
PA160: Net-Centric Computing II.

Specification and Verification of Network Protocols

Vojtěch Řehák

Spring 2019

Vojtěch Řehák · Specification and Verification · Spring 2019 1 / 96



Theory Definition and Usage

Vojtěch Řehák · Specification and Verification · Spring 2019 2 / 96



Theory Definition and Usage

Vojtěch Řehák · Specification and Verification · Spring 2019 2 / 96



Theory Definition and Usage

Vojtěch Řehák · Specification and Verification · Spring 2019 2 / 96



Theory Definition and Usage

Vojtěch Řehák · Specification and Verification · Spring 2019 2 / 96



Theory Definition and Usage

Vojtěch Řehák · Specification and Verification · Spring 2019 2 / 96



Theory Definition and Usage

Vojtěch Řehák · Specification and Verification · Spring 2019 2 / 96



Theoretical Results as Tools for Users

Vojtěch Řehák · Specification and Verification · Spring 2019 3 / 96



Formal Models - what are they good for
The basic concept is a model of system (i.e. the object we work with).

thought handling
individual approach (intra-brain) - to grasp it
documentation (inter-brain) - to pass it on

automatic/computer processing (comparing model to specification)
testing
simulation
symbolic execution
static analysis
model checking
equivalence checking
theorem proving

Vojtěch Řehák · Specification and Verification · Spring 2019 4 / 96



Formal Models in Specification

natural language vs. formal language
freedom in writing restrictions in writing

human resources automatic methods

nothing ≤ text ≤ structured text ≤ text with formal “pictures”≤
formal description with informal comments ≤ complete formal

description

Goal: Find an appropriate level of abstraction and keep it.

“What will be the model used for?”

Vojtěch Řehák · Specification and Verification · Spring 2019 5 / 96



Formal Models in Specification

natural language vs. formal language
freedom in writing restrictions in writing

human resources automatic methods

nothing ≤ text ≤ structured text ≤ text with formal “pictures”≤
formal description with informal comments ≤ complete formal

description

Goal: Find an appropriate level of abstraction and keep it.

“What will be the model used for?”

Vojtěch Řehák · Specification and Verification · Spring 2019 5 / 96



Formal Models in Specification

natural language vs. formal language
freedom in writing restrictions in writing

human resources automatic methods

nothing ≤ text ≤ structured text ≤ text with formal “pictures”≤
formal description with informal comments ≤ complete formal

description

Goal: Find an appropriate level of abstraction and keep it.

“What will be the model used for?”

Vojtěch Řehák · Specification and Verification · Spring 2019 5 / 96



Formal Models in Specification

natural language vs. formal language
freedom in writing restrictions in writing

human resources automatic methods

nothing ≤ text ≤ structured text ≤ text with formal “pictures”≤
formal description with informal comments ≤ complete formal

description

Goal: Find an appropriate level of abstraction and keep it.

“What will be the model used for?”

Vojtěch Řehák · Specification and Verification · Spring 2019 5 / 96



Map - Abstraction Example

Find Pardubice or directions from Brno to Liberec. source: www.mapy.cz

Vojtěch Řehák · Specification and Verification · Spring 2019 6 / 96



Map - Abstraction Example

Find Pardubice or directions from Brno to Liberec. source: www.mapy.cz

Vojtěch Řehák · Specification and Verification · Spring 2019 6 / 96



Map - Abstraction Example

“Model has to suit its purpose!”

Only relevant information are presented; no more, no less.

Vojtěch Řehák · Specification and Verification · Spring 2019 6 / 96



Outline
Models we will talk about:

Message Sequence Charts (MSC)
Specification and Description Language (SDL)
Petri nets
Queueing theory

What they can be used for?

modelling
specification
analysis
simulation
testing
partial implementation

Vojtěch Řehák · Specification and Verification · Spring 2019 7 / 96



Distributed Systems

“What is the problem of distributed systems?”

Vojtěch Řehák · Specification and Verification · Spring 2019 8 / 96



Distributed Systems

World is distributed
Vojtěch Řehák · Specification and Verification · Spring 2019 9 / 96



Distributed Systems

World is distributed Human way of thinking is sequential
Vojtěch Řehák · Specification and Verification · Spring 2019 9 / 96



Distributed vs. Local

SDL MSC
Specification Description Message Sequence

Language Chart

ITU-T Z.100 ITU-T Z.120

models of components communication model

Vojtěch Řehák · Specification and Verification · Spring 2019 10 / 96



Distributed vs. Local

SDL MSC
Specification Description Message Sequence

Language Chart

ITU-T Z.100 ITU-T Z.120

models of components communication model

Vojtěch Řehák · Specification and Verification · Spring 2019 10 / 96



Message Sequence Chart (MSC)

Message Sequence Chart (MSC)

Vojtěch Řehák · Specification and Verification · Spring 2019 11 / 96



Message Sequence Chart (MSC)

international standard of ITU-T, Z.120

1993 - first version of Z.120 recommendation
...
2011 - current version of Z.120 recommendation
all documents of the current version:

Z.120 - Message Sequence Chart (MSC)
Z.120 Annex B - Formal semantics of message sequence charts
Z.121 - Specification and Description Language (SDL) data
binding to Message Sequence Charts (MSC)

It formally defines both textual and graphical form.

