initially unknown sequence of instructions, while at the same time
being able to determine the set containing a given element rapidly. This problem
appears as the essential part of several less abstract problems. For example, in [13
the problem of "equivalencing" symbolic addresses by an assembler was con-
sidered. Initially, each name is in a set by itself, i.e., it is equivalent to no other
name. An assembly language statement that sets name A equivalent to name B by
implication makes C equivalent to D if A and C were equivalent and B and D
were likewise equivalent. Thus, to make A and B equivalent, we must find the
sets (equivalence classes) of which A and B are currently members and merge
these sets, i.e., replace them by their union.

Another setting for this problem is the construction of spanning trees for an
undirected graph [2]. Initially, each vertex is in a set (connected component) by
itself. We find edges (n, m) by some strategy and determine the connected compo-
nents containing n and m. If these differ, we add (n, m) to the tree being constructed
and merge the components containing n and m, which now are connected by the
tree being formed. If n and m are already in the same component, we throw away
(n, m)and find a new edge.

A third application [33 is the implementation of property grammars I43, and
many others suggest themselves when it is realized that the task we discuss here
can be done in less than O(n log n) time.

By way of introduction, let us consider some of the more obvious data struc-
tures whereby objects could be kept in disjoint sets, these sets could be merged, and
the name of the set containing a given object could be determined. One possibility
is to represent each set by a tree. Each vertex of the tree would correspond to an
object in the set. Each object would have a pointer to the vertex representing it,
and each vertex would have a pointer to its father. If the vertex is a root, however,
the pointer would be zero to indicate the absence of a father. The name of the set
is attached to the root.

Received by the editors August 10, 1972, and in revised form May 18, 1973. This research was
supported by the National Science Foundation under Grant GJ-1052 and the Office of Naval Research
under Contract N00014-67-A-0071-0021.

5 Department of Computer Sciences, Cornell University, Ithaca, New York 14850.
:1: Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540.
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Link-by-size with path compression

Theorem.  [Tarjan 1975]  Starting from an empty data structure, 
link-by-size with path compression performs any intermixed sequence  
of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n elements  
in O(m α(m, n)) time, where α(m, n) is a functional inverse of the Ackermann 

function.
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Efficiency of  a Good But Not Linear Set Union Algorithm 

ROBERT ENDRE TAR JAN 

University of California, Berkeley, Califorma 

ABSTRACT. TWO types of instructmns for mampulating a family of disjoint sets which part i tmn a 
umverse of n elements are considered FIND(x) computes the name of the (unique) set containing 
element x UNION(A, B, C) combines sets A and B into a new set named C. A known algorithm for 
implementing sequences of these mstructmns is examined I t  is shown that ,  if t(m, n) as the maximum 
time reqmred by a sequence of m > n FINDs and n -- 1 intermixed UNIONs, then kima(m, n) _~ 
t(m, n) < k:ma(m, n) for some positive constants ki and k2, where a(m, n) is related to a functional 
inverse of Ackermann's functmn and as very slow-growing. 

KEY WORDS AND PHRASES. algorithm, complexity, eqmvalence, partition, set umon, tree 

CR C A T E G O R I E S :  4 12, 5.25, 5.32 

Introduction 

Suppose  we w a n t  to  use two types  of i n s t ruc t ions  for m a n i p u l a t i n g  d is jo in t  sets. F I N D ( x )  
compu te s  the  n a m e  of t he  un ique  set  c o n t a i n i n g  e l emen t  x. U N I O N ( A ,  B,  C) combines  
sets  A a n d  B in to  a new set  n a m e d  C. In i t i a l ly  we are  g iven  n e lements ,  each  in  a single- 
t o n  set.  We  t h e n  wish to ca r ry  ou t  a sequence  of rn >_ n F I N D s  a n d  n, - 1 i n t e r m i x e d  
U N I O N s .  

A n  a l g o r i t h m  for solving th i s  p rob lem is useful  in  m a n y  contexts ,  inc lud ing  h a n d l i n g  
E Q U I V A L E N C E  a n d  C O M M O N  s t a t e m e n t s  in FORTRAN [3, 6], f inding m i n i m u m  span-  
n ing  t rees  [9], c o m p u t i n g  d o m i n a t o r s  in  d i rec ted  g r a p h s  [14], checking  flow g raphs  for  
r educ ib i l i ty  [13], ca lcu la t ing  d e p t h s  in  t rees  [2], c o m p u t i n g  leas t  c o m m o n  ances to r s  in  
t rees  [2], a n d  solv ing a n  effiine m i n i m u m  prob lem [7]. 

Several  a lgor i thms  h a v e  been  deve loped  [3, 5-7,  10, 12], n o t a b l y  a v e r y  compl i ca t ed  one  
b y  H o p c r o f t  a n d  U l l m a n  [7]. I t  is a n  ex tens ion  of a n  idea b y  S t ea r n s  a n d  R o s e n k r a n t z  
[12] a n d  has  a n  0 ( m  log* n)  wors t -case  r u n n i n g  t ime,  where  

) t i m e s  

log* n = m i n { i  ] log log . . .  log ( n )  _< 1}. 

All  o the r  k n o w n  a lgo r i thms  are  slower, except  for t h e  ve ry  s imple  one  we ana lyze  here,  
wh ich  has  b e e n  prev ious ly  cons idered  in  [5, 7, 11]. 

E a c h  set  is r ep re sen t ed  as a t r ee?  E a c h  ver tex  in t h e  t r ee  r ep resen t s  a n  e l em e n t  in  t h e  

Copyright © 1975, Association for Computing Machinery, Inc General permission to republish, but  
not for profit, all or part  of this material is granted provided that  ACM's copyright notice is given 
and t ha t  reference is made to the publication, to its date of issue, and to the fact tha t  reprinting privi- 
leges were granted by permmsion of the Association for Computing Machinery 
Thin work was partially supported by the NSF, Contract No NSF-GJ-35604X, and by a Miller Re- 
search Fellowship at  the University of California, Berkeley, and by the Office of Naval Research, 
Contract NR 044--402, Stanford University 
Author's address' Department of Electrical Engineering and Computer Sciences, Computer Science 
Division, Umvers~ty of California, Berkeley, CA 94720 
1 For the purposes of this paper, a tree T is a directed graph with a umque vertex s, the root of T, 
such that  (i) no edge (s, v) exists in T, 0i) ff v ~ s, there is a unique edge (% w) in T, and (id) there 
are no cycles in T If (v, w) is an edge of T (denoted by v --~ w), w as called the father of v (denoted 
by w = f(v)) and v is called a son of w If there is a path from v to w an T (denoted by v ~ w), then 

Journal of the Associatmn for Computing Machinery, Vol 22, No 2, Apml 1975, pp 215-225 



Ackermann function

Ackermann function.  [Ackermann 1928]  A computable function that is not 

primitive recursive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  There are many inequivalent definitions.
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A(m, n) =

�
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n + 1 m = 0

A(m� 1, 1) m > 0 n = 0

A(m� 1, A(m, n� 1)) m > 0 n > 0



Ackermann function

Ackermann function.  [Ackermann 1928]  A computable function that is not 

primitive recursive. 
 
 
 
 
 
Inverse Ackermann function.
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�(m, n) = min{i � 1 : A(i, �m/n�) � log2 n}

“ I am not smart enough to understand this easily. ”

      — Raymond Seidel

A(m, n) =

�
��
��

n + 1 m = 0

A(m� 1, 1) m > 0 n = 0

A(m� 1, A(m, n� 1)) m > 0 n > 0



Inverse Ackermann function

Definition. 
 
 
Ex. 

・α1(n)  = ⎡ n / 2 ⎤. 

・α2(n)  = ⎡ lg n ⎤  = # of times we divide n by 2, until we reach 1.

・α3(n)  =   lg* n  = # of times we apply the lg function to n, until we reach 1. 

・α4(n)  =  # of times we apply the iterated lg function to n, until we reach 1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 216

α1(n) 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 … 215

α2(n) 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 … 16

α3(n) 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 … 4

α4(n) 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 … 3

2 � 65536 = 2 22

2

� �� �
65536

… 265536 … 2 ↑ 65536

… 265535 … huge

… 65536 … 2 ↑ 65535

… 5 … 65536

… 3 … 4

�k(n) =

�
��
��

�n/2� k = 1

0 n = 1 k � 2

1 + �k(�k�1(n))



Inverse Ackermann function

Definition. 
 
 
 
 
 
Property. For every n ≥ 5, the sequence α1(n), α2(n), α3(n), …  converges to 3.  

Ex.  [n = 9876!]  α1(n) ≥ 1035163,  α2(n) = 116812, α3(n) =  6, α4(n) =  4, α5(n) =  3. 

 
One-parameter inverse Ackermann.  α(n) = min { k : αk(n)  ≤  3 }.  

Ex. α(9876!) =  5. 

 
Two-parameter inverse Ackermann.  α(m, n) = min { k : αk(n)  ≤  3 + m / n }.
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�k(n) =
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�n/2� k = 1

0 n = 1 k � 2

1 + �k(�k�1(n))



A tight lower bound

Theorem.  [Fredman–Saks 1989]  In the worst case, any CELL-PROBE(log n) 
algorithm requires Ω(m α(m, n)) time to perform an intermixed sequence of  
m MAKE-SET, UNION, and FIND operations on a set of n elements. 

Cell-probe model.  [Yao 1981]  Count only number of words of memory 

accessed; all other operations are free.
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Michael L. Fredmarl ’ 

Bellcore and 
U.C. San Diego 

1. Summary of Results 

Dynamic data stNcture problems involve the representation of 
data in memory in such a way as to permit certain types of 
modifications of the data (updates) and certain types of questions 
about the data (queries). This paradigm encompasses many 
fimdamental problems in computer science. 

The purpose of this paper is to prove new lower and upper 
bounds on the tie per operation to implement solutions to some 
familiar dynamic data structure problems including list 
representation, subset ranking, partial sums, and the set union 
problem . The main features of our lower bounds are: 

(1) 

(2) 

(3) 

They hold in the cell probe model of computation (A. Yao 
[18]) in which the time complexity of a sequential 
computation is defined to be the number of words of 
memory that are accessed. (The number of bits b in a 
single word of memory is a parameter of the model). All 
other computations are free. This model is at least as 
powerful as a random access machine and allows for 
unusual representation of data, indirect addressing etc. This 
contrasts with most previous lower bounds which are 
proved in models (e.g., algebraic, comparison, pointer 
manipulation) which require restrictions on the way data is 
represented and manipulated. 

The lower bound method presented here can be used to 
derive amortized complexities, worst cast per operation 
complexities, and randomized complcxitics. 

The results occasionally provide (nearly tight) tradeoffs 
between the number R of words of memory that are read 
per operation, the number W of memory words rewritten 
per operation and the size b of each word. For the 
problems considered here thcrc is a parameter n that 
represents the size of the data set being manipulated and for 
these problems b = logn is a natural register size to 
consider. By letting b vary, our results illustrate the effect 
of register size on time complexity. For instance, one 
consequence of the resuhs is that for some of the problems 
considered here, increasing the 

The Cell Probe Complexity of Dynamic Data Structures 

Michael E. Sak>. 2 

U.C. San Diego, 
Bellcore and 

Rutgers University 

register size from logn to polylog(n) only reduces the time 
complexity by a constant factor. On the other hand, 
decreasing the register size from logn to 1 increases time 
complexity by a logn factor for one of the problems we 
consider and only a loglogn factor for some other 
problems. 

The first two specific data structure problems for which we 
obtain bounds are: 

List Representation. This problem concerns the represention of 
an ordered list of at most n (not necessarily distinct) elements 
from the universe U = (1, 2 ,..., n ). The operations to be 
supported are report(k). which returns the k” element of the list, 
insert(k, u) which inserts element u into the list between the 
elements in positions k - 1 and k, delete(k), which deletes the k’” 
item. 

Subset Rank. This problem concerns the representation of a 
subset S of CJ = [ 1, 2 ,..., n ]. The operations that must be 
supported are the updates “insert item j into the set” and 
“delete item j from the set” and the queries rank(j), which 
returns the number of elements in S that are less than or equal 
to j . 

The natural word size for these problems is b = logn, which 
allows an item of Cl or an index into the list to be stored in one 
register. One simple solution to the list representation problem is 
to maintain a vector v, whose k’” entry contains the kih item of 
the list. The report operation can bc done in constant time, but 
the insert and delete operations may take time linear in the length 
of the list. Alternatively, one could store the items of the list with 
each element having a pointer to its predecessor and successor in 
the list. This allows for constant time updates (given a pointer to 
the appropriate location), but requires linear cost for queries. 

This problem can be solved much more efticiently by use of 
balanced trees (such as AVL trees). When b = logn, the worst 
case cost per operation using AVL trees is O(logn). If instead 
b = 1, so that each bit access costs 1, then the AVL tree solution 
requires 0 (log2n ) per operation. 

1 Supported in parr by NSF @-ant DCR85042~S 
2 Su[m,rIci! !” CL? 5.” 4 SF <r--;t I)‘.!S57 I,?!.:! .‘,i* ! z.2 Force Office of 

Scientific Rese~ch grylt AFOSR-oZi t 

It is not hard to find similar upper bounds for the subset rank 
problem (the algorithms for this problem are actually simpler than 
AVL trees). 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1989 ACM O-89791-307-8/89/0005/0345 $1.50 

The question is: are these upper bounds best possible? Our 
results show that the upper bounds for the case of logn bit 
registers are within a loglogn factor of optimal. On the other 
hand, somewhat surprisingly, for the case of single bit registers 
there are implementations for both of these problems that run in 
time significantly faster than 0 (log2n) per operation. 

Let CPROBE(b) denote the cell probe computational model 
with register size b . 
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Path compaction variants

Path splitting.  Make every node on path point to its grandparent.  
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Path compaction variants

Path halving.  Make every other node on path point to its grandparent.  
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Linking variants

Link-by-size.  Number of nodes in tree. 

Link-by-rank.  Rank of tree. 

Link-by-random.  Label each element with a random real number between 

0.0 and 1.0. Link root with smaller label into root with larger label.
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Disjoint-sets data structures

Theorem.  [Tarjan–van Leeuwen 1984]  Starting from an empty data 

structure, link-by- { size, rank } combined with { path compression, path 

splitting, path halving } performs any intermixed sequence of m ≥ n MAKE-SET, 
UNION, and FIND operations on a set of n elements in O(m α(m, n)) time.
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Worst-Case Analysis of Set Union Algorithms 
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Abstract. This paper analyzes the asymptotic worst-case running time of a number of variants of the 
well-known method of path compression for maintaining a collection of disjoint sets under union. We 
show that two one-pass methods proposed by van Leeuwen and van der Weide are asymptotically 
optimal, whereas several other methods, including one proposed by Rein and advocated by Dijkstra, 
are slower than the best methods. 

Categories and Subject Descriptors: E. 1 [Data Structures]: Trees; F2.2 [Analysis of Algorithms and 
Problem Complexity]: Nonnumerical Algorithms and Problems---computations on discrete structures; 
G2.1 [Discrete Mathematics]: Combinatories---combinatorial algorithms; (32.2 [Disertqe Mathemat- 
ics]: Graph Theory--graph algortthms 
General Terms: Algorithms, Theory 
Additional Key Words and Phrases: Equivalence algorithm, set union, inverse Aekermann's function 

1. Introduction 
A well-known problem in data structures is the set union problem, defined as 
follows: Carry out a sequence o f  intermixed operat ions o f  the following three kinds 
on  labeled sets: 

make set(e, l): Create a new set with label l containing the single e lement  e. This  
operat ion requires that  e initially be in no set. 
f ind label(e): Return  the label o f  the set containing e lement  e. 
unite(e, f ) :  Combine  the sets containing elements  e and f i n t o  a single set, whose 
label is the label o f  the old set containing e lement  e. This  operat ion requires that  
elements  e and f in i t i a l l y  be in different sets. 

Because of  the constraint  on make set, the sets existing at any t ime  are disjoint 
and  define a parti t ion of  the d e m e n t s  into equivalence classes. For  this reason the 
set union problem has been called the equivalence problem by some authors. A 
solution to the set union problem can be used in the compil ing o f  F O R T R A N  
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Part III

Algorithm Design Techniques

20



Algorithmic paradigms

Greed.  Build up a solution incrementally, myopically optimizing!

some local criterion.!

Divide-and-conquer.  Break up a problem into independent subproblems;!

solve each subproblem; combine solutions to subproblems to form solution 

to original problem.  

!

Dynamic programming.  Break up a problem into a series of overlapping 

subproblems; combine solutions to smaller subproblems to form solution 

to large subproblem.

 2

fancy name for 

caching intermediate results 

in a table for later reuse



Divide and Conquer

Peak Finding

Closest Pair of Points

Dynamic Programming

Interval Scheduling

Parenthesization Problem

Knapsack Problem

Sequence Alignement

Bellman-Ford Algorithm

Greedy Algorithms

Coin Changing

Interval Scheduling

Interval Partitioning

Scheduling to Minimize Lateness

Optimal Caching

Dijkstra’s algorithm

Minimum Spanning Trees



DIVIDE AND CONQUER



DIVIDE AND CONQUER

Nothing is particularly hard if you divide it into small jobs.

Henry Ford

22



Divide-and-conquer paradigm

Divide-and-conquer. 

独Divide up problem into several subproblems (of the same kind). 

独Solve (conquer) each subproblem recursively. 

独Combine solutions to subproblems into overall solution. 

 
Most common usage. 

独Divide problem of size n into two subproblems of size n / 2. 

独Solve (conquer) two subproblems recursively. 

独Combine two solutions into overall solution. 

 
Consequence. 

独Brute force:  Θ(n2). 

独Divide-and-conquer:  O(n log n).

2attributed to Julius Caesar

O(n) time

O(n) time



DIVIDE AND CONQUER

MAXIMAL AND MINIMAL ELEMENTS



NAIVE ALGORITHM

complexity: number of comparisons

Algorithm: Iterative MaxMin

Input: sequence S [1 . . . n]

Output: maximal and minimal element

1 max ← S [1]; min← S [1]

2 for i ← 2 to n do

3 if S [i ] > max then max ← S [i ]

4 if S [i ] < min then min← S [i ]

5 return max ,min

2(n − 1) comparisons
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DIVIDE AND CONQUER ALGORITHM

divide the sequence into two equally sizek subsequences

solve find maximal and minimal elements of both subsequences

combine greater of the maximal elements is the maximal element of the whole

sequence(the same for the minimal element)

Algorithm: MaxMin

Input: sequence S [1 . . . n], indices x , y

Output: maximal and minimal element of S [x . . . y ]

1 if y = x then return (S [x ],S [x ])

2 if y = x + 1 then return (max(S [x ], S [y ]),min(S [x ],S [y ]))

3 if y > x + 1 then

4 (l1, l2) ← MaxMin(S , x , b(x + y)/2c)
5 (r1, r2) ← MaxMin(S , b(x + y)/2c+ 1, y)

6 return (max(l1, r1),min(l2, r2)) 24



correctness induction w.r.t. the length of the sequence

complexity

T (n) =





1 for n = 2

T (bn/2c) + T (dn/2e) + 2 for n > 2

by induction w.r.t. n we can check that T (n) < 5
3n − 2

n = 2 T (2) = 1 and 1 < 5
3 · 2− 2

n > 2 assumption: the inequality is true for all i , 2 ≤ i < n

let us prove the inequality for n

T (n) = T (bn/2c) + T (dn/2e) + 2

<
5

3
bn/2c − 2 +

5

3
dn/2e − 2 + 2 =

5

3
n − 2

25



DIVIDE AND CONQUER

PEAK FINDING
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DIVIDE AND CONQUER

CLOSEST PAIR OF POINTS



5.  DIVIDE AND CONQUER

‣ mergesort 

‣ counting inversions 

‣ randomized quicksort 

‣ median and selection 

‣ closest pair of points

SECTION 5.4



Closest pair of points

Closest pair problem.  Given n points in the plane, find a pair of points  
with the smallest Euclidean distance between them. 

Fundamental geometric primitive. 

独Graphics, computer vision, geographic information systems, 
molecular modeling, air traffic control. 

独Special case of nearest neighbor, Euclidean MST, Voronoi.
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fast closest pair inspired fast algorithms for these problems



Closest pair of points

Closest pair problem.  Given n points in the plane, find a pair of points  
with the smallest Euclidean distance between them. 

 
Brute force.  Check all pairs with Θ(n2) distance calculations.  

1D version.  Easy O(n log n) algorithm if points are on a line.  

Non-degeneracy assumption.  No two points have the same x-coordinate.
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Closest pair of points:  first attempt

Sorting solution. 

独Sort by x-coordinate and consider nearby points. 

独Sort by y-coordinate and consider nearby points. 
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Closest pair of points:  first attempt

Sorting solution. 

独Sort by x-coordinate and consider nearby points. 

独Sort by y-coordinate and consider nearby points. 
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Closest pair of points:  second attempt

Divide.  Subdivide region into 4 quadrants.
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Closest pair of points:  second attempt

Divide.  Subdivide region into 4 quadrants. 

Obstacle.  Impossible to ensure n / 4 points in each piece.
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Closest pair of points:  divide-and-conquer algorithm

独Divide:  draw vertical line L so that n / 2 points on each side.  

独Conquer:  find closest pair in each side recursively. 

独Combine:  find closest pair with one point in each side. 

独Return best of 3 solutions.
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seems like Θ(n2) 
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < δ. 

独Observation:  suffices to consider only those points within δ of line L.

71δ

δ = min(12, 21)12
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L



How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < δ. 

独Observation:  suffices to consider only those points within δ of line L. 

独Sort points in 2 δ-strip by their y-coordinate. 

独Check distances of only those points within 7 positions in sorted list!

72δ
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why?
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δ = min(12, 21)
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Def.  Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate. 

