Course Introduction basic network architectures and functions General requirements on the security and reliability Network architectures from the point of secure

PA197 Secure Network Design 1. Introduction

Eva Hladká, Luděk Matyska

Fakulty of Informatics

February 18, 2019

Content

- Course Introduction
 - Course Organization
 - Course overview
- 2 basic network architectures and functions
 - data transmission
 - end to end argument
 - routing
 - switching
- General requirements on the security and reliability
 - implication towards the architecture design
- 4 Network architectures from the point of secure
 - reliable design also in ad-hoc/sensor networks
 - reliable design also in vehicular and/or mobile networks

Course Organization

- attending the lectures
- the knowledge acquired course materials will be published on the course webpage
- assessment methodology:
- course literature:
 - slides. RFCs. . . .
 - literature being announced in relevant course parts

Course Overview

- the course goal:
 - to provide basic network architectures and functions
 - data transmission
 - end to end argument
 - routing
 - switching
 - . . .
 - general requirements on the security and reliability
 - implication towards the architecture design
 - Network architectures from the point of secure
 - reliable design also in
 - ad-hoc/sensor networks
 - vehicular and/or mobile networks

Data Transmissions - Introduction

- the main goal: to ensure a transmission of bits (= the content of passed frames) between sender and receiver
- several standards (RS-232-C, CCITT V.24, CCITT X.21, IEEE 802.x) defining electrical, mechanical, functional, and procedural characteristics of interfaces used for connecting various transmission media and devices, e.g.:
 - parameters of the transmitted signals, their meaning and timing
 - mutual relationships of control and state signals
 - · connectors' wiring
 - and many many others

Services - Data Transmissions

- Bit-to-Signal Transformation
 - representing the bits by a signal electromagnetic energy that can propagate through medium
- Bit-Rate Control
 - the number of bits sent per second
- Bit Synchronization
 - the timing of the bit transfer (synchronization of the bits by providing clocking mechanisms that control both sender and receiver)
- Multiplexing
 - the process of dividing a link (physical medium) into logical channels for better efficiency
- Circuit Switching
 - circuit switching is usually a function of the physical layer
 - (packet switching is an issue of the data link layer)

Signals

- data is transferred (via transmission media) in the form of (electromagnetic) signals
 - the data have to be converted into the signals
- signal = a function of time representing changes of physical (electromagnetic) characteristics of the transmission media
- data that have to be transferred (0s and 1s) digital (binary)
- signals spread through the transmission media analog or digital
 - some media suitable for both analog and digital transmission wired media (coaxial cable, twisted pair), optical fibre
 - some media suitable just for analog transmission ether (air)

Transmission Media

- provide an environment for the functionality of physical layer
- basic distinction:
 - guided (wired) media
 - provide a conduit from one device to another
 - twisted pair (LANs, up to 10 Gbps), coaxial cable, optical fibre (backbones, hundreds of Gbps), etc.
 - unguided (wire-less) media
 - transfer an electromagnetic wave without the use of physical conductor
 - the signals are broadcasted (spread) via ether (air, vacuum, water, etc.)
 - radio signals, microwave signals, infrared signals, etc.

Multiplexing

- multiplexing a technique of sharing an available bandwidth by concurrent communication channels
 - the goal is to maximize the utilization of the media
 - applied especially for optical fibres and non-wired media
- for analog signals:
 - Frequency-Division Multiplexing (FDM)
 - Wave-Division Multiplexing (WDM)
- for digital signals:
 - Time-Division Multiplexing (TDM)

End to End (E2E) argument

How to provide demanded functionality in computer networks?

- End-to-End (E2E) argument
 - application demanded functionality is possible to provide wit knowledge and by application
 - ⇒ if it is possible, communication protocol operations have to be defined by realization only in communication system end nodes or in the closest distance
 - in lower system levels protocol function should be implemented only if performance increases.
 - suitable for applications demanding higher degree fidelity transported data and some latency is tolerated.