MSC is a similar concept to UML Sequence Charts.

Vojtěch Řehák · Specification and Verification · Spring 2019 12 / 96



Message Sequence Chart (MSC)

international standard of ITU-T, Z.120

1993 - first version of Z.120 recommendation
...
2011 - current version of Z.120 recommendation
all documents of the current version:

Z.120 - Message Sequence Chart (MSC)
Z.120 Annex B - Formal semantics of message sequence charts
Z.121 - Specification and Description Language (SDL) data
binding to Message Sequence Charts (MSC)

It formally defines both textual and graphical form.

MSC is a similar concept to UML Sequence Charts.

Vojtěch Řehák · Specification and Verification · Spring 2019 12 / 96



Message Sequence Chart (MSC)

A trace language for the specification and description of the
communication behaviour by means of message exchange.

Describes
communicating processes,
communication traces,
message order,
time information (timeouts, constraints),
high-level form for set of traces.

Vojtěch Řehák · Specification and Verification · Spring 2019 13 / 96



Message Sequence Chart (MSC)

Vojtěch Řehák · Specification and Verification · Spring 2019 14 / 96



Message Sequence Chart (MSC) - semantics

Vojtěch Řehák · Specification and Verification · Spring 2019 15 / 96



Message Sequence Chart (MSC) - semantics

Vojtěch Řehák · Specification and Verification · Spring 2019 15 / 96



Message Sequence Chart (MSC) - semantics

Vojtěch Řehák · Specification and Verification · Spring 2019 15 / 96



Message Sequence Chart (MSC) - semantics

Vojtěch Řehák · Specification and Verification · Spring 2019 15 / 96



MSC - Visual Order

Vojtěch Řehák · Specification and Verification · Spring 2019 16 / 96



MSC - Visual Order - Hasse Diagram

Vojtěch Řehák · Specification and Verification · Spring 2019 17 / 96



MSC Properties

What is an unwanted behaviour/property?

Fundamental problems in the specified model, e.g. an implementation
of the model does not exist in the given environment.

Vojtěch Řehák · Specification and Verification · Spring 2019 18 / 96



MSC Properties

What is an unwanted behaviour/property?

Fundamental problems in the specified model, e.g. an implementation
of the model does not exist in the given environment.

Vojtěch Řehák · Specification and Verification · Spring 2019 18 / 96



Acyclic/Cyclic property
cyclic dependency among events

unrealizable in any environment

Vojtěch Řehák · Specification and Verification · Spring 2019 19 / 96



Acyclic/Cyclic property

Vojtěch Řehák · Specification and Verification · Spring 2019 20 / 96



FIFO/non-FIFO property
overleaping messages

unrealizable in an environment preserving message order

realizable in an environment with P2P channels but unrealizable in
case of one global channel

Vojtěch Řehák · Specification and Verification · Spring 2019 21 / 96



FIFO/non-FIFO property
overleaping messages

unrealizable in an environment preserving message order

realizable in an environment with P2P channels but unrealizable in
case of one global channel

Vojtěch Řehák · Specification and Verification · Spring 2019 21 / 96



FIFO/non-FIFO property
overleaping messages

unrealizable in an environment preserving message order

realizable in an environment with P2P channels but unrealizable in
case of one global channel

Vojtěch Řehák · Specification and Verification · Spring 2019 21 / 96



FIFO/non-FIFO property
overleaping messages

unrealizable in an environment preserving message order

realizable in an environment with P2P channels but unrealizable in
case of one global channel
Vojtěch Řehák · Specification and Verification · Spring 2019 21 / 96



Race Condition

Informally, race is when some receive event can come earlier.

Vojtěch Řehák · Specification and Verification · Spring 2019 22 / 96



Race Condition

Informally, race is when some receive event can come earlier.

Vojtěch Řehák · Specification and Verification · Spring 2019 22 / 96



Race Condition

Informally, race is when some receive event can come earlier.

Vojtěch Řehák · Specification and Verification · Spring 2019 22 / 96



Solution #1 - Coregion Construction
Let us demonstrate that some events are not ordered.

Events in a coregion are not ordered;
except for the event related by general ordering.

Vojtěch Řehák · Specification and Verification · Spring 2019 23 / 96



Solution #1 - Coregion Construction
Let us demonstrate that some events are not ordered.