 
Claim.  If ⎜j – i⎟  >  7, then the distance between 
si and sj is at least δ. 
 
Pf. 

独Consider the 2δ-by-δ rectangle R in strip 
whose min y-coordinate is y-coordinate of si. 

独Distance between si and any point sj 
above R is ≥  δ.  

独Subdivide R into 8 squares. 

独At most 1 point per square. 

独At most 7 other points can be in R.  ▪

How to find closest pair with one point in each side?
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diameter is
� /
�

2 < �
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Closest pair of points:  divide-and-conquer algorithm

74

O(n)

T(n / 2)

O(n)

O(n log n)

O(n)

CLOSEST-PAIR(p1, p2, …, pn)                          

__________________________________________

Compute vertical line L such that half the points  
are on each side of the line.

δ1 ← CLOSEST-PAIR(points in left half).

δ2 ← CLOSEST-PAIR(points in right half).

δ   ← min { δ1 , δ2 }.

Delete all points further than δ from line L.

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between  
each point and next 7 neighbors. If any of these  
distances is less than δ, update δ.

RETURN  δ.

__________________________________________

T(n / 2)



What is the solution to the following recurrence? 
 
 
 
 

A. T(n)  =  Θ(n).

B. T(n)  =  Θ(n log n).

C. T(n)  =  Θ(n log2 n).

D. T(n)  =  Θ(n2). 
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Divide-and-conquer:  quiz 6

T (n) =

�
�
�

�(1) B7 n = 1

T (�n/2�) + T (�n/2�) + �(n log n) B7 n > 1
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Refined version of closest-pair algorithm

Q.  How to improve to O(n log n) ? 
A.  Don’t sort points in strip from scratch each time. 

独Each recursive call returns two lists:  all points sorted by x-coordinate,  
and all points sorted by y-coordinate. 

独Sort by merging two pre-sorted lists. 

 
 
Theorem.  [Shamos 1975]  The divide-and-conquer algorithm for finding a 

closest pair of points in the plane can be implemented in O(n log n) time. 

 
Pf.
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T (n) =

�
�
�

�(1) B7 n = 1

T (�n/2�) + T (�n/2�) + �(n) B7 n > 1
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What is the complexity of the 2D closest pair problem?  

A. Θ(n).

B. Θ(n log* n). 

C. Θ(n log log n).

D. Θ(n log n).

E. Not even Tarjan knows.
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Divide-and-conquer:  quiz 7



Computational complexity of closest-pair problem

Theorem.  [Ben-Or 1983, Yao 1989]  In quadratic decision tree model, any 

algorithm for closest pair (even in 1D) requires Ω(n log n) quadratic tests.  
 
 
 
 
 
 

Theorem.  [Rabin 1976]  There exists an algorithm to find the closest pair of 

points in the plane whose expected running time is O(n).
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not subject to Ω(n log n) lower bound 

because it uses the floor function

(x1 - x2)2 + (y1 - y2)2
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A NOTE ON RABIN’S NEAREST-NEIGHBOR ALGORITHM * 

Steve FORTUNE and John HOPCROFT 
Department of Computer Science, Cornell University, Ithaca, NY, U.S.A. 

Received 20 July 1978, revised version received 21 August 1978 

Probabiktic algorithms, nearest neighbor, hashing 

9. introduction 

One notion that has received some attention 
recently is that of a probabilistic algorithm. An algo- 
rithm is probabilistic if at certain steps it chooses a 
number randomly to determine the next step and at 
all other steps it is deterministic. The expected run- 
ning time of such an algorithm on a given input is 
obtained by averaging over all possible random 
choices of the algorithm on that input. The running 
time of the algorithm as a whole can be measured 
either by averaging the expected running time over 
all inputs or by taking the worst case of the expected 
running time. In [l] the former analysis is used; in 
[4] and [6] the latter analysis is used. 

Rabin [4] has proposed a probabilistic algorithm 
for finding the closest pair of a set of points in 
Euclidean space. The running time of his algorithm 
using the worst-case expected-time measure is linear. 
This compares with time O(n log II) for the best of 
the known determinis?ic algorithms [or this problem 
j2,5,7]. 

Rabin’s algc-rithm works by randomly choosing a 
subset of the points and recursively using the algo- 
rithm to find the distance between the nearest neigh- 
bors of the subset. Ra.bin is able to show that, with 
very high probability, tht; distance between the near- 
est neighbors of the subset is a very good ;Ipproxima- 
* Research was wpported under grant number ONR N00014, 

76-C-lrO18. 
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tion to the distance between nearest neighbors in the 
whole set. Using this approximation the distance be- 
tween the nearest neighbor in the whole set can be 
found in expected linear time. The algorithm’s use of 
randomness in choosing the subset is crucial. 

Rabin’s algorithm also assumes constant time 
arithmetic operations. In partictilar, he assumes that 
a special operation, described below, which is similar 
to hashing can be performed in constant expected 
time. It follows from [3] that the special operation 
can indeed be implemented by a probabilistic algo- 
rithm to run in constant expected time given that 
evaluating a hash function takes constant time. 

The fast algorithms in [ 11, [4], and [6] all have 
the property that for some sequence of random 
choices an incorrect answer could result. Rabin’s algo- 
rithm is apparently the only known example other 
than hashing of an error-free probabilistic algorithm 
which runs faster than the deterministic equivalent. 

In this paper we present an algorithm to find the 
nearest neighbor which runs in time O(n loglog n). 
The algorithm does not make any random choices; 
however it does assume that the special operation 
uses only constant time. The conclusion we reach is 
that mclst of the speedup of Rabin’s algorithm is due 
to the hashing, and not to the probabilistic nature of 
the basic algorithm. It would be interesting to find 
examples of probabilistic algorithms that are faster 
than their deterministic counterparts and for which 
the speed does noi come from the capability to hash. 



Digression:  computational geometry

Ingenious divide-and-conquer algorithms for core geometric problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  3D and higher dimensions test limits of our ingenuity.
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running time to solve a 2D problem with n points

problem brute clever

closest pair O(n2) O(n log n)

farthest pair O(n2) O(n log n)

convex hull O(n2) O(n log n)

Delaunay/Voronoi O(n4) O(n log n)

Euclidean MST O(n2) O(n log n)



Convex hull

The convex hull of a set of n points is the smallest perimeter fence  
enclosing the points. 

 
 
 
 
 
 
 
 
 
 
Equivalent definitions. 

独Smallest area convex polygon enclosing the points. 

独Intersection of all convex set containing all the points.
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Farthest pair

Given n points in the plane, find a pair of points with the largest Euclidean 

distance between them. 

Fact.  Points in farthest pair are extreme points on convex hull.
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The Delaunay triangulation is a triangulation of n points in the plane  
such that no point is inside the circumcircle of any triangle. 

 
 
 
 
 
 
 
 
 
 
 
Some useful properties. 

独No edges cross. 

独Among all triangulations, it maximizes the minimum angle. 

独Contains an edge between each point and its nearest neighbor.

Delaunay triangulation
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Delaunay triangulation of 19 points

no point in the set is 
inside the circumcircle

point inside circumcircle
of 3 points



Given n points in the plane, find MST connecting them. 
[distances between point pairs are Euclidean distances] 

 
 
 
 
 
 
 
 
 
 
 
Fact.  Euclidean MST is subgraph of Delaunay triangulation. 

Implication.  Can compute Euclidean MST in O(n log n) time. 

独Compute Delaunay triangulation. 

独Compute MST of Delaunay triangulation.

Euclidean MST
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it’s planar 
(≤ 3n edges)



Computational geometry applications

Applications.  

独Robotics. 

独VLSI design. 

独Data mining. 

独Medical imaging. 

独Computer vision. 

独Scientific computing. 

独Finite-element meshing. 

独Astronomical simulation. 

独Models of physical world.  

独Geographic information systems. 

独Computer graphics (movies, games, virtual reality).
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http://www.ics.uci.edu/~eppstein/geom.html

airflow around an aircraft wing
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DYNAMIC PROGRAMMING - ETYMOLOGY

Jeff Erickson: Algorithms
The dynamic programming paradigm was developed by Richard Bellman
in the mid-1950s, while working at the RAND Corporation. Bellman
deliberately chose the name dynamic programming to hide the
mathematical character of his work from his military bosses, who were
actively hostile toward anything resembling mathematical research. Here,
the word programming does not refer to writing code, but rather to the
older sense of planning or scheduling, typically by filling in a table. For
example, sports programs and theater programs are schedules of
important events; television programming involves filling each available
time slot with a show; degree programs are schedules of classes to be
taken. The Air Force funded Bellman an other to develop methods for
constructing training and logistics schedules, or as they called them,
programs. The word dynamic is meant to suggest that the table is filled
in over time, rather than all at once (as in linear programming).

26



Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s. 

 
Etymology. 

独Dynamic programming = planning over time. 

独Secretary of Defense had pathological fear of mathematical research. 

独Bellman sought a “dynamic” adjective to avoid conflict.

 3

THE THEORY OF DYNAMIC PROGRAMMING 
RICHARD BELLMAN 

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical 
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming. 

To begin with, the theory was created to treat the mathematical 
problems arising from the study of various multi-stage decision 
processes, which may roughly be described in the following way: We 
have a physical system whose state at any time / is determined by a 
set of quantities which we call state parameters, or state variables. 
At certain times, which may be prescribed in advance, or which may 
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are 
equivalent to transformations of the state variables, the choice of a 
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of 
future ones, with the purpose of the whole process that of maximizing 
some function of the parameters describing the final state. 

Examples of processes fitting this loose description are furnished 
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical 
clinic ; from the determination of long-term investment programs for 
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for 
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments. 

I t is abundantly clear from the very brief description of possible 
applications tha t the problems arising from the study of these 
processes are problems of the future as well as of the immediate 
present. 

Turning to a more precise discussion, let us introduce a small 
amount of terminology. A sequence of decisions will be called a 
policy, and a policy which is most advantageous according to some 
preassigned criterion will be called an optimal policy. 

The classical approach to the mathematical problems arising from 
the processes described above is to consider the set of all possible 

An address delivered before the Summer Meeting of the Society in Laramie on 
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954. 
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Dynamic programming applications

Application areas.  

独Computer science:  AI, compilers, systems, graphics, theory, …. 

独Operations research. 

独Information theory. 

独Control theory. 

独Bioinformatics. 

 
Some famous dynamic programming algorithms.  

独Avidan–Shamir for seam carving. 

独Unix diff for comparing two files. 

独Viterbi for hidden Markov models. 

独De Boor for evaluating spline curves. 

独Bellman–Ford–Moore for shortest path. 

独Knuth–Plass for word wrapping text in       . 

独Cocke–Kasami–Younger for parsing context-free grammars. 

独Needleman–Wunsch/Smith–Waterman for sequence alignment.

 4

T1X
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DYNAMIC PROGRAMMING

INTERVAL SCHEDULING



6.  DYNAMIC PROGRAMMING I

‣ weighted interval scheduling 

‣ segmented least squares 

‣ knapsack problem 

‣ RNA secondary structure

SECTIONS 6.1–6.2



Weighted interval scheduling

独Job j starts at sj, finishes at fj, and has weight wj  > 0. 

独Two jobs are compatible if they don’t overlap. 

独Goal:  find max-weight subset of mutually compatible jobs.

 7

time
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Earliest-finish-time first algorithm

Earliest finish-time first. 

独Consider jobs in ascending order of finish time. 

独Add job to subset if it is compatible with previously chosen jobs. 

 
Recall.  Greedy algorithm is correct if all weights are 1. 

 
 
Observation.  Greedy algorithm fails spectacularly for weighted version.

 8

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

weight = 1



Weighted interval scheduling

Convention.  Jobs are in ascending order of finish time:  f1  ≤  f2  ≤ . . . ≤ fn . 

 
Def.  p( j) = largest index i <  j such that job i is compatible with j. 
Ex.  p(8) = 1, p(7) = 3, p(2) = 0.
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time
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i is leftmost interval 
that ends before j begins



Dynamic programming:  binary choice

Def.  OPT( j) = max weight of any subset of mutually compatible jobs for 

subproblem consisting only of jobs 1, 2, ..., j. 
 
Goal.  OPT(n) = max weight of any subset of mutually compatible jobs. 

 
Case 1.  OPT( j) does not select job j. 

独Must be an optimal solution to problem consisting of remaining 
jobs 1, 2, ...,  j – 1.  

 
Case 2.  OPT( j) selects job j. 

独Collect profit wj. 

独Can’t use incompatible jobs { p( j) + 1, p( j) + 2, ...,  j – 1 }. 

独Must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p( j). 
 
Bellman equation.

 10

optimal substructure property 
(proof via exchange argument)

OPT (j) =

�
0 B7 j = 0

max {OPT (j � 1), wj + OPT (p(j)) } B7 j > 0
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Weighted interval scheduling:  brute force

 11

BRUTE-FORCE (n, s1, …, sn, f1, …, fn, w1, …, wn)                          


Sort jobs by finish time and renumber so that  f1  ≤   f2   ≤  …  ≤   fn.

Compute  p[1], p[2], …, p[n] via binary search.

RETURN  COMPUTE-OPT(n).

COMPUTE-OPT( j )                          


IF (j = 0)

RETURN  0.

ELSE

RETURN  max {COMPUTE-OPT( j – 1),  wj  + COMPUTE-OPT(p[ j ])  }.



What is running time of COMPUTE-OPT(n) in the worst case?  

A. Θ(n log n)

B. Θ(n2)

C. Θ(1.618n) 

D. Θ(2n)
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Dynamic programming:  quiz 1

COMPUTE-OPT( j )                          


IF (j = 0)

RETURN  0.

ELSE

RETURN  max {COMPUTE-OPT( j – 1),  wj  + COMPUTE-OPT(p[ j ])  }.

T (n) =

�
�
�

�(1) B7 n = 1

2T (n� 1) + �(1) B7 n > 1
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Weighted interval scheduling:  brute force

Observation.  Recursive algorithm is spectacularly slow because of 

overlapping subproblems  ⇒  exponential-time algorithm.  

 
Ex.  Number of recursive calls for family of “layered” instances grows like 

Fibonacci sequence.
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p(1) = 0, p(j) = j-2

4 3

3 2 2 1

2 1

1 0
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recursion tree
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Weighted interval scheduling:  memoization

Top-down dynamic programming (memoization). 

独Cache result of subproblem j in M [ j]. 

独Use M [ j] to avoid solving subproblem j more than once.

 14

M-COMPUTE-OPT( j )                          
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

IF  (M [ j]  is uninitialized)

 M [ j] ← max { M-COMPUTE-OPT ( j – 1),  wj  + M-COMPUTE-OPT(p[ j])  }.

RETURN  M [ j].

TOP-DOWN(n, s1, …, sn, f1, …, fn, w1, …, wn)                          


Sort jobs by finish time and renumber so that  f1  ≤   f2   ≤  …  ≤   fn.

Compute  p[1], p[2], …, p[n] via binary search.

M [0] ← 0.

RETURN  M-COMPUTE-OPT(n).

global array



Weighted interval scheduling:  running time

Claim.  Memoized version of algorithm takes O(n log n) time. 

Pf. 

独Sort by finish time:  O(n log n) via mergesort. 

独Compute p[ j] for each j :  O(n log n) via binary search.  

独M-COMPUTE-OPT( j):  each invocation takes O(1) time and either 
- (1) returns an initialized value M [ j] 
- (2) initializes M [ j] and makes two recursive calls 

独Progress measure Φ = # initialized entries among M [1 . . n ]. 
- initially Φ = 0; throughout Φ  ≤  n.  
- (2) increases Φ by 1  ⇒  ≤ 2n recursive calls. 

独Overall running time of M-COMPUTE-OPT(n) is O(n).   ▪

 15
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Weighted interval scheduling:  finding a solution

Q.  DP algorithm computes optimal value. How to find optimal solution? 

A.  Make a second pass by calling FIND-SOLUTION(n). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis.  # of recursive calls ≤ n  ⇒  O(n).
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FIND-SOLUTION( j)  

____________________________________________________________________________________________________________

IF  (j = 0)

RETURN  ∅.

ELSE IF  (wj  + M [p[ j]]  >  M [ j – 1])

RETURN  { j } ∪  FIND-SOLUTION(p[ j]).

ELSE

RETURN  FIND-SOLUTION( j – 1).

M [ j] = max { M[j – 1],  wj  + M[p[ j]]  }.



Weighted interval scheduling:  bottom-up dynamic programming

Bottom-up dynamic programming.  Unwind recursion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Running time.  The bottom-up version takes O(n log n) time.

 18

BOTTOM-UP(n, s1, …, sn, f1, …, fn, w1, …, wn)                          


Sort jobs by finish time and renumber so that  f1  ≤   f2   ≤  …  ≤   fn.

Compute  p[1], p[2], …, p[n].

M [0] ← 0.

FOR j = 1 TO n

M [ j] ←  max { M [ j – 1],  wj  + M [p[ j]]  }.


previously computed values



DYNAMIC PROGRAMMING

PARENTHESIZATION PROBLEM



PARENTHESIZATION PROBLEM

• given sequence of matrices 〈A1, . . . ,An〉 of dimension

p0 × p1,p1 × p2, . . . , pn−1 × pn

• compute associative product A1 · A2 · . . . · An using sequence of

normal matrix multiplies in the order that minimizes cost

• cost to multiply i × j with j × k is ijk

27



Parenthesization Example



NUMBER OF PARENTHESIZATIONS

• denote the number of alternative parenthesizations if a sequence of

n matrices by P(n)

•

P(n) =





1 pro n = 1
∑n−1

k=1 P(k) · P(n − k) pro n > 1

• the solution to the recurrence is Ω(2n)

• brute force algorithm is exponential

28



STRUCTURE OF AN OPTIMAL PARENTHESIZATION

to compute the product Ai · Ai+1 · . . . · Aj we have first for an index k

compute products Ai · . . . · Ak and Ak+1 · . . . · Aj

Q: which index k ?

A: we have to examine all possibilities

Q: how to compute products Ai · . . . · Ak and Ak+1 · . . . · Aj?

A: in an optimal way =⇒ subproblems of the original problem

29



COST OF AN OPTIMAL SOLUTION

• given matrices 〈A1, . . . ,An〉 of dimension

p0 × p1,p1 × p2, . . . , pn−1 × pn

• let us define a function m : {1, . . . , n} × {1, . . . , n} → N where

m(i , j) is the minimal cost to multiply Ai · Ai+1 · . . . · Aj

• we can define m(i , j) recursively as follows

m(i , j)
def
=





0 if i = j

mini≤k<j{m(i , k) + m(k + 1, j) + pi−1pkpj} if i < j

• the optimal cost to multiply the sequence 〈A1, . . . ,An〉 is m(1, n)

30



COMPUTING THE COST FUNCTION RECURSIVELY

Function M(i , j)

Input: i , j

Output: value m(i , j)

1 if i = j then return 0 else

2 return mini≤k<j{M(i , k) + M(k + 1, j) + pi−1pkpj}

• let T (n) denote the time complexity of the computation of m(i , j)

for n = j − i + 1

• for n > 0 and a constant d

T (n) =
n−1∑

k=1

(T (k) + T (n − k)) + dn = 2
n−1∑

k=1

T (k) + dn

• T (n) = Θ(3n)

31



COMPUTING THE COST FUNCTION BOTTOM UP

• make use of dependencies

• the order is given by the number of matrices

• m(1, 1),m(2, 2), . . . ,m(n, n)

m(1, 2),m(2, 3) . . . ,m(n − 1, n)

m(1, 3),m(2, 4) . . . ,m(n − 2, n)

. . . . . .

m(1, n − 1),m(2, n)

m(1, n)

32



COMPUTING THE COST FUNCTION BOTTOM UP

Algorithm: Matrix Multiplication

Input: dimensions p0, p1, p2, . . . , pn of matrices

Output: value m(1, n)

1 for i = 1 to n do (M(i , i)← 0

2 for r = 2 to n do

3 for i = 1 to n − r + 1 do

4 j ← i + r − 1

5 M(i , j)←∞
6 for k = i to j − 1 do

7 q ← M(i , k) + M(k + 1, j) + pi−1pkpj

8 if q < M(i , j) then M(i , j)← q

9 return M(1, n)

complexity T (n) = O(n3) 33



COMPUTING THE OPTIMAL SOLUTION BOTTOM UP

modify line 8 to

if q < M(i , j) then M(i , j)← q, S(i , j)← k

Function Parenthesis(S , i , j)

Input: function S , indices i , j

Output: parenthetization of the sequence Ai , . . . ,Aj

1 if i = j then print Ai else

2 print ’(’

3 ; Parenthesis((S , i ,S(i , j)))

4 Parenthesis((S ,S(i , j) + 1, j))

5 print ’)’

34



ALTERNATIVE SOLUTIONS

• m(1, 1),m(2, 2), . . . ,m(n, n)
m(1, 2),m(2, 3) . . . ,m(n − 1, n)
m(1, 3),m(2, 4) . . . ,m(n − 2, n)
. . . . . .
m(1, n)
• m(n, n),m(n − 1, n − 1), . . . ,m(1, 1)
m(n − 1, n),m(n − 2, n − 1) . . . ,m(1, 2)
m(n − 2, n),m(n − 3, n − 1) . . . ,m(1, 3)
. . . . . .
m(1, n)
• m(n, n)
m(n − 1, n − 1),m(n − 1, n)
m(n − 2, n − 2),m(n − 2, n − 1),m(n − 2, n)
. . . . . .
m(1, 1),m(1, 2), . . . ,m(1, n)
• m(1, 1)
m(2, 2),m(1, 2)
m(3, 3),m(2, 3),m(1, 3). . . . . .
m(n, n),m(n − 1, n), . . . ,m(1, n) 35



DYNAMIC PROGRAMMING

KNAPSACK PROBLEM



6.  DYNAMIC PROGRAMMING I

‣ weighted interval scheduling 

‣ segmented least squares 

‣ knapsack problem 

‣ RNA secondary structure

SECTION 6.4



Knapsack problem

Goal.  Pack knapsack so as to maximize total value. 