Hop-by-Hop (HbH)

- repeating specific functionality on the each two-point connection is possible to obtain increasing performance
- it requires storing state informations on inside network nodes ⇒ limited scalability
- useful for applications, where minimize latency is more important then transported data fidelity, (e.g. real-time applications)

Routing

- the main goal of routing is:
 - to find optimal paths
 - the optimality criterion is a metric a cost assigned for passing through a network
 - to deliver a data packet to its receiver
- the routing usually does not deal with the whole packet path
 - the router deals with just a single step to whom should be the particular packet forwarded
 - somebody "closer" to the recipient
 - so-called hop-by-hop principle
 - the next router then decides, what to further do with the received packet

Routing – basic approaches

The basic approaches divide based on the routing table creation/maintenance:

- static (non-adaptive)
 - manually (by hand) edited records
 - suitable for a static topology and smaller networks
- dynamic (adaptive) these respond to network changes
 - complex (usually distributed) algorithms
 - e.g.:
 - centralized a centre controls the whole routing
 - isolated every node on its own
 - distributed nodes' cooperation

Routing – mathematical view

- the routing can be seen as a problem of graph theory
- a network can be represented by a graph, where:
 - nodes represent routers (identified by their IP addresses)
 - edges represent routers' interconnection (a data link)
 - edges' value = the communication cost
 - the goal: to find paths having minimal costs between any two nodes in the network

Routing – routing algorithms' required features

Required features of any routing algorithm:

- accuracy
- simplicity
- effectivness and scalability
 - to minimize an amount of control information (\approx 5% of the whole traffic!)
 - to minimize routing tables' sizes
- robustness and stability
 - a distributed algorithm is necessary
- fairness
- optimality
 - "What should be treated as the best path?"

Routing – basic approaches to distributed routing

Basic approaches to distributed routing:

- Distance Vector (DV) Bellman-Ford algorithm
 - the neighboring routers periodically (or when the topology changes) exchange complete copies of their routing tables
 - based on the content of received updates, a router updates its information and increments its *distance vector number*
 - a metric indicating the number of hops in the network
 - i.e., "all pieces of information about the network just to my neighbors"
- Link State (LS)
 - the routers periodically exchange information about states of the links, to which they are directly connected
 - they maintain complete information about the network topology – every router is aware of all the other routers in the network
 - once acquired, the Dijkstra algorithm is used for shortest paths computation

Packet Switching

- Packet switching refers to protocols in which messages are divided into packets before sending and each packet is transmitted individually. Once all packets forming a message arrive at the destination, they are recompiled into the original message.
- Packet switching operation
 - Data are transmitted in short packets, typically an upper bound on packet size is 1000 bytes.
 - Each packet contains part of the user's data and some control information.
 - The control information should at least contain
 - destination address
 - source address
 - Store and forward Packets are received, stored briefly and past on the next node.
- Advantages

data transmission end to end argume routing switching

Switching Technique

Virtual Circuits

- Pre-planned route is established before any packets sent
- Call setup before the exchange (handshake)
- all packets follow the same route and arrive in sequence
- each packet contains a virtual circuit identifier instead of destination address
- no routing decision required for each packet
- clear request to drop circuit

Datagrams

- Each packet is treated independently with no reference to packets that have gone before.
- Packets may arrive out of order
- Packets may go missing
- Up to receiver to re-order packets and recover from missing packets
- More processing time per packet node
- Robust in the face of link or node failures.

Circuit vs. Packet Switching

- Performance
 - propagation delay
 - transmission time
 - node delay
- Packet switching evolution
 - X.25 packet-switched network
 - router-based networking
 - switching vs. routing
 - frame relay network
 - ATM network

Switching vs Routing

Switching

- path set up at connection time
- simple table look up
- table maintenance via signaling
- no out of sequence delivery
- lost path may lost connection
- much faster than pure routing
- link decision made ahead of time, and resources allocate then

Routing

- can work as connectionless
- complex routing algorithm
- table maintenance via protocol
- out of sequence delivery likely
- robust: no connections lost
- significant processing delay
- output link decision based on packet header contents at every node

•

Course Introduction
basic network architectures and functions
General requirements on the security and reliability
Network architectures from the point of secure

reliable design also in ad-hoc/sensor networks reliable design also in vehicular and/or mobile network

Course Introduction
basic network architectures and functions
General requirements on the security and reliability
Network architectures from the point of secure

reliable design also in ad-hoc/sensor networks reliable design also in vehicular and/or mobile networks