Events in a coregion are not ordered;
except for the event related by general ordering.

Vojtěch Řehák · Specification and Verification · Spring 2019 23 / 96



Solution #1 - Coregion Construction
Let us demonstrate that some events are not ordered.

Events in a coregion are not ordered;
except for the event related by general ordering.

Vojtěch Řehák · Specification and Verification · Spring 2019 23 / 96



Solution #2 - List/set of all possibilities

Vojtěch Řehák · Specification and Verification · Spring 2019 24 / 96



High-Level MSC (HMSC)

Vojtěch Řehák · Specification and Verification · Spring 2019 25 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 26 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

these events are not ordered!
Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák · Specification and Verification · Spring 2019 27 / 96



Deadlock Property

Vojtěch Řehák · Specification and Verification · Spring 2019 28 / 96



Livelock Property

Vojtěch Řehák · Specification and Verification · Spring 2019 29 / 96



Membership
Is a given MSC included in a given HMSC?

Vojtěch Řehák · Specification and Verification · Spring 2019 30 / 96



Membership
Is a given MSC included in a given HMSC?

Vojtěch Řehák · Specification and Verification · Spring 2019 30 / 96



Inline Expressions

Other inline expression types: opt, loop〈m, n〉, exc, seq, par.

Vojtěch Řehák · Specification and Verification · Spring 2019 31 / 96



Inline Expressions

Other inline expression types: opt, loop〈m, n〉, exc, seq, par.

Vojtěch Řehák · Specification and Verification · Spring 2019 31 / 96



Non-local Choice

System3 does not know which alternative has been chosen.

Vojtěch Řehák · Specification and Verification · Spring 2019 32 / 96



Non-local Choice

System3 does not know which alternative has been chosen.

Vojtěch Řehák · Specification and Verification · Spring 2019 32 / 96



Non-local Choice

System3 does not know which alternative has been chosen.

Vojtěch Řehák · Specification and Verification · Spring 2019 32 / 96



Non-local Choice

System3 does not know which alternative has been chosen.

Vojtěch Řehák · Specification and Verification · Spring 2019 32 / 96



Universal Boundedness
What is the size of input buffer of Y that will never overflow?

Every finite input buffer of Y can overflow.

Vojtěch Řehák · Specification and Verification · Spring 2019 33 / 96



Universal Boundedness
What is the size of input buffer of Y that will never overflow?

Every finite input buffer of Y can overflow.

Vojtěch Řehák · Specification and Verification · Spring 2019 33 / 96



Universal Boundedness
What is the size of input buffer of Y that will never overflow?

Buffers of size 1 will never overflow.

Vojtěch Řehák · Specification and Verification · Spring 2019 33 / 96



Universal Boundedness
What is the size of input buffer of Y that will never overflow?

Buffers of size 1 will never overflow.

Vojtěch Řehák · Specification and Verification · Spring 2019 33 / 96



Existential Boundedness
The system deadlocks in case of FIFO channels (and FIFO buffers).
What is the size of non-FIFO buffer needed to avoid deadlock (in case
of FIFO channels)?

Buffer of size 2 suffices to avoid deadlock.
Or one buffer for each message label (type).

Vojtěch Řehák · Specification and Verification · Spring 2019 34 / 96



Existential Boundedness
The system deadlocks in case of FIFO channels (and FIFO buffers).
What is the size of non-FIFO buffer needed to avoid deadlock (in case
of FIFO channels)?

Buffer of size 2 suffices to avoid deadlock.
Or one buffer for each message label (type).
Vojtěch Řehák · Specification and Verification · Spring 2019 34 / 96



Race Condition - Solution #3 - Time Constraints

Vojtěch Řehák · Specification and Verification · Spring 2019 35 / 96



Race Condition - Solution #3 - Time Constraints

Vojtěch Řehák · Specification and Verification · Spring 2019 35 / 96



Race Condition - Solution #3 - Time Constraints

Vojtěch Řehák · Specification and Verification · Spring 2019 35 / 96



Time Consistency
Are the given time conditions consistent?

Vojtěch Řehák · Specification and Verification · Spring 2019 36 / 96



Time Tightening
Some time conditions can be tightened.

Vojtěch Řehák · Specification and Verification · Spring 2019 37 / 96



Time Tightening
Some time conditions can be tightened.