独There are n items:  item i provides value vi  > 0 and weighs wi  > 0. 

独Knapsack has weight capacity of W. 

Assumption.  All input values are integral. 

 
Ex.  { 1, 2, 5 } has value $35 (and weight 10). 

Ex.  { 3, 4 } has value $40 (and weight 11).

 31

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5 
by Dake



Dynamic programming:  adding a new variable

Def.  OPT(i, w) = max-profit subset of items 1, …, i with weight limit w. 

Goal.  OPT(n, W). 
 
Case 1.  OPT(i, w) does not select item i.  

独OPT(i, w) selects best of { 1, 2, …, i – 1 } using weight limit w.  

 
Case 2.  OPT(i, w) selects item i. 

独Collect value vi. 

独New weight limit = w – wi. 

独OPT(i, w) selects best of { 1, 2, …, i – 1 } using this new weight limit. 

 
Bellman equation.

 32

optimal substructure property 
(proof via exchange argument)

possibly because wi > w

OPT (i, w) =

�
����
����

0 B7 i = 0

OPT (i� 1, w) B7 wi > w

max { OPT (i� 1, w), vi + OPT (i� 1, w � wi) } Qi?2`rBb2
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Knapsack problem:  bottom-up dynamic programming

 33

KNAPSACK(n, W, w1, …, wn, v1, …, vn )                          


FOR  w = 0 TO W

M [0, w ] ← 0. 

FOR  i = 1 TO n

FOR  w = 0 TO W

IF  (wi > w)   M [ i, w ]  ←  M [ i – 1, w ].

ELSE             M [ i, w ]  ←  max { M [ i – 1, w ],  vi  + M [ i – 1, w – wi] }. 

RETURN  M [n, W].


previously computed values

OPT (i, w) =

�
����
����

0 B7 i = 0

OPT (i� 1, w) B7 wi > w

max { OPT (i� 1, w), vi + OPT (i� 1, w � wi) } Qi?2`rBb2
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Knapsack problem:  bottom-up dynamic programming demo
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0 1 2 3 4 5 6 7 8 9 10 11

{  } 0 0 0 0 0 0 0 0 0 0 0 0

{ 1 } 0 1 1 1 1 1 1 1 1 1 1 1

{ 1, 2 } 0 1 6 7 7 7 7 7 7 7 7 7

{ 1, 2, 3 } 0 1 6 7 7 18 19 24 25 25 25 25

{ 1, 2, 3, 4 } 0 1 6 7 7 18 22 24 28 29 29 40

{ 1, 2, 3, 4, 5 } 0 1 6 7 7 18 22 28 29 34 35 40

weight limit w

subset  
of items
1, …, i

OPT(i, w) = max-profit subset of items 1, …, i with weight limit w.

OPT (i, w) =

�
����
����

0 B7 i = 0

OPT (i� 1, w) B7 wi > w

max {OPT (i� 1, w), vi + OPT (i� 1, w � wi} Qi?2`rBb2
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i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg



Knapsack problem:  running time

Theorem.  The DP algorithm solves the knapsack problem with n items 
and maximum weight W in Θ(n W) time and Θ(n W) space. 

Pf. 

独Takes O(1) time per table entry. 

独There are Θ(n W) table entries. 

独After computing optimal values, can trace back to find solution: 
OPT(i, w) takes item i iff M [i, w]  >  M [i – 1, w].   ▪

 35

weights are integers 
between 1 and W



Does there exist a poly-time algorithm for the knapsack problem?  

A. Yes, because the DP algorithm takes Θ(n W) time.

B. No, because Θ(n W) is not a polynomial function of the input size.

C. No, because the problem is NP-hard.

D. Unknown.

 36

Dynamic programming:  quiz 4

“pseudo-polynomial”

equivalent to P ≠ NP conjecture 
because knapsack problem is NP-hard



DYNAMIC PROGRAMMING

SEQUENCE ALIGNEMENT



6.  DYNAMIC PROGRAMMING II

‣ sequence alignment 

‣ Hirschberg′s algorithm 

‣ Bellman–Ford–Moore algorithm 

‣ distance-vector protocols  

‣ negative cycles

SECTION 6.6



String similarity

Q.  How similar are two strings? 

 
Ex.  ocurrance and occurrence.

 3

6 mismatches, 1 gap

o c u r r a n c e –

o c c u r r e n c e

1 mismatch, 1 gap

o c – u r r a n c e

o c c u r r e n c e

0 mismatches, 3 gaps

o c – u r r – a n c e

o c c u r r e – n c e



Edit distance

Edit distance.  [Levenshtein 1966, Needleman–Wunsch 1970] 

独Gap penalty δ; mismatch penalty αpq. 

独Cost = sum of gap and mismatch penalties. 

 
 
 
 
 
 
 
 
Applications.  Bioinformatics, spell correction, machine translation, 
speech recognition, information extraction, ...

 4

cost = δ + αCG + αTA

C T – G A C C T A C G

C T G G A C G A A C G

Spokesperson confirms     senior government adviser was found  
Spokesperson said     the senior            adviser was found

assuming αAA = αCC = αGG = αTT  = 0



BLOSUM matrix for proteins 

 5



What is edit distance between these two strings? 
 
 
Assume gap penalty = 2 and mismatch penalty = 1.  

A. 1

B. 2

C. 3

D. 4

E. 5

 6

Dynamic programming:  quiz 1

P A L E T T E

P A L A – T E

P A L E T T E       P A L A T E

1 mismatch, 1 gap



Goal.  Given two strings x1 x2 ... xm and y1 y2 ... yn , find a min-cost alignment. 

 
Def.  An alignment M is a set of ordered pairs xi – yj such that each character 

appears in at most one pair and no crossings. 

 
Def.  The cost of an alignment M is:

Sequence alignment

  

€ 

cost(M ) = α xi y j
(xi , y j ) ∈ M
∑

mismatch
! " # # $ # # 

+ δ
i : xi  unmatched

∑ + δ
j : y j  unmatched

∑

gap
! " # # # # # $ # # # # # 

 7

C T A C C – G

– T A C A T G

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

M = { x2–y1, x3–y2, x4–y3, x5–y4, x6–y6 }
an alignment of CTACCG and TACATG

xi – yj and xiʹ – yj′ cross if i < i ′, but j > j ʹ



Sequence alignment:  problem structure

Def.  OPT(i, j) = min cost of aligning prefix strings x1 x2 ... xi and y1 y2 ... yj. 

Goal.  OPT(m, n). 
 
Case 1.  OPT(i, j) matches xi – yj. 

Pay mismatch for xi – yj  + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj–1.  

 
Case 2a.  OPT(i, j) leaves xi unmatched. 

Pay gap for xi + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj.  

 
Case 2b.  OPT(i, j) leaves yj unmatched. 

Pay gap for yj + min cost of aligning x1 x2 ... xi and y1 y2 ... yj–1. 

 
Bellman equation.

 8

optimal substructure property 

(proof via exchange argument)

OPT (i, j) =

�
����������
����������

j� B7 i = 0

i� B7 j = 0

min

�
����
����

�xiyj + OPT (i� 1, j � 1)

� + OPT (i� 1, j)

� + OPT (i, j � 1)

Qi?2`rBb2
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Sequence alignment:  analysis

Theorem.  The DP algorithm computes the edit distance (and an optimal 

alignment) of two strings of lengths m and n in Θ(mn) time and space. 

Pf. 

独Algorithm computes edit distance. 

独Can trace back to extract optimal alignment itself.  ▪ 
 
 
 
Theorem.  [Backurs–Indyk 2015]  If can compute edit distance of two strings  
of length n in O(n2−ε) time for some constant ε > 0, then can solve SAT 
with n variables and m clauses in poly(m) 2(1−δ) n time for some constant δ > 0.

 11

which would disprove SETH 

(strong exponential time hypothesis)
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Edit Distance Cannot Be Computed

in Strongly Subquadratic Time

(unless SETH is false)∗

Arturs Backurs†

MIT
Piotr Indyk‡

MIT

Abstract

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for
the problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(n2−δ) for some constant δ > 0, then the satisfiability
of conjunctive normal form formulas with N variables and M clauses can be solved in time
MO(1)2(1−ϵ)N for a constant ϵ > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.

∗A preliminary version of this paper appeared in Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, 2015.

†backurs@mit.edu
‡indyk@mit.edu



Sequence alignment:  traceback

 10

S I M I L A R I T Y

0 2 4 6 8 10 12 14 16 18 20

I 2 4 1 3 2 4 6 8 7 9 11

D 4 6 3 3 4 4 6 8 9 9 11

E 6 8 5 5 6 6 6 8 10 11 11

N 8 10 7 7 8 8 8 8 10 12 13

T 10 12 9 9 9 10 10 10 10 9 11

I 12 14 8 10 8 10 12 12 9 11 11

T 14 16 10 10 10 10 12 14 11 8 11

Y 16 18 12 12 12 12 12 14 13 10 7



Sequence alignment:  analysis

Theorem.  The DP algorithm computes the edit distance (and an optimal 

alignment) of two strings of lengths m and n in Θ(mn) time and space. 

Pf. 

独Algorithm computes edit distance. 

独Can trace back to extract optimal alignment itself.  ▪ 
 
 
 
Theorem.  [Backurs–Indyk 2015]  If can compute edit distance of two strings  
of length n in O(n2−ε) time for some constant ε > 0, then can solve SAT 
with n variables and m clauses in poly(m) 2(1−δ) n time for some constant δ > 0.

 11

which would disprove SETH 

(strong exponential time hypothesis)
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in Strongly Subquadratic Time

(unless SETH is false)∗

Arturs Backurs†

MIT
Piotr Indyk‡

MIT

Abstract

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for
the problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(n2−δ) for some constant δ > 0, then the satisfiability
of conjunctive normal form formulas with N variables and M clauses can be solved in time
MO(1)2(1−ϵ)N for a constant ϵ > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.

∗A preliminary version of this paper appeared in Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, 2015.

†backurs@mit.edu
‡indyk@mit.edu



It is easy to modify the DP algorithm for edit distance to…

A. Compute edit distance in O(mn) time and O(m + n) space.

B. Compute an optimal alignment in O(mn) time and O(m + n) space.

C. Both A and B.

D. Neither A nor B.

 12

Dynamic programming:  quiz 3

OPT (i, j) =

�
����������
����������

j� B7 i = 0

i� B7 j = 0

min

�
����
����

�xiyj + OPT (i� 1, j � 1)

� + OPT (i� 1, j)

� + OPT (i, j � 1)

Qi?2`rBb2
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DYNAMIC PROGRAMMING

SHORTEST PATHS — BELLMAN-FORD

ALGORITHM



Shortest paths with negative weights

Shortest-path problem.  Given a digraph G = (V, E), with arbitrary edge 

lengths �vw, find shortest path from source node s to destination node t. 
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�1

8

5

7

5

4

�2

�5
12

10

13

9

length of shortest path from s to t = 9 − 3 − 6 + 11 = 11

s

4

5

t

9

�3

�6
11

assume there exists a path 

from every node to t



Shortest paths with negative weights:  failed attempts

Dijkstra.  May not produce shortest paths when edge lengths are negative. 

 
 
 
 
 
 
 
 
Reweighting.  Adding a constant to every edge length does not necessarily 

make Dijkstra’s algorithm produce shortest paths.

 33

t

v

2

6

�8

3

Dijkstra selects the vertices in the order s, t, w, v 

But shortest path from s to t is s→v→w→t.
4

s

w

s

t

v

10

14

w11

0

Adding 8 to each edge weight changes the 

shortest path from s→v→w→t to s→t.
12



Negative cycles

Def.  A negative cycle is a directed cycle for which the sum of its edge 

lengths is negative.

 34

�3

5

�3

�44

a negative cycle W :  �(W ) =
�

e�W

�e < 0
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Shortest paths and negative cycles

Lemma 1.  If some v↝t path contains a negative cycle, then there does not 

exist a shortest v↝t path. 

 
Pf.  If there exists such a cycle W, then can build a v↝t path of arbitrarily 

negative length by detouring around W as many times as desired.  ▪

 35

W

�(W)  <  0

v t



Shortest paths and negative cycles

Lemma 2.  If G has no negative cycles, then there exists a shortest v↝t path 

that is simple (and has ≤  n – 1 edges). 

 
Pf. 

独Among all shortest v↝t paths, consider one that uses the fewest edges. 

独If that path P contains a directed cycle W, can remove the portion of P 

corresponding to W without increasing its length.  ▪

 36

W

�(W)  ≥  0

v t



Shortest-paths and negative-cycle problems

Single-destination shortest-paths problem.  Given a digraph G = (V, E) with 

edge lengths �vw (but no negative cycles) and a distinguished node t,  
find a shortest v↝t path for every node v. 
 
Negative-cycle problem.  Given a digraph G = (V, E) with edge lengths �vw, 

find a negative cycle (if one exists).

 37

�3

5

�3

�44

negative cycle

4

t

1

�3

shortest-paths tree

52



Which subproblems to find shortest v↝t paths for every node v?  

A. OPT(i, v) = length of shortest v↝t path that uses exactly i edges.

B. OPT(i, v) = length of shortest v↝t path that uses at most edges.

C. Neither A nor B.

 38

Dynamic programming:  quiz 5



Shortest paths with negative weights:  dynamic programming

Def.  OPT(i, v) = length of shortest v↝t path that uses ≤ i edges. 

 
Goal.  OPT(n – 1, v) for each v. 
 
Case 1.  Shortest v↝t path uses ≤ i – 1 edges. 

独OPT(i, v) = OPT(i – 1, v). 

Case 2.  Shortest v↝t path uses exactly i edges. 

独if (v, w) is first edge in shortest such v↝t path, incur a cost of �vw.

独Then, select best w↝t path using ≤ i – 1 edges. 

 
Bellman equation.

 39

optimal substructure property 

(proof via exchange argument)

OPT (i, v) =

�
����
����

0 B7 i = 0 �M/ v = t

� B7 i = 0 �M/ v �= t

min

�
OPT (i� 1, v), min

(v,w)�E
{OPT (i� 1, w) + �vw}

�
B7 i > 0
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by Lemma 2, if no negative cycles, 

there exists a shortest  v↝t path that is simple



Shortest paths with negative weights:  implementation

 40

SHORTEST-PATHS(V, E, �, t)                          


FOREACH node v ∈ V :

M [0, v] ← ∞.

M [0, t] ← 0.

FOR i = 1 TO n – 1

FOREACH node v ∈ V :

M [i, v] ← M [i – 1, v].

FOREACH edge (v, w) ∈ E :

M [i, v] ← min { M [i, v],  M [i – 1, w] + �vw }.




Shortest paths with negative weights:  implementation

Theorem 1.  Given a digraph G = (V, E) with no negative cycles, the DP 

algorithm computes the length of a shortest v↝t path for every node v 
in Θ(mn) time and Θ(n2) space. 

 
Pf. 

独Table requires Θ(n2) space. 

独Each iteration i takes Θ(m) time since we examine each edge once.  ▪ 
 
Finding the shortest paths. 

独Approach 1:  Maintain successor[i, v] that points to next node  
on a shortest v↝t path using ≤ i edges. 

独Approach 2:   Compute optimal lengths M[i, v] and consider  
only edges with M[i, v] = M[i – 1, w] + �vw. Any directed path in this 

subgraph is a shortest path.

 41



It is easy to modify the DP algorithm for shortest paths to…

A. Compute lengths of shortest paths in O(mn) time and O(m + n) space.

B. Compute shortest paths in O(mn) time and O(m + n) space.

C. Both A and B.

D. Neither A nor B.

 42

Dynamic programming:  quiz 6



Shortest paths with negative weights:  practical improvements

Space optimization.  Maintain two 1D arrays (instead of 2D array). 

独d[v] = length of a shortest v↝t path that we have found so far. 

独successor[v] = next node on a v↝t path. 

 
Performance optimization.  If d[w] was not updated in iteration i – 1, 
then no reason to consider edges entering w in iteration i.

 43



Bellman–Ford–Moore:  efficient implementation

 44

BELLMAN–FORD–MOORE(V, E, c, t)                          


FOREACH node v ∈ V :

d[v] ← ∞.

successor[v] ← null.

d[t] ← 0.

FOR i = 1 TO n – 1

FOREACH node w ∈ V :

IF (d[w] was updated in previous pass) 

FOREACH edge (v, w) ∈ E :

IF (d[v]  >  d[w] +  �vw)

d[v]  ← d[w] +  �vw.

successor[v] ← w.

IF (no d[⋅] value changed in pass i)  STOP.


pass i 
O(m) time



Which properties must hold after pass i of Bellman–Ford–Moore?  

A. d[v] = length of a shortest v↝t path using ≤ i edges.

B. d[v] = length of a shortest v↝t path using exactly i edges.

C. Both A and B.

D. Neither A nor B.

 45

Dynamic programming:  quiz 7

wv t2

d[t] = 0d[w] = 2

1

if node w considered before node v,
then d[v] = 3 after 1 pass

d[v] = 3

4



Bellman–Ford–Moore:  analysis

Lemma 3.  For each node v : d[v] is the length of some v↝t path. 

Lemma 4.  For each node v : d[v] is monotone non-increasing. 

Lemma 5.  After pass i, d[v] ≤ length of a shortest v↝t path using ≤ i edges. 

Pf.  [ by induction on i ] 

独Base case: i = 0. 

独Assume true after pass i. 

独Let P be any v↝t path with ≤  i + 1 edges. 

独Let (v, w) be first edge in P and let Pʹ be subpath from w to t. 

独By inductive hypothesis, at the end of pass i, d[w] ≤  c(P ʹ)  
because P ʹ is a w↝t path with ≤ i edges. 

独After considering edge (v, w) in pass i + 1:  

 46

d[v] ≤ �vw + d[w]

≤ �vw + c(P ʹ)

= �(P)   ▪
and by Lemma 4, 

d[v] does not increase

and by Lemma 4, 

d[w] does not increase



Bellman–Ford–Moore:  analysis

Theorem 2.  Assuming no negative cycles, Bellman–Ford–Moore computes 

the lengths of the shortest v↝t paths in O(mn) time and Θ(n) extra space. 

Pf.  Lemma 2 + Lemma 5.  ▪ 
 
 
 
 
 
Remark.  Bellman–Ford–Moore is typically faster in practice. 

独Edge (v, w) considered in pass i + 1 only if d[w] updated in pass i. 

独If shortest path has k edges, then algorithm finds it after ≤ k passes.

 47

shortest path exists and 

has at most n−1 edges

after i passes, 

 d[v] ≤ length of shortest path 

that uses ≤ i edges



Assuming no negative cycles, which properties must hold throughout 
Bellman–Ford–Moore?  

A. Following successor[v] pointers gives a directed v↝t path.

B. If following successor[v] pointers gives a directed v↝t path,  
then the length of that v↝t path is d[v].

C. Both A and B.

D. Neither A nor B.

 48

Dynamic programming:  quiz 8



Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v].  

 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v].

 49

2 110

3

t

1

d[t] = 0d[1] = 10d[2] = 20

10

successor[2] = 1 successor[1] = t

1

d[3] = 1
successor[3] = t

consider nodes in order: t, 1, 2, 3



Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v].  
 
 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v].
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2 110

3

t

1

d[t] = 0d[1] = 2d[2] = 20

10

successor[2] = 1 successor[1] = 3

1

consider nodes in order: t, 1, 2, 3

d[3] = 1
successor[3] = t



Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v]. 
 
 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v]. 

独If negative cycle, successor graph may have directed cycles.
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d[t] = 0

d[2] = 8

d[1] = 5

d[3] = 10
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consider nodes in order: t, 1, 2, 3, 4



Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v].  
 
 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v]. 

独If negative cycle, successor graph may have directed cycles.
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Bellman–Ford–Moore:  finding the shortest paths

Lemma 6.  Any directed cycle W in the successor graph is a negative cycle. 

Pf. 

独If successor[v] = w, we must have d[v]  ≥  d[w] + �vw.  
(LHS and RHS are equal when successor[v] is set; d[w] can only decrease; 

d[v] decreases only when successor[v] is reset)  

独Let v1 → v2 → … → vk → v1 be the sequence of nodes in a directed cycle W. 

独Assume that (vk, v1) is the last edge in W added to the successor graph. 

独Just prior to that: 
 
 
 
 

独Adding inequalities yields �(v1, v2) + �(v2, v3)  + … + �(vk–1, vk) + �(vk, v1)  <  0. ▪ 
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d[v1] ≥ d[v2] +  �(v1, v2)

d[v2] ≥ d[v3] +  �(v2, v3)
 ⋮   ⋮ ⋮

d[vk–1] ≥ d[vk] +  �(vk–1, vk)

d[vk] > d[v1] +  �(vk, v1)

W is a negative cycle

holds with strict inequality 

since we are updating d[vk]



Bellman–Ford–Moore:  finding the shortest paths

Theorem 3.  Assuming no negative cycles, Bellman–Ford–Moore finds 
shortest v↝t paths for every node v in O(mn) time and Θ(n) extra space. 

Pf. 

独The successor graph cannot have a directed cycle.  [Lemma 6] 

独Thus, following the successor pointers from v yields a directed path to t. 

独Let v = v1 → v2 → … → vk = t  be the nodes along this path P. 

