The Notion of Entropy

Essential Information Theory

m Entropy — “chaos” , fuzziness, opposite of order,. ..
PA154 Jazykové modelovani (1.3) > you know it
> it is much easier to create“mess” than to tidy things up. ..

m Comes from physics:
Pavel Rychly

» Entropy does not go down unless energy is used
- ) m Measure of uncertainty:
pary@fi.muni.cz . _—
> if low ...low uncertainty

e 2 Eotopy

The higher the entropy, the higher uncertainty, but the higher “surprise”
(information) we can get out of experiment.
Source: Introduction to Natural Language Processing (600.465)
Jan Haji¢, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/"hajic
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The Formula Using the Formula: Example
m Toss a fair coin: Q = {head, tail}
m Let py(x) be a distribution of random variable X > p(head) = .5, p(tail) = .5
m Basic outcomes (alphabet) Q > H(p) = —0.5l0g,(0.5) + (—0.5log,(0.5)) = 2 x ((—0.5) x (-1)) =
2x05=1
1
H(X) = = > xeq p(x) logy p(x) > H(p) = = X1 3 P(xi) logs p(x;) = —32(p(x1) log, p(x1))
(since for all i p(x;) = p(x1) = %5
= L % (=5)) = it its?
= Unit: bits (logyo: nats) b 3.2 X (35 X (=5)) =5 (now you see why it's called bits?)
. m Unfair coin:
m Notation: H(X) = Ho(X) = H(p) = Hx(p) = H(px) » p(head) = 2 ... H(p) = .722
> p(head) = .1...H(p) = .081
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Example: Book Availability The Limits
Entropy | Hp)
4 m When H(p) =07
> if a result of an experiment is known ahead of time:
> necessarily:
Ix e Q;p(x) =1&YVy € Q;y #x=p(y) =0
m Upper bound?
> none in general
> for |2 |=n: H(p) <log,n
bad bookstore goad backstore > nothing can be more uncertain than the uniform distribution
0 / \
0 05 1 ¢ p(Book Available)
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Entropy and Expectation Perplexity: motivation

m Recall:
= Recall: > 2 equiprobable outcomes: H(p) = 1 bit
o > 32 equiprobable outcomes: H(p) = 5 bits
> E(X) = ZXEX(Q) px(x) > x > 4.3 billion equiprobable outcomes: H(p) 2 32 bits
® Then: 1 1 m What if the outcomes are not equiprobable?
E (|0g2 (—)) = Px(x) logy (*) = > 32 outcomes, 2 equiprobable at 0.5, rest impossible:
p(x) xex(@) Px(x)

> H(p) =1 bit
> any measure for comparing the entropy (i.e. uncertainty/difficulty of
prediction) (also) for random variables with
different number of outcomes?

- ZXEX(Q) PX(X) log, pX(X) = H(px) = notation H(P)
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Perplexity Joint Entropy and Conditional Entropy

m Two random variables: X (space Q), Y (V)
m Joint entropy:

m Perplexity: > no big deal: ((X,Y) considered a single event):

> G(p) = 2H®)

H(X,Y)=— Yl )

m ...so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc. ( ) X;h;p(x y)logz plx. )
m it is easier to imagine: N

» NLP example: vocabulary size of a vocabulary with uniform m Conditional entropy:

distribution, which is equally hard to predict
m the “wilder" (biased) distribution, the better: H(YIX) = - Z Z p(x,y)logz p(y|x)
xEQyev

> lower entropy, lower perplexity

1
recall that H(X) = E ( lo
() = £ (1oz2 5.5 )

(weighted “average”, and weights are not conditional)
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Conditional Entropy (Using the Calculus) Properties of Entropy |
m other definition: m Entropy is non-negative:
» H(X)>0
H(Y|X) =3 ca P(X)H(Y|X = x) = > proof: (recall: H(X) = =3 cq p(x)log, p(x))
for H(Y|X = x), we can use > log,(p(x)) is negative or zero for x < 1,
the single-variable definition (x ~ constant) > p(x) is non-negative; their product p(x)log(p(x)) is thus negative,
g > sum of negative numbers is negative,
= erﬂ p(X) (— Zye\lf p(y|x) log, p(y|x)> = > and -f is positive for negative f
= =2 eq Xyew P(yIX)p(x) logs p(y|x) = m Chain rule:
= — erQ ZyEW p(x7y) |0g2 p(y‘x) > H(X, Y) = H(le) + H(X), as well as

> H(X,Y) = H(X|Y) + H(Y) (since H(Y,X) = H(X,Y))
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Properties of Entropy Il

m Conditional Entropy is better (than unconditional):
> H(Y|X) < H(Y)
[ ] H()(7 Y) < H(X) + H( Y) (follows from the previous (in)equalities)
» equality iff X,Y independent
> (recall: XY independent iff p(X,Y)=p(X)p(Y))
m H(p) is concave (remember the book availability
graph?)
» concave function f over an interval (a,b):
Vx,y € (a,b),YA € [0,1] :
FOX A+ (1= X)y) 2 M (x) + (1 = Mf(y)

» function f is convex if -f is concave

W for proofs and generalizations, see Cover/Thomas
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