Vojtěch Řehák · Specification and Verification · Spring 2019 37 / 96



Timers

Vojtěch Řehák · Specification and Verification · Spring 2019 38 / 96



MSC - Summary
Basic MSC

instances
messages
send events
receive events
conditions
coregions
general ordering
inline expressions
time constraints
timers

High-level MSC (HMSC)
start node
end node
reference nodes
connection points
lines
conditions
time constraints

Vojtěch Řehák · Specification and Verification · Spring 2019 39 / 96



MSC - Properties
Acyclic property
FIFO property
Race Condition

Deadlock
Livelock
Membership
Nonlocal Choice
Universal Boundedness
Existential Boundedness

Time Race Condition
Time Consistency
Tighten Time

Vojtěch Řehák · Specification and Verification · Spring 2019 40 / 96



MSC - Goals

What MSC is good for?
Both human and computer readable formalizm for:

basic behaviour demonstration (use cases),
high level system behaviour description,
test case specification, and
(test) log visualization.

What MSC is NOT good for?
detailed specification (before implementation), hierarchical structure
of communicating entities, implementation details (primitives for
communication, detailed data manipulation), etc.

Vojtěch Řehák · Specification and Verification · Spring 2019 41 / 96



MSC - Goals

What MSC is good for?
Both human and computer readable formalizm for:

basic behaviour demonstration (use cases),
high level system behaviour description,
test case specification, and
(test) log visualization.

What MSC is NOT good for?
detailed specification (before implementation), hierarchical structure
of communicating entities, implementation details (primitives for
communication, detailed data manipulation), etc.

Vojtěch Řehák · Specification and Verification · Spring 2019 41 / 96



MSC - Tools
Mesa

academic tool
local choice and time checkers

MSCan
academic tool
only textual input
some checkers

IBM Rational, SanDriLa SDL, Cinderella SDL

Sequence Chart Studio (SCStudio)
MS Visio addon
drawing, import, export
checkers for all the mentioned properties

Vojtěch Řehák · Specification and Verification · Spring 2019 42 / 96



Sequence Chart Studio
MSC drawing and verification tool developed at FI MU.

http://scstudio.sourceforge.net
Vojtěch Řehák · Specification and Verification · Spring 2019 43 / 96



Distributed vs. Local

SDL MSC
Specification Description Message Sequence

Language Chart

ITU-T Z.100 ITU-T Z.120

models of components communication model

Vojtěch Řehák · Specification and Verification · Spring 2019 44 / 96



Specification Description Language (SDL)

Specification Description Language (SDL)

Vojtěch Řehák · Specification and Verification · Spring 2019 45 / 96



Specification Description Language (SDL)
international standard of ITU-T, Z.100

1972 - Establishment of a working group for SDL
1976 - first version of Z.100 recommendation
...
04/2016 - current version of Z.100 recommendation
all documents of the current version:

Z.100 - Specification and Description Language (SDL)
Z.100 Supplement 1 - SDL+ methodology: Use of MSC and SDL
Z.Imp100 - SDL implementer’s guide
Z.101 - SDL - Basic SDL-2010
Z.102 - SDL - Comprehensive SDL-2010
Z.103 - SDL - Shorthand notation and annotation in SDL-2010
Z.104 - SDL - Data and action language in SDL-2010
...

Vojtěch Řehák · Specification and Verification · Spring 2019 46 / 96



SDL - Specification Description Language
An object oriented languages for specification of applications that
are

heterogeneous,
distributed (concurrent),
interactive (event-driven, discrete signals), and
real-time dependent (with delays, timeouts).

Describes
structure (distributed components of the system),
behaviour (instructions within the components), and
data

of distributed systems in real-time environments.

Vojtěch Řehák · Specification and Verification · Spring 2019 47 / 96



SDL - representations

Three representations:
SDL/GR graphical representation (human readable)
SDL/PR textual phrase representation (machine readable)
SDL/CIF common interchange format (SDL/PR with graphical

information)

In what follows, we focus on the graphical representation (SDL-GR).
Basic SDL components

system and blocks (structure)
processes and procedures (behaviour)

Vojtěch Řehák · Specification and Verification · Spring 2019 48 / 96



SDL - representations

Three representations:
SDL/GR graphical representation (human readable)
SDL/PR textual phrase representation (machine readable)
SDL/CIF common interchange format (SDL/PR with graphical

information)

In what follows, we focus on the graphical representation (SDL-GR).
Basic SDL components

system and blocks (structure)
processes and procedures (behaviour)

Vojtěch Řehák · Specification and Verification · Spring 2019 48 / 96



SDL/GR - Process

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 49 / 96



SDL/GR - Procedure

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 50 / 96



SDL/GR - Block

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 51 / 96



SDL/GR - Block with block structure

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 52 / 96



SDL/GR - System (the top most block)

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 53 / 96



SDL/GR - Channels
Nondelaying channels for “immediate” message delivery
(e.g., between processes within a computer).

Delaying channels for “time consuming” message delivery
(e.g., between dislocated blocks).

Channels can also be one-directional.
Vojtěch Řehák · Specification and Verification · Spring 2019 54 / 96



Summary of SDL Basics

System - is the top most block surrounded by environment.
Block - consists of blocks or processes that are connected by

channels.
- expresses the hierarchical structure of the system.
- its names are references to other objects.