独Upon termination, if successor[v] = w, we must have d[v]  =  d[w] + �vw. 
(LHS and RHS are equal when successor[v] is set; d[·] did not change) 

独Thus, 
 
 
 

独Adding equations yields d[v] = d[t] + �(v1, v2) + �(v2, v3)  + … + �(vk–1, vk).  ▪ 
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d[v1] = d[v2] +  �(v1, v2)

d[v2] = d[v3] +  �(v2, v3)
 ⋮   ⋮ ⋮

d[vk–1] = d[vk] +  �(vk–1, vk)

length of path P
min length of any v↝t path 

(Theorem 2)

0

since algorithm 

terminated



year worst case discovered by

1955 O(n4) Shimbel

1956 O(m n2 W) Ford

1958 O(m n) Bellman, Moore

1983 O(n3/4 m log W) Gabow

1989 O(m n1/2 log(nW)) Gabow–Tarjan

1993 O(m n1/2 log W) Goldberg

2005 O(n2.38 W) Sankowsi, Yuster–Zwick

2016 Õ(n10/7 log W) Cohen–Mądry–Sankowski–Vladu

20xx

Single-source shortest paths with negative weights
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single-source shortest paths with weights between –W and W



DYNAMIC PROGRAMMING SUMMARY

conditions
• number of diffferent subproblems is polynomial

• problem solution can be easily deduced from solutions of

subproblems

• subproblems can be naturally ordered from smallest to largest

memoization
• simple to understand

• no need to dictate the ordering of subproblems

dynamic programming
• no recursion overhead

• lower space complexity

• simple complexity analysis
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GREEDY ALGORITHMS



Algorithmic paradigms

Greed.  Build up a solution incrementally, myopically optimizing!

some local criterion.!

Divide-and-conquer.  Break up a problem into independent subproblems;!

solve each subproblem; combine solutions to subproblems to form solution 

to original problem.  

!

Dynamic programming.  Break up a problem into a series of overlapping 

subproblems; combine solutions to smaller subproblems to form solution 

to large subproblem.

 2

fancy name for 

caching intermediate results 

in a table for later reuse



GREEDY ALGORITHMS

COIN CHANGING



4.  GREEDY ALGORITHMS I

‣ coin changing 

‣ interval scheduling 

‣ interval partitioning 

‣ scheduling to minimize lateness 

‣ optimal caching



Coin changing

Goal.  Given U. S. currency denominations { 1, 5, 10, 25, 100 }, 
devise a method to pay amount to customer using fewest coins.  
 
 
Ex.  34¢. 
 
 

Cashier′s algorithm.  At each iteration, add coin of the largest value that 

does not take us past the amount to be paid. 

 
Ex.  $2.89.

3



Cashier′s algorithm

At each iteration, add coin of the largest value that does not take us past 

the amount to be paid.

4

CASHIERS-ALGORITHM (x, c1, c2, …, cn)                          


SORT n coin denominations so that 0 < c1 < c2 < … < cn.

S ← ∅.

WHILE  (x  >  0)

    k  ← largest coin denomination ck  such that ck  ≤  x.

    IF no such k, RETURN “no solution.”

    ELSE

          x  ← x   –  ck.

         S  ← S ∪ { k }.

RETURN S.


multiset of coins selected 



5

Is the cashier’s algorithm optimal?

A. Yes, greedy algorithms are always optimal.

B. Yes, for any set of coin denominations c1 < c2 < … < cn provided c1 = 1.

C. Yes, because of special properties of U.S. coin denominations.

D. No.

Greedy algorithms I:  quiz 1



Cashier′s algorithm (for arbitrary coin denominations)

Q.  Is cashier’s algorithm optimal for any set of denominations? 

 
A.  No. Consider U.S. postage:  1, 10, 21, 34, 70, 100, 350, 1225, 1500. 

・Cashier’s algorithm:  140¢ = 100 + 34 + 1 + 1 + 1 + 1 + 1 + 1. 

・Optimal:  140¢ = 70 + 70. 

 
 
 
 
 
 
 
 
A.  No. It may not even lead to a feasible solution if c1 > 1:  7, 8, 9. 

・Cashier’s algorithm:  15¢ = 9 + ?. 

・Optimal:  15¢ = 7 + 8.

6



Properties of any optimal solution (for U.S. coin denominations)

Property.  Number of pennies ≤ 4. 

Pf.  Replace 5 pennies with 1 nickel. 

 
Property.  Number of nickels ≤ 1. 

Property.  Number of quarters ≤ 3. 

Property.  Number of nickels + number of dimes ≤ 2. 

Pf. 

・Recall:  ≤ 1nickel.  

・Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel; 

・Replace 2 dimes and 1 nickel with 1 quarter.

7

quarters
(25¢)

dimes  
(10¢)

nickels  
(5¢)

pennies  
(1¢)

dollars
(100¢)



Optimality of cashier′s algorithm (for U.S. coin denominations)

Theorem.  Cashier’s algorithm is optimal for U.S. coins { 1, 5, 10, 25, 100 }. 

Pf.  [ by induction on amount to be paid x ] 

・Consider optimal way to change ck   ≤  x < ck+1 :  greedy takes coin k. 

・We claim that any optimal solution must take coin k. 
- if not, it needs enough coins of type c1, …, ck–1  to add up to x 
- table below indicates no optimal solution can do this 

・Problem reduces to coin-changing x – ck cents, which, by induction, 
is optimally solved by cashier’s algorithm.  ▪

k ck all optimal solutions
must satisfy

1 1 P  ≤  4

2 5 N  ≤  1

3 10 N + D  ≤  2

4 25 Q  ≤  3

5 100 no limit
8

max value of coin denominations
c1, c2, …, ck–1 in any optimal solution

–

4

4 + 5 = 9

20 + 4 = 24

75 + 24 = 99



GREEDY ALGORITHMS

INTERVAL SCHEDULING



4.  GREEDY ALGORITHMS I

‣ coin changing 

‣ interval scheduling 

‣ interval partitioning 

‣ scheduling to minimize lateness 

‣ optimal caching

SECTION 4.1



Interval scheduling

・Job j starts at sj and finishes at fj. 

・Two jobs compatible if they don’t overlap. 

・Goal: find maximum subset of mutually compatible jobs.

10

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs d and g 
are incompatible



Consider jobs in some order, taking each job provided it′s compatible 
with the ones already taken. Which rule is optimal?

A. [Earliest start time]  Consider jobs in ascending order of sj.  

B. [Earliest finish time]  Consider jobs in ascending order of fj.  

C. [Shortest interval]  Consider jobs in ascending order of fj – sj.  

D. None of the above.

counterexample for earliest start timecounterexample for shortest interval

11

Greedy algorithms I:  quiz 2



Interval scheduling:  earliest-finish-time-first algorithm

 
 
 
 
 
 
 
 
 
 
 
 
Proposition.  Can implement earliest-finish-time first in O(n log n) time. 

・Keep track of job j* that was added last to S. 

・Job j is compatible with S iff sj  ≥  fj* . 

・Sorting by finish times takes O(n log n) time.

12

EARLIEST-FINISH-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)                          


SORT jobs by finish times and renumber so that  f1  ≤  f2  ≤  …  ≤  fn.

S ← ∅.

FOR  j = 1  TO  n

     IF job j is compatible with S

         S  ← S ∪ {  j }.

RETURN S.


set of jobs selected 



Interval scheduling:  analysis of earliest-finish-time-first algorithm

Theorem.  The earliest-finish-time-first algorithm is optimal. 

 
Pf.  [by contradiction] 

・Assume greedy is not optimal, and let’s see what happens. 

・Let i1, i2, ... ik denote set of jobs selected by greedy. 

・Let j1, j2, ... jm  denote set of jobs in an optimal solution with 
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

13

why not replace 
job jr+1 with job ir+1?

job ir+1 exists and finishes no later than jr+1

i1 i2 ir ir+1Greedy: ik. . .

j1 j2 jr jmOptimal: jr+1 . . .

job jr+1 exists 
because m > k



Theorem.  The earliest-finish-time-first algorithm is optimal. 

Pf.  [by contradiction] 

・Assume greedy is not optimal, and let’s see what happens. 

・Let i1, i2, ... ik denote set of jobs selected by greedy. 

・Let j1, j2, ... jm  denote set of jobs in an optimal solution with 
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

i2i1 ir ik

jmjrj1 j2

ir+1

Interval scheduling:  analysis of earliest-finish-time-first algorithm

14

solution still feasible and optimal 
(but contradicts maximality of r)

ir+1

Greedy:

Optimal:

job ir+1 exists and finishes before jr+1

. . .

. . .



Suppose that each job also has a positive weight and the goal is to 
find a maximum weight subset of mutually compatible intervals.  
Is the earliest-finish-time-first algorithm still optimal?  

A. Yes, because greedy algorithms are always optimal.

B. Yes, because the same proof of correctness is valid.

C. No, because the same proof of correctness is no longer valid.

D. No, because you could assign a huge weight to a job that overlaps 
the job with the earliest finish time.

counterexample for earliest finish time

weight = 1

weight = 100

15

Greedy algorithms I:  quiz 3



GREEDY ALGORITHMS

INTERVAL PARTITIONING



4.  GREEDY ALGORITHMS I

‣ coin changing 

‣ interval scheduling 

‣ interval partitioning 

‣ scheduling to minimize lateness 

‣ optimal caching

SECTION 4.1



Interval partitioning

・Lecture j starts at sj and finishes at fj. 

・Goal:  find minimum number of classrooms to schedule all lectures  
so that no two lectures occur at the same time in the same room. 
 

Ex.  This schedule uses 4 classrooms to schedule 10 lectures.

17

time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

jobs e and g 
are incompatible



Interval partitioning

・Lecture j starts at sj and finishes at fj. 

・Goal:  find minimum number of classrooms to schedule all lectures  
so that no two lectures occur at the same time in the same room. 

 
Ex.  This schedule uses 3 classrooms to schedule 10 lectures. 

18

he

f

g i

j

time

1

2

3

intervals are open 
(need only 3 classrooms at 2pm)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

c

b

a

d



Consider lectures in some order, assigning each lecture to first 
available classroom (opening a new classroom if none is available). 
Which rule is optimal?

A. [Earliest start time]  Consider lectures in ascending order of sj.  

B. [Earliest finish time]  Consider lectures in ascending order of fj.  

C. [Shortest interval]  Consider lectures in ascending order of fj – sj.  

D. None of the above.

1

2

3

counterexample for earliest finish time counterexample for shortest interval

19

Greedy algorithms I:  quiz 4



Interval partitioning:  earliest-start-time-first algorithm

20

EARLIEST-START-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)                          


SORT lectures by start times and renumber so that s1  ≤  s2  ≤  …  ≤  sn.

d ← 0.

FOR  j = 1 TO n

     IF lecture j is compatible with some classroom

         Schedule lecture j in any such classroom k.

     ELSE

         Allocate a new classroom d + 1.

         Schedule lecture j in classroom d + 1.

         d ← d + 1.

RETURN  schedule.


number of allocated classrooms



Interval partitioning:  earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in  

O(n log n) time.  

Pf.  Store classrooms in a priority queue (key = finish time of its last lecture). 

・To determine whether lecture j is compatible with some classroom,  
compare sj to key of min classroom k in priority queue. 

・To add lecture j to classroom k, increase key of classroom k to fj. 

・Total number of priority queue operations is O(n). 

・Sorting by start times takes O(n log n) time.   ▪ 
 

Remark.  This implementation chooses a classroom k whose finish time  
of its last lecture is the earliest.

21



Interval partitioning:  lower bound on optimal solution

Def.  The depth of a set of open intervals is the maximum number of 

intervals that contain any given point. 

 
Key observation.  Number of classrooms needed  ≥  depth. 

 
Q.  Does minimum number of classrooms needed always equal depth? 

A.  Yes! Moreover, earliest-start-time-first algorithm finds a schedule  
     whose number of classrooms equals the depth.

22

h

c

a e

f

g i

jd

b

1

2

3

time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

depth = 3



Interval partitioning:  analysis of earliest-start-time-first algorithm

Observation.  The earliest-start-time first algorithm never schedules two 

incompatible lectures in the same classroom. 

Theorem.  Earliest-start-time-first algorithm is optimal. 

Pf.   

・Let d = number of classrooms that the algorithm allocates. 

・Classroom d is opened because we needed to schedule a lecture, say j, 
that is incompatible with a lecture in each of d – 1 other classrooms. 

・Thus, these d lectures each end after sj. 

・Since we sorted by start time, each of these incompatible lectures start 

no later than sj. 

・Thus, we have d lectures overlapping at time sj + ε. 

・Key observation  ⇒  all schedules use ≥ d classrooms.  ▪

23



GREEDY ALGORITHMS

SCHEDULING TO MINIMIZE LATENESS



4.  GREEDY ALGORITHMS I

‣ coin changing 

‣ interval scheduling 

‣ interval partitioning 

‣ scheduling to minimize lateness 

‣ optimal caching

SECTION 4.2



Scheduling to minimizing lateness

・Single resource processes one job at a time. 

・Job j requires tj units of processing time and is due at time dj. 

・If j starts at time sj, it finishes at time fj = sj + tj.  

・Lateness: ℓ j = max { 0,  fj – dj }. 

・Goal:  schedule all jobs to minimize maximum lateness L = maxj ℓj.

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

lateness = 0lateness = 2 max lateness = 6



26

Schedule jobs according to some natural order. Which order minimizes 
the maximum lateness?

A. [shortest processing time]  Ascending order of processing time tj.  

B. [earliest deadline first]  Ascending order of deadline dj.  

C. [smallest slack]  Ascending order of slack: dj – tj.  

D. None of the above.

Greedy algorithms I:  quiz 5

counterexample for shortest processing time

1 2

tj 9 10

dj 100 10

L  = 9
L* = 0

counterexample for smallest slack

1 2

tj 1 10

dj 2 10

L  = 9
L* = 1



Minimizing lateness:  earliest deadline first

27

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EARLIEST-DEADLINE-FIRST (n, t1, t2, …, tn , d1, d2, …, dn)                          


SORT jobs by due times and renumber so that d1  ≤  d2  ≤  …  ≤  dn.

t ← 0.

FOR  j = 1 TO n

     Assign job j to interval [t, t + tj ].

     sj  ← t ;   fj  ← t + tj.

     t  ← t + tj.

RETURN intervals [s1, f1], [s2, f2], …, [sn, fn].




Minimizing lateness: no idle time

Observation 1.  There exists an optimal schedule with no idle time. 

 
 
 
 
 
 
 
 
Observation 2.  The earliest-deadline-first schedule has no idle time.

28

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

an optimal schedule

an optimal schedule
with no idle time



Minimizing lateness: inversions

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that: 
i < j but j is scheduled before i. 
 
 
 
 
 
Observation 3.  The earliest-deadline-first schedule is the unique idle-free 

schedule with no inversions.

29

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

1 2 3 4 5 6 … n



Minimizing lateness: inversions

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that: 
i < j but j is scheduled before i. 
 
 
 
 
 
Observation 4.  If an idle-free schedule has an inversion, then it has an 

adjacent inversion. 

Pf. 

・Let i– j be a closest inversion. 

・Let k be element immediately to the right of j. 

・Case 1.  [ j > k ]  Then j–k is an adjacent inversion. 

・Case 2.  [ j < k ]  Then i–k is a closer inversion since i < j < k.  ※ 

30

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

j ik

two inverted jobs scheduled consecutively



Minimizing lateness: inversions

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that: 
i < j but j is scheduled before i. 
 
 
 
 
 
 
Key claim.  Exchanging two adjacent, inverted jobs i and j reduces the 

number of inversions by 1 and does not increase the max lateness. 

Pf.  Let ℓ be the lateness before the swap, and let ℓʹ be it afterwards. 

・ℓ ḱ = ℓk for all k ≠ i, j. 

・ℓ í ≤ ℓ i. 

・If job j is late, ℓ  ́j

31

ij

i j

before
exchange

after
exchange

f j́

fi

       =   f j́  –  dj 
   =   fi  –  dj   
≤   fi  –  di

≤  ℓi .

inversion if i < j

definition

j now finishes at time fi

i < j   ⇒  di ≤ dj

definition



Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem.  The earliest-deadline-first schedule S is optimal. 

 
Pf.  [by contradiction] 

Define S* to be an optimal schedule with the fewest inversions. 

・Can assume S* has no idle time. 

・Case 1.  [ S* has no inversions ]  Then S = S*. 

・Case 2.  [ S* has an inversion ]
- let i–j be an adjacent inversion 
- exchanging jobs i and j decreases the number of inversions by 1 

without increasing the max lateness 
- contradicts “fewest inversions” part of the definition of S*    ※

32

optimal schedule can 
have inversions

Observation 3

Observation 1

Observation 4

key claim



Greedy analysis strategies

Greedy algorithm stays ahead.  Show that after each step of the greedy 

algorithm, its solution is at least as good as any other algorithm’s.  

 
Structural.  Discover a simple “structural” bound asserting that every 

possible solution must have a certain value. Then show that your algorithm 

always achieves this bound. 

Exchange argument.  Gradually transform any solution to the one found by 

the greedy algorithm without hurting its quality. 
 

Other greedy algorithms.  Gale–Shapley, Kruskal, Prim, Dijkstra, Huffman, …

33



GREEDY ALGORITHMS

OPTIMAL CACHING



4.  GREEDY ALGORITHMS I

‣ coin changing 

‣ interval scheduling 

‣ interval partitioning 

‣ scheduling to minimize lateness 

‣ optimal caching

SECTION 4.3



Caching. 

・Cache with capacity to store k items. 

・Sequence of m item requests d1, d2, …, dm. 

・Cache hit:  item in cache when requested. 

・Cache miss:  item not in cache when requested. 
(must evict some item from cache and bring requested item into cache)  

Applications.  CPU, RAM, hard drive, web, browser, …. 

Goal.  Eviction schedule that minimizes the number of evictions. 
 

Ex.  k = 2, initial cache = ab, requests:  a, b, c, b, c, a, b. 
Optimal eviction schedule.  2 evictions.

Optimal offline caching

38

a a b

b a b

c c b

b c b

c c b

a a b

b a b

cache

requests

cache miss 
(eviction)



Optimal offline caching:  greedy algorithms

LIFO/FIFO.  Evict item brought in least (most) recently. 

LRU.  Evict item whose most recent access was earliest. 

LFU.  Evict item that was least frequently requested.

39

cache miss 
(which item to eject?) 

⋮ . . . . .

a a w x y z

d a w x d z

a a w x d z

b a b x d z

c a b c d z

e a b c d e

g ? ? ? ? ?

b

e

d
⋮

cache

LIFO: eject e

LRU: eject d

FIFO: eject a

requests



Optimal offline caching:  farthest-in-future (clairvoyant algorithm)

Farthest-in-future.  Evict item in the cache that is not requested until 
farthest in the future. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem.  [Bélády 1966]  FF is optimal eviction schedule. 

Pf.  Algorithm and theorem are intuitive; proof is subtle.
40

cache miss 
(which item to eject?) 

a a b c d e

f ? ? ? ? ?

a

b

c

e

g

b

e

d
⋮

FF: eject d

requests

cache



Which item will be evicted next using farthest-in-future schedule?

A.   

B.  
 

C.  
 

D.  

E.  

41

Greedy algorithms I:  quiz 6

⋮ . . . .
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⋮
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(which item to eject?) 



Reduced eviction schedules

Def.  A reduced schedule is a schedule that brings an item d into the cache 

in step j only if there is a request for d in step j and d is not already in the 

cache. 

42

a a b c

a a b c

c a b c

d a d c

a a d c

b a d b

c a c b

d d c b

d d c b

a reduced schedule

a a b c

a a b c

c a d c

d a d c

a a c b

b a c b

c a c b

d d c b

d d c d

an unreduced schedule

d enters cache 
without a request

d enters cache 
even though already 

in cache



Reduced eviction schedules

Claim.  Given any unreduced schedule S, can transform it into a reduced 

schedule S ʹ with no more evictions. 

Pf.  [ by induction on number of steps j ] 

・Suppose S brings d into the cache in step j without a request. 

・Let c be the item S evicts when it brings d into the cache. 

・Case 1a:  d evicted before next request for d.
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Reduced eviction schedules

Claim.  Given any unreduced schedule S, can transform it into a reduced 

schedule S ʹ with no more evictions. 

Pf.  [ by induction on number of steps j ] 

・Suppose S brings d into the cache in step j without a request. 

・Let c be the item S evicts when it brings d into the cache. 

・Case 1a:  d evicted before next request for d. 

・Case 1b:  next request for d occurs before d is evicted.
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Reduced eviction schedules

Claim.  Given any unreduced schedule S, can transform it into a reduced 

schedule S ʹ with no more evictions. 

Pf.  [ by induction on number of steps j ] 

・Suppose S brings d into the cache in step j even though d is in cache. 

・Let c be the item S evicts when it brings d into the cache. 

・Case 2a:  d evicted before it is needed.
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Reduced eviction schedules

Claim.  Given any unreduced schedule S, can transform it into a reduced 

schedule S ʹ with no more evictions. 

Pf.  [ by induction on number of steps j ] 

・Suppose S brings d into the cache in step j even though d is in cache. 

・Let c be the item S evicts when it brings d into the cache. 

・Case 2a:  d evicted before it is needed. 

・Case 2b:  d needed before it is evicted.
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d1 a c

d1 a c

d1 a c

d d1 a c

d d1 a c

c c a c

a c a c

d c a d3

S′

might as well 
leave c in cache 

until d3 in needed

d1 a c

d1 a c

d1 a c

d d1 a d3

d d1 a d3

c c a d3

a c a d3

d c a d3

unreduced schedule S

step j

d3 enters cache 
even though d1 is 
already in cache

d3 needed

d3 not needed

step j′



Reduced eviction schedules

Claim.  Given any unreduced schedule S, can transform it into a reduced 

schedule S ʹ with no more evictions. 

Pf.  [ by induction on number of steps j ] 

・Case 1:  S brings d into the cache in step j without a request.   ✔ 

・Case 2:  S brings d into the cache in step j even though d is in cache.   ✔ 

・If multiple unreduced items in step j, apply each one in turn, 
dealing with Case 1 before Case 2.  ▪
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resolving Case 1 might trigger Case 2



Farthest-in-future:  analysis

Theorem.  FF is optimal eviction algorithm. 

