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Jan Hajič, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/˜hajic

The Notion of Entropy

Entropy – “chaos” , fuzziness, opposite of order,. . .
I you know it

I it is much easier to create“mess” than to tidy things up. . .

Comes from physics:
I Entropy does not go down unless energy is used

Measure of uncertainty:
I if low . . . low uncertainty

Entropy

The higher the entropy, the higher uncertainty, but the higher “surprise”
(information) we can get out of experiment.
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The Formula

Let px(x) be a distribution of random variable X

Basic outcomes (alphabet) Ω

Entropy

H(X ) = −∑x∈Ω p(x) log2 p(x)

Unit: bits (log10: nats)

Notation: H(X ) = Hp(X ) = H(p) = HX (p) = H(pX )
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Using the Formula: Example

Toss a fair coin: Ω = {head , tail}
I p(head) = .5, p(tail) = .5
I H(p) = −0.5 log2(0.5) + (−0.5 log2(0.5)) = 2× ((−0.5)× (−1)) =

2× 0.5 = 1

Take fair, 32-sided die: p(x) =
1

32
for every side x

I H(p) = −∑i=1...32 p(xi ) log2 p(xi ) = −32(p(x1) log2 p(x1))
(since for all i p(xi ) = p(x1) = 1

32
= −32× ( 1

32 × (−5)) = 5 (now you see why it’s called bits? )

Unfair coin:
I p(head) = .2 . . .H(p) = .722
I p(head) = .1 . . .H(p) = .081
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Example: Book Availability
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The Limits

When H(p) = 0?
I if a result of an experiment is known ahead of time:
I necessarily:

∃x ∈ Ω; p(x) = 1&∀y ∈ Ω; y 6= x ⇒ p(y) = 0

Upper bound?
I none in general
I for |Ω |= n : H(p) ≤ log2 n

I nothing can be more uncertain than the uniform distribution
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Entropy and Expectation

Recall:
I E (X ) =

∑
x∈X (Ω) px(x)× x

Then:

E

(
log2

(
1

p(x)

))
=
∑

x∈X (Ω) px(x) log2

(
1

px(x)

)
=

−∑x∈X (Ω) pX (x) log2 px(x) = H(px) =notation H(p)
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Perplexity: motivation

Recall:
I 2 equiprobable outcomes: H(p) = 1 bit
I 32 equiprobable outcomes: H(p) = 5 bits
I 4.3 billion equiprobable outcomes: H(p) ∼= 32 bits

What if the outcomes are not equiprobable?
I 32 outcomes, 2 equiprobable at 0.5, rest impossible:

I H(p) = 1 bit

I any measure for comparing the entropy (i.e. uncertainty/difficulty of
prediction) (also) for random variables with
different number of outcomes?
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Perplexity

Perplexity:
I G (p) = 2H(p)

. . . so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc.

it is easier to imagine:
I NLP example: vocabulary size of a vocabulary with uniform

distribution, which is equally hard to predict

the “wilder” (biased) distribution, the better:
I lower entropy, lower perplexity
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Joint Entropy and Conditional Entropy

Two random variables: X (space Ω), Y (Ψ)

Joint entropy:
I no big deal: ((X,Y) considered a single event):

H(X ,Y ) = −
∑

x∈Ω

∑

y∈Ψ

p(x , y) log2 p(x , y)

Conditional entropy:

H(Y |X ) = −
∑

x∈Ω

∑

y∈Ψ

p(x , y) log2 p(y |x)

recall that H(X ) = E

(
log2

1

px(x)

)

(weighted “average”, and weights are not conditional)
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Conditional Entropy (Using the Calculus)

other definition:

H(Y |X ) =
∑

x∈Ω p(x)H(Y |X = x) =
for H(Y |X = x), we can use

the single-variable definition (x ∼ constant)

=
∑

x∈Ω p(x)
(
−∑y∈Ψ p(y |x) log2 p(y |x)

)
=

= −∑x∈Ω

∑
y∈Ψ p(y |x)p(x) log2 p(y |x) =

= −∑x∈Ω

∑
y∈Ψ p(x , y) log2 p(y |x)
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Properties of Entropy I

Entropy is non-negative:
I H(X ) ≥ 0
I proof: (recall: H(X ) = −∑x∈Ω p(x) log2 p(x))

I log2(p(x)) is negative or zero for x ≤ 1,
I p(x) is non-negative; their product p(x) log(p(x)) is thus negative,
I sum of negative numbers is negative,
I and -f is positive for negative f

Chain rule:
I H(X ,Y ) = H(Y |X ) + H(X ), as well as
I H(X ,Y ) = H(X |Y ) + H(Y ) (since H(Y ,X ) = H(X ,Y ))
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Properties of Entropy II

Conditional Entropy is better (than unconditional):
I H(Y |X ) ≤ H(Y )

H(X ,Y ) ≤ H(X ) + H(Y ) (follows from the previous (in)equalities)

I equality iff X,Y independent
I (recall: X,Y independent iff p(X,Y)=p(X)p(Y))

H(p) is concave (remember the book availability
graph?)

I concave function f over an interval (a,b):
∀x , y ∈ (a, b),∀λ ∈ [0, 1] :
f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)

I function f is convex if -f is concave

for proofs and generalizations, see Cover/Thomas
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