Process - sends and receives messages.
- stays in states.
- can call procedures.

Procedure - is a subroutine that can finish.
- does not return any value (only in variables or sent

messages).

Vojtěch Řehák · Specification and Verification · Spring 2019 55 / 96



Message Exchange - Operational Semantics

one input buffer for a process
FIFO behaviour
no priority queues
signal which is unspecified in the current state is discarded

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 56 / 96



Asterisk Save, Asterisk State, and Dash State

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 57 / 96



Timer Construction

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 58 / 96



Multiple Instances of a Block

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák · Specification and Verification · Spring 2019 59 / 96



Multiple Instances of a Process

Vojtěch Řehák · Specification and Verification · Spring 2019 60 / 96



Additional SDL Constructs

Asterisk save, asterisk state, and dash state
Timer construction
Multiple block instances (no dynamic creation)
Multiple process instances (with dynamic creation and limit)

Packages collections of related types and definitions (library)
Subtypes
Virtual processes
Process type redefinition and finalization
Inherited blocks

Vojtěch Řehák · Specification and Verification · Spring 2019 61 / 96



SDL - Overview

Vojtěch Řehák · Specification and Verification · Spring 2019 62 / 96



SDL - Goals
What SDL is good for?
SDL is designed for unambiguous specification of requirements and
description of implementation of the normative requirements of
telecommunication protocol standards.

For computer based tools to improve the process of
specification (create, maintain, and analyze), and
implementation (automatic code generation).

What SDL is NOT good for?
high level system description (what the system serves for),
demonstration of good or wrong behaviour, test trace specification,
implementation details (primitives for communication, detailed data
manipulation), etc.

Vojtěch Řehák · Specification and Verification · Spring 2019 63 / 96



SDL - Goals
What SDL is good for?
SDL is designed for unambiguous specification of requirements and
description of implementation of the normative requirements of
telecommunication protocol standards.

For computer based tools to improve the process of
specification (create, maintain, and analyze), and
implementation (automatic code generation).

What SDL is NOT good for?
high level system description (what the system serves for),
demonstration of good or wrong behaviour, test trace specification,
implementation details (primitives for communication, detailed data
manipulation), etc.

Vojtěch Řehák · Specification and Verification · Spring 2019 63 / 96



MSC and SDL in Workflow

typical/optimal communication sequences (MSC)
error sequences (MSC)
optionally - full specification in (HMSC)
distributed specification (SDL)

Formal model benefits
(H)MSC to SDL transformation (realization)
SDL to source code transformation (implementation)
MSC to test case transformation
simulation to MSC transformation (membership checking)
...

Vojtěch Řehák · Specification and Verification · Spring 2019 64 / 96



MSC and SDL in Workflow

typical/optimal communication sequences (MSC)
error sequences (MSC)
optionally - full specification in (HMSC)
distributed specification (SDL)

Formal model benefits
(H)MSC to SDL transformation (realization)
SDL to source code transformation (implementation)
MSC to test case transformation
simulation to MSC transformation (membership checking)
...

Vojtěch Řehák · Specification and Verification · Spring 2019 64 / 96



SDL - Tools
IBM Rational

from tools of Telelogic (SDT, Geode, Tau)
drawing, import, export
automatic implementation in C++
simulation support

SanDriLa SDL
MS Visio stencil
drawing, import, export
analyses of states in process diagrams
open for addons

Cinderella SDL
modelling, import, export
analyses and simulation

Vojtěch Řehák · Specification and Verification · Spring 2019 65 / 96



Petri Nets

Petri Nets

Vojtěch Řehák · Specification and Verification · Spring 2019 66 / 96



Petri Nets
C. A. Petri: Kommunikation mit automaten, 1962

Basic components:
places
transitions
tokens
arcs

Marking = configuration
= distribution of tokens
= vector of token #s in places

places with tokens inside

transition

A transition can be fired if there is a token in each of its input places.

Vojtěch Řehák · Specification and Verification · Spring 2019 67 / 96



Petri Nets
C. A. Petri: Kommunikation mit automaten, 1962

Basic components:
places
transitions
tokens
arcs

Marking = configuration
= distribution of tokens
= vector of token #s in places

input places

output places

transition

Tokens from input places are removed and new tokens are added into
the output places of the fired transition.

Vojtěch Řehák · Specification and Verification · Spring 2019 67 / 96



Demonstration Example #1

What is wrong in this example?

Vojtěch Řehák · Specification and Verification · Spring 2019 68 / 96



Demonstration Example #1

What is wrong in this example?

Vojtěch Řehák · Specification and Verification · Spring 2019 68 / 96



Demonstration Example #2
Better and a bit more complicated example.