Pf.  Follows directly from the following invariant. 

 
Invariant.  There exists an optimal reduced schedule S that has the same 

eviction schedule as SFF through the first j steps. 
Pf.  [ by induction on number of steps j ] 
Base case:  j = 0. 

Let S be reduced schedule that satisfies invariant through j steps.  
We produce S ʹ that satisfies invariant after j + 1 steps. 

・Let d denote the item requested in step j + 1. 

・Since S and SFF have agreed up until now, they have the same cache 

contents before step j + 1. 

・Case 1:  d is already in the cache. 
S ʹ = S satisfies invariant. 

・Case 2:  d is not in the cache and S and SFF evict the same item.  
S ʹ = S satisfies invariant.
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Farthest-in-future:  analysis

Pf.  [continued] 

・Case 3:  d is not in the cache; SFF evicts e; S evicts f  ≠  e. 
- begin construction of Sʹ from S by evicting e instead of f 
 
 
 
 
 
 

- now S ʹ agrees with SFF for first j + 1 steps; we show that having item f 
in cache is no worse than having item e in cache 

- let S ʹ behave the same as S until S ʹ is forced to take a different action  
(because either S evicts e; or because either e or f  is requested)
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step  j 

step j+1

same e f

S

same e d

same e f

S′

same d f



Farthest-in-future:  analysis

Let j ʹ be the first step after j + 1 that S ʹ must take a different action from S;  
let g denote the item requested in step j ʹ. 
 
 
 

・Case 3a:  g = e. 
    Can’t happen with FF since there must be a request for f  before e.  

・Case 3b:  g = f. 
    Element f can’t be in cache of S; let eʹ be the item that S evicts. 

- if eʹ = e, S ʹ accesses f  from cache; now S and S ʹ have same cache 
- if eʹ ≠ e, we make Sʹ evict eʹ and bring e into the cache; 

now S and S ʹ have the same cache 

      We let S ʹ behave exactly like S for remaining requests.
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S ′ is no longer reduced, but can be transformed into a 
reduced schedule that agrees with FF through first j + 1 steps 

step j′ same e

S

same f

S′

Sʹ agrees with SFF through first j + 1 steps

involves either e or f (or both)



Farthest-in-future:  analysis

Let j ʹ be the first step after j + 1 that S ʹ must take a different action from S;  
let g denote the item requested in step j ʹ. 
 
 
 
 
 

・Case 3c:  g ≠ e, f.  S evicts e. 
- make Sʹ evict f . 
 
 
 

- now S and S ʹ have the same cache 
- let S ʹ behave exactly like S for the remaining requests  ▪
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otherwise S′ could have taken the same action

same e

S

same f

S′

step j′ same g

S

same g

S′

step j′ 

involves wither e or f (or both)



Caching perspective

Online vs. offline algorithms. 

・Offline:  full sequence of requests is known a priori. 

・Online (reality):  requests are not known in advance. 

・Caching is among most fundamental online problems in CS. 

 
 
LIFO.  Evict item brought in most recently. 

LRU.  Evict item whose most recent access was earliest. 

 
 
Theorem.  FF is optimal offline eviction algorithm. 

・Provides basis for understanding and analyzing online algorithms. 

・LIFO can be arbitrarily bad. 

・LRU is k-competitive:  for any sequence of requests σ, LRU(σ) ≤  k FF(σ) + k. 

・Randomized marking is O(log k)-competitive.
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FF with direction of time reversed!

see SECTION 13.8



GREEDY ALGORITHMS

SHORTEST PATHS — DIJKSTRA’S

ALGORITHM



4.  GREEDY ALGORITHMS II

‣ Dijkstra′s algorithm 

‣ minimum spanning trees 

‣ Prim, Kruskal, Boruvka 

‣ single-link clustering 

‣ min-cost arborescences

SECTION 4.4



Single-pair shortest path problem

Problem.  Given a digraph G = (V, E), edge lengths �e  ≥  0, source s ∈ V, 
and destination t ∈ V, find a shortest directed path from s to t.

3
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1 3

source s

6

8

5

7

5
4

15

312

20

13

9

destination t

length of path = 9 + 4 + 1 + 11 = 25
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Single-source shortest paths problem

Problem.  Given a digraph G = (V, E), edge lengths �e  ≥  0, source s ∈ V, 
find a shortest directed path from s to every node. 

 
Assumption.  There exists a path from s to every node.
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shortest-paths tree
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Suppose that you change the length of every edge of G as follows.  
For which is every shortest path in G a shortest path in G′?  

A. Add 17.

B. Multiply by 17.

C. Either A or B.

D. Neither A nor B.

5

Shortest paths:  quiz 1

s t1 2 3
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24

—
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—
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—
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Shortest paths:  quiz 2

Which variant in car GPS?

A. Single source:  from one node s to every other node.

B. Single sink:  from every node to one node t. 

C. Source–sink:  from one node s to another node t.  

D. All pairs:  between all pairs of nodes.

6



Shortest path applications

独PERT/CPM. 

独Map routing. 

独Seam carving. 

独Robot navigation.  

独Texture mapping. 

独Typesetting in LaTeX. 

独Urban traffic planning. 

独Telemarketer operator scheduling. 

独Routing of telecommunications messages. 

独Network routing protocols (OSPF, BGP, RIP). 

独Optimal truck routing through given traffic congestion pattern.

7

Network Flows:  Theory, Algorithms, and Applications,
by Ahuja, Magnanti, and Orlin, Prentice Hall, 1993.



Dijkstra′s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes S for which  
algorithm has determined d[u] = length of a shortest s↝u path. 

独Initialize S ← { s },  d[s] ← 0. 

独Repeatedly choose unexplored node v ∉ S which minimizes  

8

s

v

u
S

d[u]

the length of a shortest path from s  
to some node u in explored part S, 
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

�e



Greedy approach. Maintain a set of explored nodes S for which  
algorithm has determined d[u] = length of a shortest s↝u path. 

独Initialize S ← { s },  d[s] ← 0. 

独Repeatedly choose unexplored node v ∉ S which minimizes  
 
 
add v to S, and set d[v] ← π(v). 

独To recover path, set pred[v] ← e that achieves min.

Dijkstra′s algorithm (for single-source shortest paths problem)

9

s

v

u
S

d[u]

d[v]

�(v) = min
e = (u,v) : u�S

d[u] + �e
the length of a shortest path from s  
to some node u in explored part S, 
followed by a single edge e = (u, v)

�e



Invariant.  For each node u ∈ S :  d[u] = length of a shortest s↝u path. 

Pf.  [ by induction on ⎜S⎟ ] 
Base case:  ⎜S⎟ = 1 is easy since S = { s } and d[s] = 0. 

Inductive hypothesis:  Assume true for ⎜S⎟  ≥  1. 

独Let v be next node added to S, and let (u, v) be the final edge. 

独A shortest s↝u path plus (u, v) is an s↝v path of length π(v). 
独Consider any other s↝v path P. We show that it is no shorter than π(v). 

独Let e = (x, y) be the first edge in P that leaves S, 
and let P ʹ be the subpath from s to x. 

独The length of P is already ≥  π (v) as soon 
as it reaches y:

S

s

Dijkstra′s algorithm:  proof of correctness

10

 �(P)   ≥   �(Pʹ) + �e

non-negative 
lengths

v

u

y

P

x

Dijkstra chose v 
instead of y

 ≥   π (v)

definition 
of π(y)

≥   π (y)

inductive 
hypothesis

 ≥   d[x] + �e ▪

P ʹ e



Dijkstra′s algorithm:  efficient implementation

Critical optimization 1.  For each unexplored node v ∉ S : 
explicitly maintain π[v] instead of computing directly from definition  
 

独For each v ∉ S :  π(v) can only decrease (because set S increases). 

独More specifically, suppose u is added to S and there is an edge e = (u, v) 
leaving u. Then, it suffices to update: 
 
 
 

Critical optimization 2.  Use a min-oriented priority queue (PQ) 
to choose an unexplored node that minimizes π[v].

11

π[v] ← min { π[v],  π[u] + �e) }

�(v) = min
e = (u,v) : u�S

d[u] + �e

recall: for each u ∈ S,  
π[u] = d [u] = length of shortest s↝u path



Dijkstra’s algorithm:  efficient implementation

Implementation. 

独Algorithm maintains π[v] for each node v. 

独Priority queue stores unexplored nodes, using π[⋅] as priorities. 

独Once u is deleted from the PQ, π[u] = length of a shortest s↝u path.

12

DIJKSTRA (V, E, �, s)                          


FOREACH v ≠ s :  π[v]  ←  ∞, pred[v]  ←  null;  π[s]  ←  0. 
Create an empty priority queue pq.
FOREACH v ∈ V : INSERT(pq, v, π[v]).
WHILE  (IS-NOT-EMPTY(pq))

u ← DEL-MIN(pq).
FOREACH edge e = (u, v) ∈  E leaving u:

IF (π[v]  >  π[u]  + �e)
DECREASE-KEY(pq,  v,  π[u] + �e).
π[v] ← π[u]  + �e ;  pred[v]  ← e.



Dijkstra′s algorithm:  which priority queue?

Performance.  Depends on PQ: n INSERT, n DELETE-MIN, ≤ m DECREASE-KEY. 

独Array implementation optimal for dense graphs. 

独Binary heap much faster for sparse graphs. 

独4-way heap worth the trouble in performance-critical situations.

13

priority queue INSERT DELETE-MIN DECREASE-KEY total

unordered array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

d-way heap 
(Johnson 1975) O(d logd n) O(d logd n) O(logd n) O(m logm/n n)

Fibonacci heap 
(Fredman–Tarjan 1984) O(1) O(log n) † O(1) † O(m + n log n)

integer priority queue 
(Thorup 2004) O(1) O(log log n) O(1) O(m + n log log n)

† amortized

Θ(n2) edges

Θ(n) edges



How to solve the the single-source shortest paths problem in 
undirected graphs with positive edge lengths?  

A. Replace each undirected edge with two antiparallel edges of same 

length. Run Dijkstra’s algorithm in the resulting digraph.

B. Modify Dijkstra’s algorithms so that when it processes node u,  
it consider all edges incident to u (instead of edges leaving u).

C. Either A or B.

D. Neither A nor B.

14

Shortest paths:  quiz 3



Theorem.  [Thorup 1999]  Can solve single-source shortest paths problem 

in undirected graphs with positive integer edge lengths in O(m) time. 

 
Remark.  Does not explore nodes in increasing order of distance from s.

15

Shortest paths:  quiz 3



Extensions of Dijkstra’s algorithm

Dijkstra’s algorithm and proof extend to several related problems: 

独Shortest paths in undirected graphs:  π[v]  ≤  π[u] + �(u, v). 

独Maximum capacity paths:  π[v]  ≥  min { π[u],  c(u, v) }. 

独Maximum reliability paths:  π[v]  ≥  π[u] ! γ(u, v) . 

独… 

Key algebraic structure.  Closed semiring (min-plus, bottleneck, Viterbi, …).

16
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Fun with Semirings
A functional pearl on the abuse of linear algebra

Stephen Dolan
Computer Laboratory, University of Cambridge

stephen.dolan@cl.cam.ac.uk

Abstract
Describing a problem using classical linear algebra is a very well-
known problem-solving technique. If your question can be formu-
lated as a question about real or complex matrices, then the answer
can often be found by standard techniques.

It’s less well-known that very similar techniques still apply
where instead of real or complex numbers we have a closed semir-
ing, which is a structure with some analogue of addition and multi-
plication that need not support subtraction or division.

We define a typeclass in Haskell for describing closed semir-
ings, and implement a few functions for manipulating matrices and
polynomials over them. We then show how these functions can
be used to calculate transitive closures, find shortest or longest
or widest paths in a graph, analyse the data flow of imperative
programs, optimally pack knapsacks, and perform discrete event
simulations, all by just providing an appropriate underlying closed
semiring.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; G.2.2 [Discrete
Mathematics]: Graph Theory—graph algorithms

Keywords closed semirings; transitive closure; linear systems;
shortest paths

1. Introduction
Linear algebra provides an incredibly powerful problem-solving
toolbox. A great many problems in computer graphics and vision,
machine learning, signal processing and many other areas can be
solved by simply expressing the problem as a system of linear
equations and solving using standard techniques.

Linear algebra is defined abstractly in terms of fields, of which
the real and complex numbers are the most familiar examples.
Fields are sets equipped with some notion of addition and multi-
plication as well as negation and reciprocals.

Many discrete mathematical structures commonly encountered
in computer science do not have sensible notions of negation.
Booleans, sets, graphs, regular expressions, imperative programs,
datatypes and various other structures can all be given natural no-
tions of product (interpreted variously as intersection, sequencing

[Copyright notice will appear here once ’preprint’ option is removed.]

or conjunction) and sum (union, choice or disjunction), but gener-
ally lack negation or reciprocals.

Such structures, having addition and multiplication (which dis-
tribute in the usual way) but not in general negation or reciprocals,
are called semirings. Many structures specifying sequential actions
can be thought of as semirings, with multiplication as sequencing
and addition as choice. The distributive law then states, intuitively,
a followed by a choice between b and c is the same as a choice
between a followed by b and a followed by c.

Plain semirings are a very weak structure. We can find many
examples of them in the wild, but unlike fields which provide
the toolbox of linear algebra, there isn’t much we can do with
something knowing only that it is a semiring.

However, we can build some useful tools by introducing the
closed semiring, which is a semiring equipped with an extra opera-
tion called closure. With the intuition of multiplication as sequenc-
ing and addition as choice, closure can be interpreted as iteration.
As we see in the following sections, it is possible to use something
akin to Gaussian elimination on an arbitrary closed semiring, giv-
ing us a means of solving certain “linear” equations over any struc-
ture with suitable notions of sequencing, choice and iteration. First,
though, we need to define the notion of semiring more precisely.

2. Semirings
We define a semiring formally as consisting of a set R, two distin-
guished elements of R named 0 and 1, and two binary operations
+ and ·, satisfying the following relations for any a, b, c 2 R:

a + b = b + a

a + (b + c) = (a + b) + c

a + 0 = a

a · (b · c) = (a · b) · c

a · 0 = 0 · a = 0

a · 1 = 1 · a = a

a · (b + c) = a · b + a · c

(a + b) · c = a · c + b · c

We often write a · b as ab, and a · a · a as a3.
Our focus will be on closed semirings [12], which are semir-

ings with an additional operation called closure (denoted ⇤) which
satisfies the axiom:

a⇤ = 1 + a · a⇤ = 1 + a⇤ · a

If we have an affine map x 7! ax + b in some closed semiring,
then x = a⇤b is a fixpoint, since a⇤b = (aa⇤ + 1)b = a(a⇤b) + b.
So, a closed semiring can also be thought of as a semiring where
affine maps have fixpoints.

The definition of a semiring translates neatly to Haskell:
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ings with an additional operation called closure (denoted ⇤) which
satisfies the axiom:

a⇤ = 1 + a · a⇤ = 1 + a⇤ · a

If we have an affine map x 7! ax + b in some closed semiring,
then x = a⇤b is a fixpoint, since a⇤b = (aa⇤ + 1)b = a(a⇤b) + b.
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4.  GREEDY ALGORITHMS II

‣ Dijkstra′s algorithm 

‣ minimum spanning trees 

‣ Prim, Kruskal, Boruvka 

‣ single-link clustering 

‣ min-cost arborescences

SECTION 6.1



Def.  A path is a sequence of edges which connects a sequence of nodes.  

 
Def.  A cycle is a path with no repeated nodes or edges other than the 

starting and ending nodes.

Cycles
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56

7

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }

1 6

2 3
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path P = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6) }



4

8

5

Cuts

Def.  A cut is a partition of the nodes into two nonempty subsets S and V  – S. 

 
Def.  The cutset of a cut S is the set of edges with exactly one endpoint in S.
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cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }
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7

cut S =  { 4, 5, 8 }



Minimum spanning trees:  quiz 1

Consider the cut S = { 1, 4, 6, 7 }. Which edge is in the cutset of S?

A. S is not a cut (not connected) 

B. 1–7

C. 5–7

D. 2–3

24
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Minimum spanning trees:  quiz 2

Let C be a cycle and let D be a cutset. How many edges do C and D 
have in common? Choose the best answer.

A. 0 

B. 2 

C. not 1  

D. an even number

25



Cycle–cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.
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56
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cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }
intersection C ∩ D = { (3, 4), (5, 6) }

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }



Cycle–cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges. 

Pf.  [by picture]
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cycle C

S



Def.  Let H = (V, T ) be a subgraph of an undirected graph G = (V, E). 
H is a spanning tree of G if H is both acyclic and connected.

Spanning tree definition

28

graph G = (V, E)
spanning tree H = (V, T)



Minimum spanning trees:  quiz 3

Which of the following properties are true for all spanning trees H?

A. Contains exactly ⎜V⎟ – 1 edges. 

B. The removal of any edge disconnects it. 

C. The addition of any edge creates a cycle. 

D. All of the above.

29

graph G = (V, E)
spanning tree H = (V, T)



Spanning tree properties

Proposition.  Let H = (V, T ) be a subgraph of an undirected graph G = (V, E).  
Then, the following are equivalent: 

独H is a spanning tree of G. 

独H is acyclic and connected. 

独H is connected and has ⎜V⎟ – 1 edges. 

独H is acyclic and has ⎜V⎟  – 1 edges. 

独H is minimally connected: removal of any edge disconnects it. 

独H is maximally acyclic: addition of any edge creates a cycle.

30

graph G = (V, E)
spanning tree H = (V, T)
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Minimum spanning tree (MST)

Def.  Given a connected, undirected graph G = (V, E) with edge costs ce, 
a minimum spanning tree (V, T ) is a spanning tree of G such that the sum 
of the edge costs in T is minimized. 

 
 
 
 
 
 
 
 
 
 
 
Cayley’s theorem.  The complete graph on n  nodes has nn–2 spanning trees.

32
can’t solve by brute force

MST cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

 16

4

6 23

10 

21

14

24

18
9

7

115

8



Suppose that you change the cost of every edge in G as follows.  
For which is every MST in G an MST in G′ (and vice versa)? 
Assume c(e) > 0 for each e.  

A. cʹ(e) = c(e) + 17.

B. cʹ(e) = 17 ! c(e).

C. cʹ(e) = log17 c(e).

D. All of the above.
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Minimum spanning trees:  quiz 4



Applications

MST is fundamental problem with diverse applications. 

独Dithering. 

独Cluster analysis. 

独Max bottleneck paths. 

独Real-time face verification. 

独LDPC codes for error correction. 

独Image registration with Renyi entropy. 

独Find road networks in satellite and aerial imagery. 

独Model locality of particle interactions in turbulent fluid flows. 

独Reducing data storage in sequencing amino acids in a protein. 

独Autoconfig protocol for Ethernet bridging to avoid cycles in a network. 

独Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree). 

独Network design (communication, electrical, hydraulic, computer, road).

34

Network Flows:  Theory, Algorithms, and Applications,
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Fundamental cycle.  Let H = (V, T ) be a spanning tree of G = (V, E). 

独For any non tree-edge e ∈ E :  T  ∪ { e } contains a unique cycle, say C. 

独For any edge f  ∈ C :  T  ∪ { e } – { f }  is a spanning tree. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Observation.  If ce < cf, then (V, T) is not an MST.

Fundamental cycle
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Fundamental cutset

Fundamental cutset.  Let H = (V, T ) be a spanning tree of G = (V, E). 

独For any tree edge f ∈ T :  T  – { f } contains two connected components. 

Let D denote corresponding cutset. 

独For any edge e ∈ D :  T – { f } ∪ { e } is a spanning tree. 

 
 
 
 
 
 
 
 
 
 
 
 
Observation.  If ce < cf, then (V, T) is not an MST.
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The greedy algorithm

Red rule. 

独Let C be a cycle with no red edges. 

独Select an uncolored edge of C of max cost and color it red.  

Blue rule. 

独Let D be a cutset with no blue edges. 

独Select an uncolored edge in D of min cost and color it blue.  

Greedy algorithm. 

独Apply the red and blue rules (nondeterministically!) until all edges  
are colored. The blue edges form an MST. 

独Note:  can stop once n – 1 edges colored blue.

37



Greedy algorithm:  proof of correctness

Color invariant.  There exists an MST (V, T*) containing every blue edge  
and no red edge. 

Pf.  [ by induction on number of iterations ] 

Base case.  No edges colored  ⇒  every MST satisfies invariant.
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Greedy algorithm:  proof of correctness

Color invariant.  There exists an MST (V, T*) containing every blue edge  
and no red edge. 

Pf.  [ by induction on number of iterations ] 

Induction step (blue rule).  Suppose color invariant true before blue rule. 

独let D be chosen cutset, and let f be edge colored blue. 

独if f ∈ T*, then T* still satisfies invariant. 

独Otherwise, consider fundamental cycle C by adding f to T*. 

独let e ∈ C be another edge in D. 

独e is uncolored and ce  ≥  cf  since 
- e ∈ T*  ⇒  e not red 
- blue rule  ⇒  e not blue and ce  ≥  cf  

独Thus, T* ∪ { f } – { e } satisfies invariant.
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Greedy algorithm:  proof of correctness

Color invariant.  There exists an MST (V, T*) containing every blue edge  
and no red edge. 

Pf.  [ by induction on number of iterations ] 

Induction step (red rule).  Suppose color invariant true before red rule. 

独let C be chosen cycle, and let e be edge colored red. 

独if e ∉ T*, then T* still satisfies invariant. 

独Otherwise, consider fundamental cutset D by deleting e from T*. 

独let f ∈ D be another edge in C. 

独f is uncolored and ce  ≥  cf  since 
- f  ∉ T*  ⇒  f  not blue 
- red rule  ⇒  f not red and ce  ≥  cf  

独Thus, T* ∪ { f } – { e } satisfies invariant. ▪
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Greedy algorithm:  proof of correctness

Theorem.  The greedy algorithm terminates. Blue edges form an MST. 

Pf.  We need to show that either the red or blue rule (or both) applies. 

独Suppose edge e is left uncolored. 

独Blue edges form a forest. 

独Case 1:  both endpoints of e are in same blue tree.  

       ⇒  apply red rule to cycle formed by adding e to blue forest.

41
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Greedy algorithm:  proof of correctness

Theorem.  The greedy algorithm terminates. Blue edges form an MST. 

Pf.  We need to show that either the red or blue rule (or both) applies. 

独Suppose edge e is left uncolored. 

独Blue edges form a forest. 

独Case 1:  both endpoints of e are in same blue tree.  

       ⇒  apply red rule to cycle formed by adding e to blue forest. 

独Case 2:  both endpoints of e are in different blue trees. 

       ⇒  apply blue rule to cutset induced by either of two blue trees.  ▪
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4.  GREEDY ALGORITHMS II

‣ Dijkstra′s algorithm 

‣ minimum spanning trees 

‣ Prim, Kruskal, Boruvka 

‣ single-link clustering 

‣ min-cost arborescences

SECTION 6.2



Prim′s algorithm

Initialize S = any node, T = ∅. 

Repeat n – 1 times: 

独Add to T a min-cost edge with one endpoint in S. 

独Add new node to S. 

 
 
Theorem.  Prim’s algorithm computes an MST. 

Pf.  Special case of greedy algorithm (blue rule repeatedly applied to S).  ▪

44
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Kruskal′s algorithm

Consider edges in ascending order of cost: 

独Add to tree unless it would create a cycle.  

 
Theorem.  Kruskal’s algorithm computes an MST. 

Pf.  Special case of greedy algorithm. 

独Case 1:  both endpoints of e in same blue tree. 

       ⇒  color e red by applying red rule to unique cycle. 

独Case 2:  both endpoints of e in different blue trees. 

       ⇒  color e blue by applying blue rule to cutset defined by either tree.  ▪

46
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Kruskal′s algorithm:  implementation

Theorem.  Kruskal’s algorithm can be implemented to run in O(m log m) time. 

独Sort edges by cost. 

独Use union–find data structure to dynamically maintain connected 

components.

47

KRUSKAL (V, E, c)                          


SORT m edges by cost and renumber so that c(e1)  ≤  c(e2)  ≤ … ≤ c(em).

T ← ∅.

FOREACH  v  ∈ V :   MAKE-SET(v).

FOR  i = 1 TO  m

(u, v)  ← ei.

IF  (FIND-SET(u)  ≠  FIND-SET(v))

T  ←  T  ∪ { ei }.

UNION(u, v).

RETURN T.

are u and v in 
same component?

make u and v in 
same component



Reverse-delete algorithm

Start with all edges in T and consider them in descending order of cost: 

独Delete edge from T unless it would disconnect T. 

 
Theorem.  The reverse-delete algorithm computes an MST. 

Pf.  Special case of greedy algorithm. 

独Case 1.  [ deleting edge e does not disconnect T ] 

       ⇒  apply red rule to cycle C formed by adding e to another path 
            in T between its two endpoints 

独Case 2.  [ deleting edge e disconnects T ] 

       ⇒  apply blue rule to cutset D induced by either component    ▪  
 
 
 
 
Fact.  [Thorup 2000]  Can be implemented to run in O(m log n (log log n)3) time.
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(all other edges in D must have been colored red / deleted)



Review:  the greedy MST algorithm

Red rule. 

独Let C be a cycle with no red edges. 

独Select an uncolored edge of C of max cost and color it red.  

Blue rule. 

独Let D be a cutset with no blue edges. 

独Select an uncolored edge in D of min cost and color it blue.  

Greedy algorithm. 

独Apply the red and blue rules (nondeterministically!) until all edges  
are colored. The blue edges form an MST. 

独Note:  can stop once n – 1 edges colored blue. 

Theorem.  The greedy algorithm is correct. 

Special cases.  Prim, Kruskal, reverse-delete, …
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Borůvka′s algorithm

Repeat until only one tree. 

独Apply blue rule to cutset corresponding to each blue tree. 

独Color all selected edges blue. 

Theorem.  Borůvka’s algorithm computes the MST. 

Pf.  Special case of greedy algorithm (repeatedly apply blue rule).  ▪
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Borůvka′s algorithm:  implementation

Theorem.  Borůvka’s algorithm can be implemented to run in O(m log n) time. 

Pf. 

独To implement a phase in O(m) time: 
- compute connected components of blue edges 
- for each edge (u, v) ∈ E, check if u and v are in different components; 

if so, update each component’s best edge in cutset  

独≤ log2 n phases since each phase (at least) halves total # components.  ▪
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Function Boruvka(V ,E , c)

1 K ← ∅
2 count ← CountAndLabel(K )

3 while count > 1 do

4 for i = 1 to count do S [i ]← Nil

5 forall the (u, v) ∈ E do

6 if label(u) 6= label(v) then

7 if c(u, v) < w(S [label(u)]) then S [label(u)]← (u, v)

8 if c(u, v) < w(S [label(v)]) then S [label(v)]← (u, v)

9 for i = 1 to count do if S [i ] 6= nil then add S [i ] to K

10 count ← CountAndLabel(K )

11 return K



Theorem.  Borůvka’s algorithm (contraction version) can be implemented to 

run in O(n) time on planar graphs. 

Pf. 

独Each Borůvka phase takes O(n) time: 
- Fact 1:  m  ≤  3n for simple planar graphs. 
- Fact 2:  planar graphs remains planar after edge contractions/deletions. 

独Number of nodes (at least) halves in each phase. 

独Thus, overall running time  ≤  cn + cn / 2 + cn / 4 + cn / 8 + …  = O(n).  ▪

Borůvka′s algorithm on planar graphs

55planar K3,3 not planar



A hybrid algorithm

Borůvka–Prim algorithm. 

独Run Borůvka (contraction version) for log2 log2 n phases. 

独Run Prim on resulting, contracted graph. 

 
Theorem.  Borůvka–Prim computes an MST. 

Pf.  Special case of the greedy algorithm. 

 
Theorem.  Borůvka–Prim can be implemented to run in O(m log log n) time. 

Pf. 

独The log2 log2 n phases of Borůvka’s algorithm take O(m log log n) time;  
resulting graph has ≤ n / log2 n nodes and ≤ m edges. 

独Prim’s algorithm (using Fibonacci heaps) takes O(m + n) time on a  
graph with n / log2 n nodes and m edges.  ▪

56

O

�
m +

n

log n
log

�
n

log n

��



Does a linear-time compare-based MST algorithm exist?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem.  [Fredman–Willard 1990]     O(m) in word RAM model. 

Theorem.  [Dixon–Rauch–Tarjan 1992]  O(m) MST verification algorithm. 

Theorem.  [Karger–Klein–Tarjan 1995]   O(m) randomized MST algorithm.
57

deterministic compare-based MST algorithms

year worst case discovered by

1975 O(m log log n) Yao

1976 O(m log log n) Cheriton–Tarjan

1984 O(m log*n),  O(m + n log n) Fredman–Tarjan

1986 O(m log (log* n)) Gabow–Galil–Spencer–Tarjan

1997 O(m α(n) log α(n)) Chazelle

2000 O(m α(n)) Chazelle

2002 asymptotically optimal Pettie–Ramachandran

20xx O(m)

n lg* n

(−∞, 1] 0

(1, 2] 1

(2, 4] 2

(4, 16] 3

(16, 216] 4

(216, 265536] 5

lg� n =

�
0 B7 n � 1

1 + lg�(lg n) B7 n > 1
<latexit sha1_base64="HJFYyV8ahuzHjW6Ka99U33ko4ac="></latexit><latexit sha1_base64="HJFYyV8ahuzHjW6Ka99U33ko4ac="></latexit><latexit sha1_base64="HJFYyV8ahuzHjW6Ka99U33ko4ac="></latexit>
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Part IV

Network Flows
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The Ford-Fulkerson Method

Ford-Fulkerson Algorithm

Capacity-Scaling Algorithm

Shortest Augmenting Path

Dinitz’ Algorithm

The Push-Relabel Method

Network Flows — Applications

Bipartite Matching

Disjoint Paths

Multiple Sources and Sinks

Circulations with Supplies and Demands
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7.  NETWORK FLOW I

‣ max-flow and min-cut problems 

‣ Ford–Fulkerson algorithm 

‣ max-flow min-cut theorem 

‣ capacity-scaling algorithm 

‣ shortest augmenting paths 

‣ Dinitz’ algorithm 

‣ simple unit-capacity networks
SECTION 7.1



Flow network

A flow network is a tuple G = (V, E, s, t, c).

・Digraph (V, E) with source s ∈ V  and sink t ∈ V. 

・Capacity c(e) > 0 for each e ∈ E. 

 
Intuition.  Material flowing through a transportation network; 
material originates at source and is sent to sink.

 3

s t5

15

10
15

16

9

15

6

8 10

154

4 10

10

capacity

assume all nodes are reachable from s



Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

 
Def.  Its capacity is the sum of the capacities of the edges from A to B. 
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

Def.  Its capacity is the sum of the capacities of the edges from A to B.  
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

 
Def.  Its capacity is the sum of the capacities of the edges from A to B.  

 
 
 
Min-cut problem.  Find a cut of minimum capacity. 

10

 6

s

10

t

capacity = 10 + 8 + 10 = 28
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Network flow:  quiz 1

 Which is the capacity of the given st-cut? 

A. 11  (20 + 25 − 8 − 11 − 9 − 6)

B. 34  (8 + 11 + 9 + 6) 

C. 45  (20 + 25)

D. 79  (20 + 25 + 8 + 11 + 9 + 6) 
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation]
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:

Max-flow problem.  Find a flow of maximum value. 
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7.  NETWORK FLOW I

‣ max-flow and min-cut problems 

‣ Ford–Fulkerson algorithm 

‣ max-flow min-cut theorem 

‣ capacity-scaling algorithm 

‣ shortest augmenting paths 

‣ Dinitz’ algorithm 

‣ simple unit-capacity networks
SECTION 7.1



Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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+ 2 = 10

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Q.  Why does the greedy algorithm fail? 

A.  Once greedy algorithm increases flow on an edge, it never decreases it. 

 
Ex.  Consider flow network G . 

・The unique max flow has f *(v, w) = 0. 

・Greedy algorithm could choose s→v→w→t  as first augmenting path. 

 
 
 
 
 
 
 
 
 
 
Bottom line.  Need some mechanism to “undo” a bad decision.

Why the greedy algorithm fails
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Residual network

Original edge.  e = (u, v)  ∈  E. 

・Flow f (e). 

・Capacity c(e). 
 
Reverse edge.  ereverse = (v, u). 

・“Undo” flow sent. 

 
Residual capacity. 

 
 
 
 
 
Residual network.  Gf = (V, Ef , s, t, cf ). 

・Ef  = {e : f (e) <  c(e)}  ∪  {ereverse : f (e)  >  0}. 

・Key property:  f ʹ is a flow in Gf iff  f + f ʹ is a flow in G.
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Augmenting path

Def. An augmenting path is a simple s↝t path in the residual network Gf . 
 
Def. The bottleneck capacity of an augmenting path P is the minimum  
residual capacity of any edge in P. 

 
Key property.  Let f  be a flow and let P be an augmenting path in Gf .  
Then, after calling f ʹ ← AUGMENT( f, c, P), the resulting f ʹ is a flow and  
val( f ʹ) = val( f ) + bottleneck(Gf, P).

 21

AUGMENT( f, c, P)                          


δ  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E)  f (e)  ←  f (e)  +  δ.

ELSE         f (ereverse) ← f (ereverse)  –  δ.

RETURN  f.




Network flow:  quiz 2

Which is the augmenting path of highest bottleneck capacity?

A.  A → F → G → H 

B.  A → B → C → D → H  

C.  A → F → B → G → H

D.  A → F → B → G → C → D → H
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Ford–Fulkerson algorithm

Ford–Fulkerson augmenting path algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P in the residual network Gf . 

・Augment flow along path P. 

・Repeat until you get stuck.

 23

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.

WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, c, P).

Update Gf.

RETURN  f.

augmenting path



7.  NETWORK FLOW I

‣ Ford–Fulkerson demo 

‣ exponential-time example 

‣ pathological example

SECTION 7.1



Ford–Fulkerson algorithm demo
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Ford–Fulkerson algorithm demo
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  

 25
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
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Network flow:  quiz 3

Which is the net flow across the given cut? 

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  26  (20 + 22 − 8 − 4 − 4) 

C.  42  (20 + 22) 

D.  45  (20 + 25)
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
 
 
 
 
Pf.

 29

by flow conservation, all terms  
except for v = s are 0
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Weak duality.  Let f  be any flow and (A, B) be any cut. Then, val( f ) ≤ cap(A, B). 
Pf.

Relationship between flows and cuts
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Certificate of optimality

Corollary.  Let f  be a flow and let (A, B) be any cut. 
If val( f )  = cap(A, B), then f  is a max flow and (A, B) is a min cut. 

 
Pf. 

・For any flow f ʹ:  val( f ʹ)  ≤  cap(A, B)  = val( f ).   

・For any cut (Aʹ, Bʹ):  cap(Aʹ, Bʹ)  ≥  val( f )  =  cap(A, B).  ▪
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Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

 32

1956 IRE TRANXACTIONX ON INFORiMATION THEORY 117 

A Note on the Maximum Flow Through a Network* 
P. ELIASt, A. FEINSTEINI, AND C. E. SHANNON! 

Summary--This note discusses the problem of maximizing the 
rate of flow from one terminal to another, through a network which 
consists of a number of branches, each of which has a !imited capa- 
city. The main result is a theorem: The maximum possible flow from 
left to right through a network is equal to the minimum value among 
all simple cut-sets. This theorem is applied to solve a more general 
problem, in which a number of input nodes and a number of output 
nodes are used. 

c 

ONSIDER a two-terminal network such as that 
of Fig. 1. The branches of the network might 
represent communication channels, or, more 

generally, any conveying system of limited capacity as, 
for example, a railroad system, a power feeding system, 
or a network of pipes, provided in each case it is possible 
to assign a definite maximum allowed rate of flow over a 
given branch. The links may be of two types, either one 
directional (indicated by arrows) or two directional, in 
which case flow is allowed in either direction at anything 
up to maximum capacity. At the nodes or junction points 
of the network, any redistribution of incoming flow into 
the outgoing flow is allowed, subject only to the re- 
striction of not exceeding in any branch the capacity, and 
of obeying the Kiichhoff law that the total (algebraic) 
flow into a node be zero. Note that in the case of infor- 
mation flow, this may require arbitrarily large delays at 
each node to permit recoding of the output signals from 
that node. The problem is to evaluate the maximum 
possible flow through the network as a whole, entering at 
the left terminal and emerging at the right terminal. 

0 

7 

-< 

3 

b 

5 cl 

I f 
Fig. 1 

The answer can be given in terms of cut-sets of the 
network. A cut-set of a two-terminal network is a set of 
branches such that when deleted from the network, the 
network falls into two or more unconnected parts with 
the two terminals in different parts. Thus, every path 

* Manuscript received by the PGIT, July 11, 1956. 
t Elec. Ena. Deot. and Res. Lab. of Electronics. Mass. Inst. 

Tech., CambrTdge, -Mass. 
1 Lincoln Lab., M.I.T., Lexington! Mass. 
5 Bell Telephone Labs., Murray Hill, N. J., and M.I.T., Cam- 

bridge, Mass. 

from one terminal to the other in the original network 
passes through at least one branch in the cut-set. In the 
network above, some examples of cut-sets are (d, e, f), 
and (b, c, e, g, h), (d, g, h, i) . By a simple cut-set we will 
mean a cut-set such that if any branch is omitted it is no 
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple 
cut-sets while (d, g, h, ;) is not. When a simple cut-set is 
deleted from a connected two-terminal network, the net- 
work falls into exactly two parts, a left part containing the 
left terminal and a right part containing the right terminal. 
We assign a value to a simple cut-set by taking the sum of 
capacities of branches in the cut-set, only counting 
capacities, however, from the left part to the right part 
for branches that are unidirectional. Note that the 
direction of an unidirectional branch cannot be deduced 
from its appearance in the graph of the network. A branch 
is directed from left to right in a minimal cut-set if, and 
only if, the arrow on the branch points from a node in the 
left part of the network to a node in the right part. Thus, 
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6, 
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10. 

Theorem: The maximum possible flow from left to right 
through a net,work is equal to the minimum value among 
all simple cut-sets. 

This theorem may appear almost obvious on physical 
grounds and appears to have been accepted without proof 
for some time by workers in communication theory. 
However, while the fact that this flow cannot be exceeded 
is indeed almost trivial, the fact that it can actually be 
achieved is by no means obvious. We understand that 
proofs of the theorem have been given by Ford and 
Fulkerson’ and Fulkerson and Dantzig.2 The following 
proof is relatively simple, and we believe different in 
principle. 

To prove first that the minimum cut-set flow cannot be 
exceeded, consider any given flow pattern and a minimum- 
valued cut-set C. Take the algebraic sum X of flows from 
left to right across this cut-set. This is clearly less than or 
equal to the value V of the cut-set, since the latter would 
result if all paths from left to right in C were carrying 
full capacity, and those in the reverse direction were 
carrying zero. Now add to S the sum of the algebraic 
flows into all nodes in the right-hand group for the cut- 
set C. This sum is zero because of the Kirchhoff law 
constraint at each node. Viewed another way, however, 
we see that it cancels out each flow contributing to S, 
and also that each flow on a branch with both ends in the 

1 L. Ford, Jr. and D. R. Fulkerson, Can. J. Math.; to be published. 
* G. B. Dantsig and D. R. Fulkerson, “On the Max-Flow Min- 

Cut Theorem of Networks,” in “Linear Inequalities,” Ann. Math. 
Studies, no. 38, Princeton, New Jersey, 1956. 

strong duality



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff no augmenting paths. 

 
Pf. The following three conditions are equivalent for any flow f : 
  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 
 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 
 
[ i ⇒ ii ] 

・This is the weak duality corollary.  ▪
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if Ford–Fulkerson terminates, 
then f is max flow



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff no augmenting paths. 

Pf. The following three conditions are equivalent for any flow f : 
  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 
 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 

[ ii ⇒ iii ]   We prove contrapositive:  ¬ iii ⇒ ¬ ii. 

・Suppose that there is an augmenting path with respect to f. 

・Can improve flow f  by sending flow along this path. 

・Thus,  f  is not a max flow.   ▪

 34



[ iii ⇒ i ]  

・Let f  be a flow with no augmenting paths. 

・Let A be set of nodes reachable from s in residual network Gf. 

・By definition of A:  s ∈ A. 

・By definition of flow f:  t ∉ A.

=
�

e Qmi Q7 A

c(e) � 0
<latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit>

Max-flow min-cut theorem
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Analysis of Ford–Fulkerson algorithm (when capacities are integral)

Assumption.  Every edge capacity c(e) is an integer between 1 and C. 

 
Integrality invariant.  Throughout Ford–Fulkerson, every edge flow f (e)  
and residual capacity cf (e) is an integer. 

Pf.  By induction on the number of augmenting paths.  ▪ 
 
Theorem.  Ford–Fulkerson terminates after at most val( f *)  ≤  n C 
augmenting paths, where f * is a max flow. 

Pf.  Each augmentation increases the value of the flow by at least 1.   ▪ 
 
Corollary.  The running time of Ford–Fulkerson is O(m n C). 
Pf.  Can use either BFS or DFS to find an augmenting path in O(m) time.   ▪ 
 
Integrality theorem.  There exists an integral max flow f *. 

Pf.  Since Ford–Fulkerson terminates, theorem follows from integrality 

invariant (and augmenting path theorem).  ▪
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consider cut A = { s } 
(assumes no parallel edges)

f(e) is an integer for every e



Ford–Fulkerson:  exponential example

Q.  Is generic Ford–Fulkerson algorithm poly-time in input size? 

 
A.   No. If max capacity is C, then algorithm can take ≥  C iterations. 

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t
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m, n, and log C
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The Ford–Fulkerson algorithm is guaranteed to terminate if the edge 
capacities are …

A.  Rational numbers. 

B.  Real numbers.  

C.  Both A and B. 

D.  Neither A nor B.

Network flow:  quiz 4

 39

Let D denote the product (or lcm) of the denominators. 

Then, every edge flow f (e) and every residual capacity cf (e)  
is a multiple of 1 / D.



Choosing good augmenting paths

Use care when selecting augmenting paths. 

・Some choices lead to exponential algorithms. 

・Clever choices lead to polynomial algorithms. 

 
 
Pathology.  When edge capacities can be irrational, no guarantee 
that Ford–Fulkerson terminates (or converges to a maximum flow)! 

 
 
Goal.  Choose augmenting paths so that: 

・Can find augmenting paths efficiently. 

・Few iterations.

 40



Choosing good augmenting paths

Choose augmenting paths with: 

・Max bottleneck capacity (“fattest”). 

・Sufficiently large bottleneck capacity. 

・Fewest edges.

 41

Theoretical Improvements in Algorithmic Efficiency 
for Network Flow Problems 

J A C K  E D M O N D S  

University of Waterloo, Waterloo, Ontario, Canada 

AND 

R I C H A R D  M. K A R P  

University of California, Berkeley, California 

ABSTRACT. This  paper  presents  new algori thms for the  maximum flow problem, the  Hitchcock 
t r anspo r t a t i on  problem, and the  general min imum-cos t  flow problem. Upper  bounds on the 
numbers  of steps in these  algori thms are derived,  and are shown to compale  favorably  with 
upper  bounds on the  numbers  of steps required by earlier algori thms.  