Vojtěch Řehák · Specification and Verification · Spring 2019 69 / 96



Basic Constructions

Sequential
execution

a

b

Iteration

a

Alternative

a b

Parallel
execution

a b

Vojtěch Řehák · Specification and Verification · Spring 2019 70 / 96



Basic Constructions

Semaphore

a b

Rende-vous

a

Vojtěch Řehák · Specification and Verification · Spring 2019 71 / 96



Basic Constructions

a b

Critical section

a b

Alternation

a b

Deadlock

Vojtěch Řehák · Specification and Verification · Spring 2019 72 / 96



Basic Constructions

a b

Critical section

a b

Alternation

a b

Deadlock

Vojtěch Řehák · Specification and Verification · Spring 2019 72 / 96



Basic Constructions

a b

Critical section

a b

Alternation

a b

Deadlock

Vojtěch Řehák · Specification and Verification · Spring 2019 72 / 96



Basic Constructions

a b

Critical section

a b

Alternation

a b

Deadlock

Vojtěch Řehák · Specification and Verification · Spring 2019 72 / 96



Basic Constructions

a b

Critical section

a b

Alternation

a b

Deadlock

Vojtěch Řehák · Specification and Verification · Spring 2019 72 / 96



Basic Constructions

a b

Critical section

a b

Alternation

a b

Deadlock

Vojtěch Řehák · Specification and Verification · Spring 2019 72 / 96



Different Modifications/Extensions of Petri Nets

Condition-Event Petri nets (C-E PN)
Place-Transition Petri nets (P-T PN)
Coloured Petri nets
Hierarchical Petri nets
Timed Petri nets
Time Petri nets
Stochastic Petri nets

Vojtěch Řehák · Specification and Verification · Spring 2019 73 / 96



Condition-Event Petri Nets

In this case:
places = conditions
transitions = event

An event/transition is enabled if and only if
all its pre-conditions are true and
all its post-conditions are false.

I.e., an event occurrence negates its pre- and post-conditions.

Therefore, there is one or none token in each place.

Vojtěch Řehák · Specification and Verification · Spring 2019 74 / 96



Transition-Place Petri Nets
An arbitrary number of tokens in each place.

transp. channel

notification channel

producer consumer

Producer-consumer model for bounded transport channel.
Vojtěch Řehák · Specification and Verification · Spring 2019 75 / 96



Additional Constructs - Arc Multiplicity

Vojtěch Řehák · Specification and Verification · Spring 2019 76 / 96



Additional Constructs - Arc Multiplicity

Vojtěch Řehák · Specification and Verification · Spring 2019 76 / 96



Additional Constructs - Arc Multiplicity

3 2

2

Vojtěch Řehák · Specification and Verification · Spring 2019 76 / 96



Additional Constructs - Arc Multiplicity

3 2

2

Vojtěch Řehák · Specification and Verification · Spring 2019 76 / 96



Additional Constructs - Inhibitor and Reset Arcs

An inhibitor arc imposes the
precondition that the transition
may only fire when the place is
empty.

A reset arc does not impose a
precondition on firing, and
empties the place when the
transition fires.

Vojtěch Řehák · Specification and Verification · Spring 2019 77 / 96



Additional Constructs - Inhibitor and Reset Arcs

An inhibitor arc imposes the
precondition that the transition
may only fire when the place is
empty.

A reset arc does not impose a
precondition on firing, and
empties the place when the
transition fires.

Vojtěch Řehák · Specification and Verification · Spring 2019 77 / 96



Properties of Petri nets
reachability - reachability tree or coverability tree
bounded (safe) places

a place with a bound on the number of its tokens in all reachable
markings
a place is safe if the number of its tokens ≤ 1 in all reachable
markings

liveness
a transition is live if, from every marking, one can reach a marking
where the transition is enabled
a net is live if all its transitions are live

p1 p2

p3

t1
t2

t3

p1 p2

p3

p1’ p2’

t1
t2

t3

Vojtěch Řehák · Specification and Verification · Spring 2019 78 / 96



Properties of Petri nets
p-invariant

an invariant vector on places, i.e. a multiset of places representing
weighting such that any such weighted marking remains invariant
by any firing, e.g. 3 ∗ p1 + p2 + p3 + p4 + p5 + 3 ∗ p6.

t-invariant
an invariant vector on transitions, i.e. a multiset of transitions
whose firing leave invariant any marking, e.g.
t1 + 2 ∗ t2 + t3 + t4 + t5.

p1

p2 p3

p4 p5

p6t1

t2

t3

t4 t5

Vojtěch Řehák · Specification and Verification · Spring 2019 79 / 96



Coloured Petri Nets
Different colours (classes) of tokens.

p q r 3‘p+2‘q+5‘r

3‘p+1‘q+2‘r

2‘q

marking expression, arc expression, transition guard (next slide)

Colours usually serves for data type representation.