Firs t ,  the paper  s ta tes  the maximum flow problem, gives the Ford-Fulkerson labeling method 
for its solution,  and points  out  t h a t  an improper  choice of flow augment ing  pa ths  can lead to 
severe computa t iona l  difficulties. Then  rules of choice t h a t  avoid these difficulties are given. 
We show tha t ,  if each flow augmenta t ion  is made along an augment ing  pa th  having  a minimum 
number  of arcs, then  a maximum flow in an n-node network will be obta ined  af te r  no more than  
~(n a - n) augmenta t ions ;  and then  we show tha t  if each flow change is chosen to produce a 
maximum increase in the  flow value then,  provided the capacit ies are integral ,  a maximum flow 
will be de te rmined  wi th in  at  most  1 + logM/(M--1) if(t, S) augmenta t ions ,  wheref*(t, s) is the 
value of the  maximum flow and M is the maximum number  of arcs across a cut. 

Next  a new algor i thm is given for the  minimum-cos t  flow problem, in which all shor tes t -pa th  
computa t ions  are performed on networks wi th  all weights nonnegat ive .  In par t icular ,  this 
a lgor i thm solves the  n X n ass igmnent  problem in O(n 3) steps.  Following t h a t  we explore a 
" sca l ing"  technique for solving a minimum-cost  flow problem by t r ea t ing  a sequence of derived 
problems wi th  "scaled down"  capacit ies.  I t  is shown tha t ,  using this  technique,  the solution of 
a I i i tchcock t r anspor t a t i on  problem wi th  m sources and n sinks, m ~ n, and maximum flow B, 
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general minimum-cost  flow problem. 
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0 (n2p) pr imi t ive  operat ions by  an a lgor i thm which augments  along shor tes t  augment ing  paths.  
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Capacity-scaling algorithm

Overview.  Choosing augmenting paths with “large” bottleneck capacity. 

・Maintain scaling parameter Δ. 

・Let Gf (Δ) be the part of the residual network containing 
only those edges with capacity ≥  Δ. 

・Any augmenting path in Gf (Δ) has bottleneck capacity ≥  Δ.

 42Gf
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Capacity-scaling algorithm

 43

CAPACITY-SCALING(G)                          


FOREACH edge e ∈ E :  f (e) ← 0.

Δ  ← largest power of 2  ≤  C. 

WHILE (Δ  ≥  1)

Gf (Δ) ← Δ-residual network of G with respect to flow f .
WHILE (there exists an s↝t path P in Gf (Δ))

f ← AUGMENT( f, c, P).

Update Gf (Δ).

Δ ← Δ / 2. 

RETURN  f.
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Δ-scaling phase



Capacity-scaling algorithm:  proof of correctness

Assumption.  All edge capacities are integers between 1 and C.  

 
Invariant.  The scaling parameter Δ is a power of 2. 

Pf.  Initially a power of 2; each phase divides Δ by exactly 2.  ▪ 
 
Integrality invariant.  Throughout the algorithm, every edge flow f (e) and  
residual capacity cf (e) is an integer. 

Pf.  Same as for generic Ford–Fulkerson.  ▪ 
 
Theorem.  If capacity-scaling algorithm terminates, then f is a max flow. 

Pf. 

・By integrality invariant, when Δ = 1  ⇒  Gf (Δ)  = Gf . 

・Upon termination of Δ = 1 phase, there are no augmenting paths. 

・Result follows augmenting path theorem   ▪
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Capacity-scaling algorithm:  analysis of running time

Lemma 1.  There are 1 + ⎣log2 C⎦ scaling phases. 

Pf.  Initially C / 2  <  Δ  ≤  C;  Δ decreases by a factor of 2 in each iteration.  ▪ 
 
Lemma 2.  Let f be the flow at the end of a Δ-scaling phase.  
Then, the max-flow value ≤  val( f ) + m Δ. 

Pf.  Next slide. 

 
Lemma 3.  There are ≤ 2m augmentations per scaling phase. 

Pf. 

・Let f be the flow at the beginning of a Δ-scaling phase. 

・Lemma 2  ⇒   max-flow value   ≤   val( f ) + m (2 Δ). 

・Each augmentation in a Δ-phase increases val( f ) by at least Δ.  ▪ 
 
Theorem.  The capacity-scaling algorithm takes O(m2 log C) time. 

Pf. 

・Lemma 1 + Lemma 3  ⇒  O(m log C) augmentations. 

・Finding an augmenting path takes O(m) time.  ▪
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or equivalently, 
at the end 

of a 2Δ-scaling phase



Lemma 2.  Let f be the flow at the end of a Δ-scaling phase.  
Then, the max-flow value  ≤  val( f ) + m Δ. 

Pf. 

・We show there exists a cut (A, B) such that cap(A, B)  ≤  val( f ) + m Δ. 

・Choose A to be the set of nodes reachable from s in Gf (Δ). 

・By definition of A:  s ∈ A. 

・By definition of flow f:  t ∉ A.

t

Capacity-scaling algorithm:  analysis of running time
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original flow network

s

A B

edge e = (v, w) with v ∈ B, w ∈ A 
must have f(e) < Δ

edge e = (v, w) with v ∈ A, w ∈ B 
must have f(e) > c(e) – Δ 
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7.  NETWORK FLOW I

‣ max-flow and min-cut problems 

‣ Ford–Fulkerson algorithm 

‣ max-flow min-cut theorem 

‣ capacity-scaling algorithm 

‣ shortest augmenting paths 

‣ Dinitz’ algorithm 

‣ simple unit-capacity networks
SECTION 17.2



Shortest augmenting path

Q.  How to choose next augmenting path in Ford–Fulkerson? 

A.  Pick one that uses the fewest edges.

 48

SHORTEST-AUGMENTING-PATH(G)                          


FOREACH e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path in Gf )

P ← BREADTH-FIRST-SEARCH(Gf ).

f  ← AUGMENT( f, c, P).

Update Gf.

RETURN  f.


can find via BFS



Shortest augmenting path:  overview of analysis

Lemma 1.  The length of a shortest augmenting path never decreases. 

Pf.  Ahead. 

 
Lemma 2.  After at most m shortest-path augmentations, the length of a 

shortest augmenting path strictly increases. 

Pf.  Ahead. 

 
Theorem.  The shortest-augmenting-path algorithm takes O(m2 n) time. 

Pf. 

・O(m) time to find a shortest augmenting path via BFS. 

・There are ≤  m n augmentations. 
- at most m augmenting paths of length k
- at most n−1 different lengths   ▪

 49

Lemma 1 + Lemma 2

augmenting paths are simple paths

number of edges



Shortest augmenting path:  analysis

Def.  Given a digraph G = (V, E) with source s, its level graph is defined by: 

・ℓ(v) = number of edges in shortest s↝v path. 

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E 

with ℓ(w) = ℓ(v) + 1.

 50

s t

graph G

s t

level graph LG

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3



Network flow:  quiz 5

Which edges are in the level graph of the following digraph? 

A.  D→F. 

B.  E→F. 

C.  Both A and B. 

D.  Neither A nor B.
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Shortest augmenting path:  analysis

Def.  Given a digraph G = (V, E) with source s, its level graph is defined by: 

・ℓ(v) = number of edges in shortest s↝v path. 

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E 

with ℓ(w) = ℓ(v) + 1. 

 
 
Key property.  P is a shortest s↝v path in G iff P is an s↝v path in LG.
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level graph LG

s t

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3



Shortest augmenting path:  analysis

Lemma 1.  The length of a shortest augmenting path never decreases. 

・Let f and f ʹ be flow before and after a shortest-path augmentation. 

・Let LG and LG ʹ be level graphs of Gf and Gf ʹ . 
・Only back edges added to Gf ′ 

(any s↝t path that uses a back edge is longer than previous length)  ▪
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s t

level graph LG′

ℓ= 0

level graph LG

ℓ= 1 ℓ= 2 ℓ= 3

s t



Lemma 2.   After at most m shortest-path augmentations, the length of a 

shortest augmenting path strictly increases.  

・At least one (bottleneck) edge is deleted from LG per augmentation. 

・No new edge added to LG until shortest path length strictly increases.  ▪

Shortest augmenting path:  analysis
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ℓ= 0

level graph LG

ℓ= 1 ℓ= 2 ℓ= 3

s t

level graph LG′

s t



Shortest augmenting path:  review of analysis

Lemma 1.  Throughout the algorithm, the length of a shortest augmenting 

path never decreases. 

 
Lemma 2.  After at most m shortest-path augmentations, the length of a  
shortest augmenting path strictly increases. 

 
Theorem.  The shortest-augmenting-path algorithm takes O(m2 n) time.
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Shortest augmenting path:  improving the running time

Note.  Θ(m n) augmentations necessary for some flow networks. 

・Try to decrease time per augmentation instead. 

・Simple idea    ⇒   O(mn2 ) [Dinitz 1970] 

・Dynamic trees    ⇒   O(m n log n) [Sleator–Tarjan 1983]

 56

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 26, 362-391 (1983) 

A Data Structure for Dynamic Trees 

DANIEL D. SLEATOR AND ROBERT ENDRE TARJAN 

Bell Laboratories, Murray Hill, New Jersey 07974 

Received May 8, 1982; revised October 18, 1982 

A data structure is proposed to maintain a collection of vertex-disjoint trees under a 
sequence of two kinds of operations: a link operation that combines two trees into one by 
adding an edge, and a cut operation that divides one tree into two by deleting an edge. Each 
operation requires O(log n) time. Using this data structure, new fast algorithms are obtained 
for the following problems: 

(1) Computing nearest common ancestors. 

(2) Solving various network flow problems including finding maximum flows, blocking 
flows, and acyclic flows. 

(3) Computing certain kinds of constrained minimum spanning trees. 

(4) Implementing the network simplex algorithm for minimum-cost flows. 

The most significant application is (2); an O(mn log n)-time algorithm is obtained to find a 
maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest 
algorithm previously known for sparse graphs. 

1. INTR~DIJCTI~N 

In this paper we consider the following problem: We are given a collection of 
vertex-disjoint rooted trees. We want to represent the trees by a data structure that 
allows us to easily extract certain information about the trees and to easily update the 
structure to reflect changes in the trees caused by three kinds of operations: 

link(v, w): If u is a tree root and w is a vertex in another tree, link the trees 
containing v and w by adding the edge(v, w), making w the parent of v. 

cut(v): If node v is not a tree root, divide the tree containing v into two trees by 
deleting the edge from v to its parent. 

ever-t(v): Turn the tree containing vertex u “inside out” by making v the root of 
the tree. 

We propose a data structure that solves this dynamic trees problem. We give two 
versions of the data structure. The first has a time bound of O(log n) per operation 
when the time is amortized over a worst-case sequence of operations; the second, 

362 
0022-0000/83 $3.00 
Copyright 0 1983 by Academic Press, Inc. 
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7.  NETWORK FLOW I

‣ max-flow and min-cut problems 

‣ Ford–Fulkerson algorithm 

‣ max-flow min-cut theorem 

‣ capacity-scaling algorithm 

‣ shortest augmenting paths 

‣ Dinitz’ algorithm 

‣ simple unit-capacity networks
SECTION 18.1



Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

 
Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.

 58

level graph LG

s t

within a phase, length of shortest 
augmenting path does not change

construct level graph



Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.

 65

level graph LG

advance

tss



Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.

ss
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.

s
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Dinitz’ algorithm (as refined by Even and Itai)

 69

INITIALIZE(G, f )                          


LG  ← level-graph of Gf.

P   ← ∅.

GOTO ADVANCE(s).                          


ADVANCE(v)                          


IF  (v = t)

AUGMENT(P).

Remove saturated edges from LG.

P   ← ∅.

GOTO ADVANCE(s).  

IF  (there exists edge (v, w) ∈ LG)

Add edge (v, w) to P.

GOTO ADVANCE(w).

 
ELSE

GOTO RETREAT(v).


RETREAT(v)                          


IF  (v = s) 

STOP.                

ELSE

Delete v (and all incident edges) from LG.

Remove last edge (u, v) from P.

GOTO ADVANCE(u).                    




Network flow:  quiz 6

How to compute the level graph LG efficiently?

A.  Depth-first search. 

B.  Breadth-first search. 

C.  Both A and B. 

D.  Neither A nor B.
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Dinitz’ algorithm:  analysis

Lemma.  A phase can be implemented to run in O(m n) time. 

Pf. 

・Initialization happens once per phase. 

・At most m augmentations per phase. 
(because an augmentation deletes at least one edge from LG) 

・At most n retreats per phase.  
(because a retreat deletes one node from LG) 

・At most mn advances per phase. 
(because at most n advances before retreat or augmentation)  ▪ 

Theorem.  [Dinitz 1970]  Dinitz’ algorithm runs in O(mn2) time. 

Pf. 

・By Lemma, O(mn) time per phase. 

・At most n−1 phases (as in shortest-augmenting-path analysis).   ▪
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O(mn) per phase

O(m + n) per phase

O(mn) per phase

O(m) using BFS
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Augmenting-path algorithms:  summary

 72

year method # augmentations running time

1955 augmenting path n C O(m n C)

1972 fattest path m log (mC) O(m2 log n log (mC))

1972 capacity scaling m log C O(m2 log C)

1985 improved capacity scaling m log C O(m n log C)

1970 shortest augmenting path m n O(m2 n)

1970 level graph m n O(m n2 )

1983 dynamic trees m n O(m n log n )

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

fat paths

shortest paths



Maximum-flow algorithms:  theory highlights

 73

year method worst case discovered by

1951 simplex O(m n2 C) Dantzig

1955 augmenting paths O(m n C) Ford–Fulkerson

1970 shortest augmenting paths O(m n2) Edmonds–Karp, Dinitz

1974 blocking flows O(n3) Karzanov

1983 dynamic trees O(m n log n) Sleator–Tarjan

1985 improved capacity scaling O(m n log C) Gabow

1988 push–relabel O(m n log (n2 / m)) Goldberg–Tarjan

1998 binary blocking flows O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 compact networks O(m n) Orlin

2014 interior-point methods Õ(m m1/2 log C) Lee–Sidford

2016 electrical flows Õ(m10/7 C1/7) Mądry

20xx

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C
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kapitola 26.4.
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Ford-Fulkerson method vs Goldberg method

aka augmenting path method vs push relabel method

• global vs local character

• update flow along an augmenting path vs

update flow on edges

• flow conservation vs preflow

41



pre-flow is a function f with

capacity condition for e ∈ E : 0 ≤ f (e) ≤ c(e)

relaxed flow conservation for v ∈ V \ {s, t}:
∑

e into v

f (e) ≥
∑

e out of v

f (e)

overflowing vertex

vertex v ∈ V \ {s, t} with
∑

e into v

f (e) >
∑

e out of v

f (e)

excess flow into vertex v

the quantity ef (v) =
∑

e into v

f (e)−
∑

e out of v

f (e)

a pre-flow becomes a flow if no intermediate node has an excess

42



height function is a function h : V → N0

height function h is compatible with preflow f iff

source h(s) = |V | = n

sink h(t) = 0

height difference h(v) ≤ h(w) + 1 for every edge (v ,w) of the residual

network Gf

if h(v) > h(w) + 1 then (v ,w) is not an edge in the residual network Gf

43



Lema

If f is a preflow and h is an height function compatible with f then

there is no path from the source s to the sink t in the residual network

Gf .

• assume that Gf contains a path p = 〈v0, v1, . . . , vk〉 with v0 = s and

vk = t

• w.l.o.g. p is simple and thus k < n

• because h is a height function h(vi ) ≤ h(vi+1) + 1 for

i = 0, 1, . . . , k − 1

• combining inequalities over p yields h(s) ≤ h(t) + k

• because h(t) = 0, we have h(s) ≤ k < n, which contradits the

requirement h(s) = n

Lema

If f is a flow and h is an height function compatible with f then f is a

maximal flow.

44



Lema

If f is a preflow and h is an height function compatible with f then

there is no path from the source s to the sink t in the residual network

Gf .

• assume that Gf contains a path p = 〈v0, v1, . . . , vk〉 with v0 = s and

vk = t

• w.l.o.g. p is simple and thus k < n

• because h is a height function h(vi ) ≤ h(vi+1) + 1 for

i = 0, 1, . . . , k − 1

• combining inequalities over p yields h(s) ≤ h(t) + k

• because h(t) = 0, we have h(s) ≤ k < n, which contradits the

requirement h(s) = n

Lema

If f is a flow and h is an height function compatible with f then f is a

maximal flow.
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initialization — height function

• h(v) = 0 for alle v ∈ V , v 6= s

• h(s) = n

initialization — preflow

• f (s, v) = c(s, v) for each (s, v) ∈ E

• f (u, v) = 0 for all other edges

initial preflow and height function are compatible

45



Algorithm: Generic-Push-Relabel

Input: flow network G = (V ,E , s, t, c)

Output: maximal flow f

1 Initialize-PreFlow

2 while true do

3 if no node is overflowing then return f

4 select an overflowing vertex v

5 if v has a neigbor w in Gf such that h(v) > h(w) then

6 Push(f , h, v ,w)

7 else

8 Relabel(f , h, v)

46



Algorithm: Initialize-PreFlow

1 for v ∈ V do h(v)← 0; ef (v)← 0

2 h(s)← n

3 for e ∈ E do f (e)← 0

4 for (s, v) ∈ E do

5 f (s, v)← c(s, v); ef (v)← c(s, v); ef (s)← ef (s)− c(s, v)

47



Push applies when v si overflowing, cf (v ,w) > 0, and h(w) < h(v)

Function Push(f , h, v ,w)

1 ∆f (v ,w)← min(ef (v), cf (v ,w))

2 if (v ,w) ∈ E then

3 f (v ,w)← f (v ,w) + ∆f (v ,w)

4 else

5 f (w , v)← f (w , v)−∆f (v ,w)

6 ef (v)← ef (v)−∆f (v ,w)

7 ef (w)← ef (w) + ∆f (v ,w)

8 return f , h

we can change (i.e. increase or decrease) flow from v to w by ∆f (v ,w)

without causing ef (v) to become negative or the capacity c(v ,w) to be

exceeded

48



Relabel applies when v si overflowing and for all w ∈ V such that

(v ,w) ∈ Ef we have h(v) ≤ h(w)

Function Relabel(f , h, v)

1 h(v)← 1 + min{h(w)|(v ,w) ∈ Ef } return h

when v is relabeled, Ef must contain at least one edge that leaves v , so

that the minimization in the code is over a nonempty set

49



. . . . . .

.. A demo of push-relabel algo: initialization
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.. A demo of push-relabel algo: Step 1
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.. A demo of push-relabel algo: Step 2
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.. A demo of push-relabel algo: Step 3
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.. A demo of push-relabel algo: Step 4
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.. A demo of push-relabel algo: Step 5
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.. A demo of push-relabel algo: Step 6
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correctness

loop invariant

1. f is a preflow

2. the height function h is compatible with f

• Initialize-PreFlow makes f a preflow and h compatible with f

• Push complies with capacities of edges and if a new edge appears in

the residual network, then this edge fulfills the height difference

• Relabel operation affects only height attributes and preserves

compatibility

at termination, each inner vertex must have an excess 0, f is flow and is

a maximum flow

50



complexity — bound on Relabel operations

• the initial height of all vertices (except the source s) is 0

• everyRelabel operation increases the height by 1

• we need a bound on the maximal height

51



Let f be a preflow. Then for every overflowing vertex v , there is a simple

path from v to s in the residual network Gf .

• let B = {v | there is no path from v to s in Gf }
• let us sum up the excesses of all vertices in B,

∑

v∈B
ef (v) =

∑

v∈B
(
∑

e into v

f (e)−
∑

e out of v

f (e)) ≥ 0

• edge (x , y) with x , y ∈ B contributes to the sum
∑

v∈B ef (v) with

zero value

• for edge (x , y) with x 6∈ B and y ∈ B, the flow f ((x , y)) is zero

(otherwise there would be a path from y to s in Gf )

• edge (x , y) with x ∈ B, y 6∈ B contributes to the sum
∑

v∈B ef (v)

with the value −f ((x , y))

• ∑
v∈B ef (v) = −∑

e out of B f (e) ≥ 0

• flows are nonegative and thus
∑

e out of B f (e) = 0 and all vertices in

B have zero excess 52



At any time during the execution of Generic-Push-Relabel we have

h(v) ≤ 2n − 1 for all v ∈ V .

• initially, h(s) = n and h(t) = 0 and these values never change

• when v is relabeled, it is overflowing and there is a simple path p

from v to s if Gf

• there are at most n − 1 edges on p, every edge fulfills the height

difference condition (i.e. every edge decreases the height at most by

1)

• h(v)− h(s) ≤ n − 1, i.e. h(v) ≤ 2n − 1

During the execution of Generic-Push-Relabel, the number of

relabel operations is at most 2n − 1 per vertex and at most

(2n − 1)(n − 2) < 2n2 overall.
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complexity — bound on Push operations

• there are two types of Push operations

• the operation Push(f , h, v ,w) is saturating push iff edge (v ,w) in

the residual network becomes saturate, i.e. cf (v ,w) = 0 afterward

• otherwise the operation is nonsaturating push
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The number of saturating pushes is at most 2nm.

• for any pair of vertices v ,w ∈ V , we will count the saturating

pushes from v to w

• if there is such a push, (v ,w) is an edge of the residual network and

h(v) = h(w) + 1

• in order for another push from v to w to occur later, h(w) must

increase at leat by 2

• heights start at 0 and never exceed 2n − 1; the number of times any

vertex can have its height increased by 2 is less than n

• for a network graph with m edges there can be up to 2m edges in

the residual network, which gives the upper bound 2nm on the

number of saturating pushes

55



The number of nonsaturating pushes is at most 4n2(n + m).