Vojtěch Řehák · Specification and Verification · Spring 2019 80 / 96



Coloured Petri Net Example

source: http://scienceblogs.com/goodmath/2007/10/colored petri nets.php

Vojtěch Řehák · Specification and Verification · Spring 2019 81 / 96



Hierarchical Petri Nets

source: http://www.gridworkflow.org/kwfgrid/gwes-web/

Vojtěch Řehák · Specification and Verification · Spring 2019 82 / 96



Time PN, Timed PN, Stochastic PN, ...

priority nets
priorities of concurrent transitions

time (or timed-arc) nets
tokens has its lifetime, arcs to transitions are labeled by time
intervals of required ages of tokens

timed nets
firing starts when a transition is enabled but it takes some
specified time to produce output

stochastic nets
probability distribution on time to fire (exponential,
deterministic, or general distributions)

Vojtěch Řehák · Specification and Verification · Spring 2019 83 / 96



PN Tools
CPN Tools

Coloured Petri Nets (prioritized transitions and real time support)
editor, simulation, analyses

Tapall
Timed-Arc Petri Nets (with real time support)
editor, simulation, compositional models, TCTL logic checker

TimeNET
Coloured and Stochastic PN with non-exponential distributions
editor, simulation, analyses (p-invariant, performance analyses)

SNOOPY, TINA - TIme petri Net Analyzer, Roméo, ...

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://cs.au.dk/cpnets/industrial-use/

Vojtěch Řehák · Specification and Verification · Spring 2019 84 / 96



Queueing theory

Queueing theory

Vojtěch Řehák · Specification and Verification · Spring 2019 85 / 96



Queueing Theory
In 1909 A.K. Erlang, a danish telephone engineer, was asked:

“What the queue capacity should be
of the central telephone switch in Copenhagen?”

Our motivation example:

Example
30 customers will visit the cash machine in an hour.
Each customer uses the machine for 1.5 minute on average.

How busy is the cash machine?
For how long time does a customer wait (on average)?

Vojtěch Řehák · Specification and Verification · Spring 2019 86 / 96



Queueing Theory
In 1909 A.K. Erlang, a danish telephone engineer, was asked:

“What the queue capacity should be
of the central telephone switch in Copenhagen?”

Our motivation example:

Example
30 customers will visit the cash machine in an hour.
Each customer uses the machine for 1.5 minute on average.

How busy is the cash machine?
For how long time does a customer wait (on average)?

Vojtěch Řehák · Specification and Verification · Spring 2019 86 / 96



Queues and Thier Parameters

inter-arrival time distribution (type of the distribution, rate λ, or
mean inter-arrival time 1/λ, other moments ...)
service time distribution (type of the distribution, rate µ, or mean
service time 1/µ, other moments ...)
number of servers
maximal queue length
...

Vojtěch Řehák · Specification and Verification · Spring 2019 87 / 96



Queue Parameters - Kendall Notation
A/S/n/B/K/SD

A - inter-arrival time distribution
G - general, M - exponential, D - deterministic...

S - service time distribution
G - general, M - exponential, D - deterministic...

n - number of servers
1, 2, ...,∞

B - buffer size (the max. number of waiting and served requests)
1, 2, ...,∞

K - population size
1, 2, ...,∞

SD - service discipline
FIFO, LIFO, Random, RR - Round Robin

E.g.,M/G/1/∞
Vojtěch Řehák · Specification and Verification · Spring 2019 88 / 96



Queueing Networks

open and closed networks
system dependences
traffic intensity
occupancy (on different servers), bottleneck detection, ...

very similar to Stochastic Petri Nets
Vojtěch Řehák · Specification and Verification · Spring 2019 89 / 96



Questions about Queues

What is the utilization factor ρ, probability of being not empty?
What is the mean number N of waiting (or being served)
requests?
What is the mean waiting and service time, i.e. the time T the
requests spend in the system?
And so, how many servers do I need to ...

General solution:
simulation

For specific types of queues:
analytical results

Vojtěch Řehák · Specification and Verification · Spring 2019 90 / 96



Questions about Queues

What is the utilization factor ρ, probability of being not empty?
What is the mean number N of waiting (or being served)
requests?
What is the mean waiting and service time, i.e. the time T the
requests spend in the system?
And so, how many servers do I need to ...

General solution:
simulation

For specific types of queues:
analytical results

Vojtěch Řehák · Specification and Verification · Spring 2019 90 / 96



Analytical Solutions for M/M/1 Queues
For M/M/1/∞ queue with arival rate λ and service time rate µ:

The mean inter-arrival time is 1/λ.
The mean service time is 1/µ.
The utilization factor ρ = λ/µ.
The queue is stable if ρ < 1, i.e. λ < µ.
The (stable) queue is empty with probability P0 = 1− ρ.
The mean number of requests (waiting or being served) in a
stable system N = ρ/(1− ρ). It is also usually denoted by L as it
is the length of the queue.
The average time spend in a stable system
T = 1/(µ− λ) = 1/(µ(1− ρ)).
The rate of the trafic carried out by the queue is µρ = µ(1− P0).