• let us define a potential function as Φ =
∑

v .ef (v)>0 h(v)

• initially, Φ = 0

• nonsaturating push decreases Φ by at least 1

• relabeling a vertex v increases Φ by less 2n, since the set over

which the sum is taken is the same and the relabeling cannot

increases v ’s height by more than its maximum possible height

2n − 1

• saturating push from v to w increases Φ by less than 2n, since no

heights change and only vertex w , whose height is at most 2n − 1,

can possibly become overflowing

• the total amount of increase in Φ is less than

2n · 2n2 + 2n · 2nm = 4n2(n + m)

• since Φ ≥ 0, the total amount of decrease, and therefore the total

number of nonsaturating pushes, is less than 4n2(n + m)
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During the execution of Generic-Push-Relabel on any flow

network G = (V ,E , c , s, t), the number of basic operations is

O(V 2E ).

• the push-relabel method allows to apply the basic operations in any

order at all

• by choosing the order carefully and managing the network data

structure efficiently, we can solve the maximum flow proglem faster

than the O(V 2E ) bound

• there is an implementation whose running time is O(V 3) which is

asymptotically at least as good as O(V 2E ), and even better for

dense networks
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7.  NETWORK FLOW II

‣ bipartite matching 

‣ disjoint paths 

‣ extensions to max flow 

‣ survey design 

‣ airline scheduling 

‣ image segmentation 

‣ project selection 

‣ baseball elimination
SECTION 7.5



Def. Given an undirected graph G = (V, E), subset of edges M ⊆ E  
is a matching if each node appears in at most one edge in M. 

 
Max matching.  Given a graph G, find a max-cardinality matching.

Matching

 6



Bipartite matching

Def.  A graph G is bipartite if the nodes can be partitioned into two subsets 

L and R such that every edge connects a node in L with a node in R. 
 
Bipartite matching.  Given a bipartite graph G = (L ∪ R, E), find a max-

cardinality matching.
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Bipartite matching:  max-flow formulation

Formulation. 

独Create digraph Gʹ = (L ∪ R ∪ {s, t},  E ʹ ). 

独Direct all edges from L to R, and assign infinite (or unit) capacity. 

独Add unit-capacity edges from s to each node in L. 

独Add unit-capacity edges from each node in R to t.
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G  
and integral flows of value k in G ʹ. 

Pf.  ⇒ 

独Let M be a matching in G of cardinality k. 

独Consider flow f  that sends 1 unit on each of the k corresponding paths. 

独f is a flow of value k.   ▪
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G  
and integral flows of value k in G ʹ. 

Pf.  ⇐ 

独Let f be an integral flow in G ʹ of value k. 

独Consider M = set of edges from L to R with f(e) = 1. 
- each node in L and R participates in at most one edge in M 
- ⎢M ⎢ = k : apply flow-value lemma to cut (L ∪ {s}, R ∪ {t})   ▪
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G  
and integral flows of value k in G ʹ. 

Corollary.  Can solve bipartite matching problem via max-flow formulation. 

Pf. 

独Integrality theorem  ⇒  there exists a max flow f * in G ʹ that is integral. 

独1–1 correspondence  ⇒  f * corresponds to max-cardinality matching.  ▪
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Network flow II:  quiz 1

What is running time of Ford–Fulkerson algorithms to find a max-
cardinality matching in a bipartite graph with ⎟ L⎟ = ⎟ R⎟ = n ?  

A. O(m + n)

B. O(mn)

C. O(mn2)

D. O(m2n)

 12



NETWORK FLOWS —

APPLICATIONS

DISJOINT PATHS



7.  NETWORK FLOW II

‣ bipartite matching 

‣ disjoint paths 

‣ extensions to max flow 

‣ survey design 

‣ airline scheduling 

‣ image segmentation 

‣ project selection 

‣ baseball elimination
SECTION 7.6



Edge-disjoint paths

Def.  Two paths are edge-disjoint if they have no edge in common. 

 
Edge-disjoint paths problem.  Given a digraph G = (V, E) and two nodes  
s and t, find the max number of edge-disjoint s↝t paths. 

 
Ex.  Communication networks.
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 
Edge-disjoint paths problem.  Given a digraph G = (V, E) and two nodes  
s and t, find the max number of edge-disjoint s↝t paths. 

 
Ex.  Communication networks.

digraph G
2 edge-disjoint paths
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Edge-disjoint paths
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge. 

 
Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G  
and integral flows of value k in G ʹ. 

Pf.  ⇒  

独Let P1, …, Pk be k edge-disjoint s↝t paths in G . 

独Set 

独Since paths are edge-disjoint, f is a flow of value k.   ▪
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge. 

 
Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G  
and integral flows of value k in G ʹ. 

Pf.  ⇐ 

独Let f be an integral flow in G ʹ of value k. 

独Consider edge (s, u) with f(s, u) = 1. 
- by flow conservation, there exists an edge (u, v) with f(u, v) = 1 
- continue until reach t, always choosing a new edge 

独Produces k (not necessarily simple) edge-disjoint paths.   ▪

 28
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge. 

 
Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G  
and integral flows of value k in G ʹ. 

 
Corollary.  Can solve edge-disjoint paths problem via max-flow formulation. 

Pf. 

独Integrality theorem  ⇒  there exists a max flow f * in G ʹ that is integral. 

独1–1 correspondence  ⇒  f * corresponds to max number of edge-disjoint 

s↝t paths in G .  ▪

 29

s t

1

1

1

1

1

1

1

1

1
1

1

1

1

1



NETWORK FLOWS —

APPLICATIONS

MULTIPLE SOURCES AND SINKS



Network flow II:  quiz 4

Which extensions to max flow can be easily modeled?  

A. Multiple sources and multiple sinks.

B. Undirected graphs.

C. Lower bounds on edge flows.

D. All of the above.

 42



Multiple sources and sinks

Def.  Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and multiple 

source nodes and multiple sink nodes, find max flow that can be sent  
from the source nodes to the sink nodes.
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Multiple sources and sinks:  max-flow formulation

独Add a new source node s and sink node t. 

独For each original source node si add edge (s, si) with capacity ∞. 

独For each original sink node tj, add edge (tj, t) with capacity ∞. 

 
Claim.  1–1 correspondence betweens flows in G and Gʹ.
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NETWORK FLOWS —

APPLICATIONS

CIRCULATIONS WITH SUPPLIES AND

DEMANDS



Circulation with supplies and demands

Def.  Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and 
node demands d(v), a circulation is a function f(e) that satisfies: 

独For each e ∈ E: 0   ≤   f (e)   ≤   c(e) (capacity) 

独For each v ∈ V:           (flow conservation)
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Circulation with supplies and demands:  max-flow formulation

独Add new source s and sink t. 

独For each v with d(v) < 0, add edge (s, v) with capacity −d(v). 

独For each v with d(v) > 0, add edge (v, t) with capacity   d(v). 
 
Claim.  G has circulation iff G ʹ has max flow of value D =
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Circulation with supplies and demands

Integrality theorem.  If all capacities and demands are integers, and there 

exists a circulation, then there exists one that is integer-valued. 

 
Pf.  Follows from max-flow formulation + integrality theorem for max flow. 

 
 
 
Theorem.  Given (V, E, c, d), there does not exist a circulation iff there exists 

a node partition (A, B) such that Σv ∈ B d(v)  >  cap(A, B). 
 
Pf sketch.  Look at min cut in G ʹ.
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Def.  Given a digraph G = (V, E) with edge capacities c(e) ≥ 0, lower bounds 

�(e) ≥ 0, and node demands d(v), a circulation f(e) is a function that satisfies: 

独For each e ∈ E :  �(e)   ≤   f (e)   ≤   c(e)       (capacity) 

独For each v ∈ V :              (flow conservation) 

 
 
Circulation problem with lower bounds.  Given (V, E, �, c, d), does  
there exist a feasible circulation?

�
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Circulation with supplies, demands, and lower bounds
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Circulation with supplies, demands, and lower bounds

Max-flow formulation.  Model lower bounds as circulation with demands. 

独Send �(e) units of flow along edge e. 

独Update demands of both endpoints. 

 
 
 
 
 
 
 
Theorem.  There exists a circulation in G iff there exists a circulation in Gʹ.  
Moreover, if all demands, capacities, and lower bounds in G are integers,  
then there exists a circulation in G that is integer-valued. 

 
Pf sketch.  f (e) is a circulation in G iff f ʹ(e) = f (e) – �(e) is a circulation in Gʹ.
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STRING MATCHING

• exact string matching

• edit distance

• local and global alignment

• approximate matching

• indexing

58



EXACT STRING MATCHING

• strings over a finite alphabet Σ

• given two strings, a text T [1..n] and a pattern P[1..m], find the first

substring (all substrings) of the text that is the same as the pattern

more formally

• for any shift s, let Ts denote the substring T [s..s + m − 1]

• find the smallest shift (all shifts) s such that Ts = P (or report that

there is none)
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ALGORITHMS

algorithm preprocessing searching

brute force 0 O((n −m + 1)m)

Karp Rabin Θ(m) O((n −m + 1)m)

finite automata O(m|Σ|) Θ(n)

Knuth Morris Pratt Θ(m) Θ(n)

Boyer Moore Θ(m + |Σ|) O((n −m + 1)m)

average complexity of algorithms Karp Rabin and Boyer Moore is much

better than the given worst case complexity
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BRUTE FORCE ALGORITHM

Algorithm: AlmostBruteForce(T [1..n],P[1..m])

1 for s ← 1 to n −m + 1 do

2 equal ← True

3 i ← 1

4 while equal and i ≤ m do

5 if T [s + i − 1] 6= P[i ] then

6 equal ← False

7 else

8 i ← i + 1

9 if equal then print s
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time complexity of the Brute Force Algorithm

• m − n + 1 possible shifts

• greatest number of character comparisons possible: n(m − n + 1)

P: aaaa, T : an

• least number of character comparisons possible: m − n + 1

P: ab, T : bn

• breaking out of the inner loop at the first mismatch makes this

algorithm quite practical . . . . . . assuming that P and T are both

random (the total expected number of comparisons is O(n))
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STRINGS AS NUMBERS

• let Σ = {0, 1, . . . , 9} (can be any other)

• let p be the numerical value of P , and for any shift s, let ts be the

numerical value of Ts

• p =
∑m

i=1 10m−iP[i ], ts =
∑m

i=1 10m−iT [s + i − 1]

• find shift(s) s such that p = ts

• we can compute p in O(n) arithmetic operations, without explicitly

compute powers of ten, using Horner’s scheme

p = P[m]+10(P[m−1]+10(P[m−2]+· · ·+10(P[2]+10·P[1]) . . .))

• we can compute ts+1 in constant time (to make this we need to

precompute the constant 10m−1)

ts+1 = 10(ts − 10m−1 · T [s]) + T [s + m]
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Algorithm: NumberSearch(T [1..n],P[1..m])

1 S ← 10m−1

2 p ← 0

3 t1 ← 0

4 for i ← 1 to m do

5 p ← 10 · p + P[i ]

6 t1 ← 10 · t1 + T [i ]

7 for s ← 1 to n −m + 1 do

8 if p̃ = t̃s then print s

9 ts+1 ← 10 · (ts − S · T [s]) + T [s + m]

complexity: the number of arithmetic operations, acting on numbers with

up to m digits, is O(n)
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KARP-RABIN FINGERPRINTING

Perform all arithmetic modulo some prime number q.

• choose q so that the value 10q fits into a standard integer variable

• values (p mod q) and (ts mod q) are called the fingerprints

• we can compute (p mod q) and (t1 mod q) in O(m) time

p mod q =

P[m] + 10(P[m − 1] + · · ·+ 10 · P[1] mod q) . . .) mod q

• similarly ts+1 mod q

• if (p mod q) 6= (ts mod q), then certainly P 6= Ts

• if (p mod q) = (ts mod q), we can’t tell whether P = Ts or not;

we simply do a brute force comparison

• the overall running time is O(n + Fm), where F is the number of

false matches

• the expected number of false matches is O(n/m)
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Algorithm: KarpRabin(T [1..n],P[1..m])

1 q ← a random number between 2 and dm2 logme
2 S ← 10m−1

3 p̃ ← 0

4 t̃1 ← 0

5 for i ← 1 to m do

6 p̃ ← (10 · p̃ mod q) + P[i ] mod q

7 t̃1 ← (10 · t̃1 mod q) + T [i ] mod q

8 for s ← 1 to n −m + 1 do

9 if p̃ = t̃s then

10 if P = Ts then print s

11 t̃s+1 ← (10 · (t̃s − (S · T [s] mod q)) + T [s + m] mod q

66



STRING MATCHING

FINITE STATE MACHINES AND

KNUTH-MORRIS-PRATT ALGORITHM



FINITE STATE MACHINES

• for a given pattern P[1..m] construct a finite automaton

A = ({0, . . . ,m},Σ, δ, {0}, {m})
• the transition function δ for a state q and symbol x ∈ Σ is the length

of the longest prefix of P[1..m] that is also a suffix of P[1..q]x

Function delta(P,Σ)

1 for q ← 0 to m do

2 for x ∈ Σ do

3 k ← min(m + 1, q + 2)

4 repeat k ← k − 1 until P[1 · · · k] is a suffix of P[1 · · · q]x

5 δ(q, x)← k

6 return δ

complexity of the preprocessing is in Θ(m3|Σ|)
there is an optimalized version with complexity Θ(m|Σ|)
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Algorithm: Finite Automaton Matcher(T ,A)

1 q ← 0

2 for i ← 1 to n do

3 q ← δ(q,T [i ])

4 if q = m then print i −m

complexity of string matching is in Θ(n)

can we avoid the expensive preprocessing?
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REDUNDANT COMPARISONS

• character-by-character comparison

• once we have found a match for a text character, we never need to

do another comparison with that text character again

• the next reasonable shift is the smallest value of s such that

T [s...i − 1], which is a suffix of the previously-read text, is also a

proper prefix of the pattern

• KMP algorithm implements of both of these ideas through a special

type of finite-state machines
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KNUTH-MORRIS-PRATT ALGORITHM (KMP)

• every state in the string-matching machine is labeled with a

character from the pattern, except two special states labeled S and F

• each state has two outging edges, a success edge and a failure edge

• the success edges define a path through the characters of the

pattern in order, starting at S and ending at F

• failure edges always point to earlier characters in the pattern

we use the finite state machine to search for the pattern as follows

• at all times, we have a current text character T [i ] and a current

state of the machine, which is usually labeled by some pattern

character P[j)

• if T [i ] = P[j ], or the current label is S, follow the success edge to

the next state and increment i

• if T [i ] 6= P[j ], follow the failure edge back to an earlier state, but do

not change i
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KMP — implementation

in a real implementation we need only the failure function encoded in an

array fail [1..m]

Algorithm: KnuthMorrisPratt(T [1..n],P[1..m])

1 ComputeFailure(P[1..m])

2 j ← 1

3 for i ← 1 to n do

4 while j > 0 and T [i ] 6= P[j ] do

5 j ← fail [j ]

6 if j = m then

7 print i −m + 1

8 j ← fail [j ]

9 j ← j + 1
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KMP — complexity

• assume that a correct failure function is already known

• at each character comparison, either we increase i and j by one, or

we decrease j and leave i alone

• we can increment i at most n − 1 times before we run out of the

text, so there are at most n − 1 succesfull comparisons

• there can be at most n − 1 failed comparisons, sice the number of

times we decrease j cannot exceed the number of times we

increment j

• in other words we can amortize character mismatches against earlier

character matches

• the total number of character comparisons performed by KMP in

the worst case is O(n)
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KMP — computing the failure function

P[1..fail [j ]− 1] is

the longest proper prefix of P[1..j − 1] that is also a suffix of T [1..i − 1]

• if we are comparing T [i ] against P[j ], then we must have already

matched the first j − 1 characters of the pattern

• we already know that P[1..j − 1] is a suffix of T [1..i − 1], therefore:

P[1..fail [j ]− 1] is

the longest proper prefix of P[1..j − 1] that is also a suffix of P[1..j − 1]

Algorithm: ComputeFailure(P[1..m])

1 j ← 0

2 for i ← 1 to m do

3 fail [i ]← j

4 while j > 0 and P[i ] 6= P[j ] do

5 j ← fail [j ]

6 j ← j + 1 73



KMP — complexity of the failure function

• just as we did for KMP, we can analyze ComputeFailure by

amortizing character mismatches againgst eralier character matches

• since there are at most m character matches, ComputeFailure runs

in O(m) time
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STRING MATCHING

BOYER MOORE ALGORITHM



Can we improve on the naïve algorithm?

There would have been a time for such a wordT:
P: word

word

There would have been a time for such a wordT:
P: word

word
word 
 word 
  word

skip!
skip!

u doesn’t occur in P, so skip next two alignments



Boyer-Moore

1. When we hit a mismatch, move P along until 
the mismatch becomes a match 

2. When we move P along, make sure 
characters that matched in the last 
alignment also match in the next alignment 

3. Try alignments in one direction, but do 
character comparisons in opposite direction 

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

“Bad character rule”

“Good suffix rule”

For longer skips

There would have been a time for such a wordT:
P: word

word

Learn from character comparisons to skip pointless alignments  



Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

(etc)

Case (a)

Case (b)

Upon mismatch, skip alignments until (a) mismatch becomes 
a match, or (b) P moves past mismatched character. 
 

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 4:

Case (c)

(c) If there was no mismatch, don't skip



Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

Up to step 3, we skipped 8 alignments

5 characters in T were never looked at  



Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there 
are no mismatches between P and t or (b) P moves past t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 1:

t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 2:

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 3:

t



Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there 
are no mismatches between P and t or (b) P moves past t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 1:

t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 2:

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 3:

t

Case (a) has two subcases according to whether t occurs in its 
entirety to the left within P (as in step 1), or a prefix of P matches a 
suffix of t (as in step 2)

 t occurs in its entirety to the left within P

prefix of P matches a suffix of t



Boyer-Moore: Putting it together

How to combine bad character and good suffix rules?

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

bad char says skip 2, good suffix says skip 7

Take the maximum!  (7)



Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more 

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 1:
bc: 6, gs: 0

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 2:
bc: 0, gs: 2

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 3:
bc: 2, gs: 7

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 4:

good suffix

good suffix

bad character



T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 1:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 2:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 3:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 4:

11 characters of T we ignored

Skipped 15 alignments



Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!  
For bad character rule and P = TCGC: 

T C G C
A
C - -
G -
T -

P

Σ



Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!  
For bad character rule and P = TCGC: 

T C G C
A 0 1 2 3
C 0 - 0 -
G 0 1 - 0
T - 0 1 2

P

Σ
T:
P:

A A T C A A T A G C
T C G C

This can be constructed efficiently.  See Gusfield 2.2.2. 



Boyer-Moore: Good suffix rule

We learned the weak good suffix rule; there is also a strong good suffix rule 

T:
P:

C T T G C C T A C T T A C T T A C T
C T T A C T T A C

t

C T T A C T T A C
C T T A C T T A C

Weak:

Strong:

Strong good suffix rule skips more than weak, at no additional penalty

guaranteed 
mismatch!

Strong rule is needed for proof of Boyer-Moore’s O(n + m) worst-case time.  
Gusfield discusses proof(s) in first several sections of ch. 3



Boyer-Moore: Worst case

Boyer-Moore, with refinements in Gusfield, is O(n + m) time

Is this better than naïve?

Boyer-Moore: O(m), naïve: O(nm)

Given n < m, can simplify to O(m)

For naïve, worst-case # char comparisons is n(m - n + 1)

Reminder:   |P| = n    |T| = m



Boyer-Moore: Best case

What’s the best case?

How many character comparisons? floor(m / n)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaT:
P: bbbb

bbbb    bbbb    bbbb    bbbb    bbbb    bbbb 
    bbbb    bbbb    bbbb    bbbb    bbbb 

Every alignment yields immediate mismatch and bad 
character rule skips n alignments



|P| = n    |T| = m Naïve matching Boyer-Moore

Worst case

Best case

m·n

Naive vs Boyer-Moore

m

m / nm

As m & n grow, # characters comparisons grows with...



Performance comparison

Naïve matching Boyer-Moore

# character 
comparisons wall clock time

# character 
comparisons wall clock time

P: “tomorrow” 

T: Shakespeare’s 
complete works

P: 50 nt string 
from Alu repeat* 

T: Human 
reference (hg19) 
chromosome 1

Simple Python implementations of naïve and Boyer-Moore:

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

336 matches 
| T | = 249 M

17 matches 
| T | = 5.59 M

5,906,125 2.90 s 785,855 1.54 s

307,013,905 137 s 32,495,111 55 s



Boyer-Moore implementation

http://j.mp/CG_BoyerMoore

def boyer_moore(p, p_bm, t): 
    """ Do Boyer-Moore matching """ 
    i = 0 
    occurrences = [] 
    while i < len(t) - len(p) + 1:  # left to right 
        shift = 1 
        mismatched = False 
        for j in range(len(p)-1, -1, -1):  # right to left 
            if p[j] != t[i+j]: 
                skip_bc = p_bm.bad_character_rule(j, t[i+j]) 
                skip_gs = p_bm.good_suffix_rule(j) 
                shift = max(shift, skip_bc, skip_gs) 
                mismatched = True 
                break 
        if not mismatched: 
            occurrences.append(i) 
            skip_gs = p_bm.match_skip() 
            shift = max(shift, skip_gs) 
        i += shift 
    return occurrences



Preprocessing: Boyer-Moore

Boyer-Moore

P

T

Results

Make lookup tables 
for bad character & 

good suffix rules



Preprocessing: Naïve algorithm

Naïve exact matching

P T

Results



Preprocessing: Boyer-Moore

Preprocessing: trade one-time cost for reduced work 
overall via reuse

Boyer-Moore preprocesses P into lookup tables that are 
reused

If you later give me T2, I reuse the tables to match P to T2

reused for each alignment of P to T1

If you later give me T3, I reuse the tables to match P to T3

...

Cost of preprocessing is amortized over alignments & texts
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