Vojtěch Řehák · Specification and Verification · Spring 2019 91 / 96



Our Motivation Example Solved as M/M/1/∞
Example
30 customers will visit our cash machine in an hour.
Each customer uses the machine for 1.5 minute on average.
How busy is the cash machine? What is the average waiting time?

The mean inter-arrival time is 2 minutes.
The rate of the inter-arrival time λ is 1/2 = 0.5.
The mean service time is 1.5 minute.
The rate of the service time µ is 2/3 ≈ 0.666667.
The queue is stable and the utilization factor ρ = 3/4 = 0.75.
The mean number of requests (waiting or being served) N is 3.
The average time spend in the system T is 6 minutes.

I.e., on average: It serves 45 minutes per hour. There are 3 customers in the
queue and each spends 4.5 minutes for waiting + 1.5 min for service.

Vojtěch Řehák · Specification and Verification · Spring 2019 92 / 96



Our Motivation Example Solved as M/M/1/∞
Example
30 customers will visit our cash machine in an hour.
Each customer uses the machine for 1.5 minute on average.
How busy is the cash machine? What is the average waiting time?

The mean inter-arrival time is 2 minutes.
The rate of the inter-arrival time λ is 1/2 = 0.5.
The mean service time is 1.5 minute.
The rate of the service time µ is 2/3 ≈ 0.666667.
The queue is stable and the utilization factor ρ = 3/4 = 0.75.
The mean number of requests (waiting or being served) N is 3.
The average time spend in the system T is 6 minutes.

I.e., on average: It serves 45 minutes per hour. There are 3 customers in the
queue and each spends 4.5 minutes for waiting + 1.5 min for service.
Vojtěch Řehák · Specification and Verification · Spring 2019 92 / 96



Little’s Law
Theorem
Let L be the long-term average number of customers in a stable system,
λ be the long-term average effective arrival rate, and W be the average
time a customer spends in the system. Then it holds that

L = λ ·W

for a queue of any type.

Although it looks intuitively reasonable, it is quite a remarkable
result, as the relationship is “not influenced by the arrival process
distribution, the service distribution, the service order, or practically
anything else.”

Vojtěch Řehák · Specification and Verification · Spring 2019 93 / 96



Tools for Queueing Systems
G/M/c-like queue

online steady-state solution of a G/M/c-like queue
http://queueing-systems.ens-lyon.fr/formGMC.php

JMT - Java Modelling Tools
framework for model simulation and workload analysis
http://jmt.sourceforge.net/

SimEvents
simulation engine and component library for Simulink (MATLAB)
http://www.mathworks.com/products/simevents/

Up-to-date List of relevant Queueing theory based tools:

http://web2.uwindsor.ca/math/hlynka/qsoft.html

Vojtěch Řehák · Specification and Verification · Spring 2019 94 / 96

http://queueing-systems.ens-lyon.fr/formGMC.php
http://jmt.sourceforge.net/
http://www.mathworks.com/products/simevents/
http://web2.uwindsor.ca/math/hlynka/qsoft.html


Relevant Lectures

IV113 Úvod do validace a verifikace (Barnat)
IA169 System Verification and Assurance (Barnat, Řehák, Matyáš)
IV109 Modelovánı́ a simulace (Pelánek)
IA159 Formal verification methods (Strejček)
IA158 Real Time Systems (Brázdil)

Vojtěch Řehák · Specification and Verification · Spring 2019 95 / 96



References
ITU-T recommendation Z.120: Message Sequence Charts (MSC). 2011.
ITU-T recommendation Z.100: Specification Description Language (SDL).
2016.
S. Mullender. Distributed Systems. ACM, 1993.
D. Peled. Software Reliability Methods. Springer, 2001.
R. Bræk at al. TIMe: The Integrated Method. SINTEF, 1999.
L. Doldi. Validation of Communications Systems with SDL. Wiley, 2003.
M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, 2001.
W. Jia and W. Zhou. Distributed Network Systems: From Concepts to
Implementation. Springer, 2005.
M. Češka. Petriho sı́tě. Akademické nakladatelstvı́ CERM Brno, 1994.
J. Markl. Petriho sı́tě. VŠB - Technická univerzita Ostrava, 1996.
G. Giambene. Queuing Theory and Communications - Networks and
Applications. Springer, 2005.
D. Gross at al. Fundamentals of Queuing Theory. Wiley, 2008.

Vojtěch Řehák · Specification and Verification · Spring 2019 96 / 96


