
PA197 Secure network design

Basic wireless networking

Lukáš Němec Lukas.nemec@mail.muni.cz

Petr Švenda

Faculty of Informatics, Masaryk University

mailto:Lukas.nemec@mail.muni.cz

Laboratory

• Start of implementing ad-hoc networks based on

Arduino with RF module

– Basic Arduino programming model

– RF library – send packet between two nodes

– Neighbours discovery (logical communication group)

2 | PA197 Security of wireless networks

Laboratory

• Download and run Arduino IDE

– https://www.arduino.cc/en/Main/Software

• (On Linux: usermod –a –G dialout your_username)

• Plug in JeeNode

• Select COM port

– Can be assigned to different values

– Try other ports if selected does not work

• Board: Arduino Mini

• Processor: ATMega328

| PV204: Rootkits, RE

https://www.arduino.cc/en/Main/Software

FileExamples01.BasicsBlink

• Basic application, should blink the LED

• During upload, Rx and Tx small leds are blinking

• After upload, blue LED should blink (1 second)

• You should now be able to compile and upload app

– If LED is not blinking, check PIN value

– Should be 9 for JeeNode => 13->9

| PV204: Hardware Security Modules

Blink.ino

| PV204: Hardware Security Modules

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin as an output.
 pinMode(9, OUTPUT);
}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(9, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second

 digitalWrite(9, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

• (Note that PIN used for LED can be different on

different boards, 9 on JeeNode)

Troubleshooting

• Check if you have proper board and processor

– Arduino Mini, ATMega328

• Don’t have serial monitor running if going to upload new app

• Try to re-plug jeenode

• Try to plug into different USB port

• Try to restart Arduino IDE

• Check if you have same serial port speed on arduino and port

monitor

– Try different speeds, otherwise you will see garbled data

• Try again (anything )

| PV204: Hardware Security Modules

FileExamples … DigitalReadSerial

• Original code prints state of button to serial port

• Run Serial monitor

– Will automatically restart Arduino board

– Observe data as print out

• Modify to print out loop counter (instead of button)

– Small red LED should blink during data transfer

• You should now be able to upload application and

see data via serial port

• You may use any other application to capture data
– https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial

| PV204: Hardware Security Modules

https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial
https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial
https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial

RF NETWORKING WITH JEELIB

| PV204: Hardware Security Modules

JeeLib library

• Provides support for JeeNode radio module

• Download Jeelib-master.lib

– https://github.com/jcw/jeelib/archive/master.zip

• Documentation: http://jeelabs.org/pub/docs/jeelib/index.html

• Add library into Arduino IDE

– Sketch  Include library  Add .ZIP library

– Examples are now available: Examples  jeelib-master

| PV204: Hardware Security Modules

https://github.com/jcw/jeelib/archive/master.zip
http://jeelabs.org/pub/docs/jeelib/index.html

RF12 packet structure

• C = CTL, D = DST, A = ACK, 5-bit node ID

– A bit (ACK) – indicates if sender wants to get ACK back

– D bit (DST) – indicates if node ID bits specify destination or source node

– C bit (CTL) – 1 if packet is ACK (and A must be 0)

• To send packet only to node with nodeID
– rf12_sendNow(RF12_HDR_DST | nodeID, &data, dataLen);

• Warning: radio is always broadcast in nature, filtering only in driver!

• http://jeelabs.org/2011/06/09/rf12-packet-format-and-design/index.html

• http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html

 | PV204: Hardware Security Modules

Values set/visible via

(rf12_send, rf12_recv)

http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html
http://jeelabs.org/2011/06/10/rf12-broadcasts-and-acks/index.html

| PV204: Hardware Security Modules

#include <JeeLib.h>

const byte LED = 9;
byte counter;

// turn the on-board LED on or off

static void led (bool on) {

 pinMode(LED, OUTPUT);
 digitalWrite(LED, on ? 0 : 1); // inverted logic

}

void setup () {

 // this is node 1 in net group 100 on the 868 MHz band

 rf12_initialize(1, RF12_868MHZ, 100);
}

void loop () {

 led(true);

 // actual packet send: broadcast to all, current counter, 1 byte long

 rf12_sendNow(0, &counter, 1);
 rf12_sendWait(1);

 led(false);

 // increment the counter (it'll wrap from 255 to 0)

 ++counter;
 // let one second pass before sending out another packet

 delay(1000);
}

test1.ino

rf12_sendNow(RF12_HDR_DST | nodeID, …);

rf12_sendNow(RF12_HDR_DST | nodeID | RF12_HDR_ACK|, …);

FileExamplesjeelib-masterDINJ  test1

Basic beacon application

• Select FileExamplesjeelib-masterDINJ test1

– Compile, upload

– Application sends packet with counter every second

• Try to change your node ID (1..31 possible)

– rf12_initialize(1, RF12_868MHZ, 100);

– 31 is special ID for promiscuous mode (receives everything)

• Try to change your group

– rf12_initialize(1, RF12_868MHZ, 100);

– You will hear only messages within your group

 | PV204: Hardware Security Modules

Basic beacon application – send packet

• rf12_sendNow(T, &counter, 1);

– T = 0 is broadcast

– T = 1..31 concrete target node ID

– sendNow takes pointer to data and its length (&counter, 1B)

• Busy waiting until send can be done (free channel check)

• rf12_sendWait(1);

– Waits until a packet send is done

• Maximum length of payload data RF12_MAXDATA

– 66 bytes, but don’t push it too close (unreliable)

– Stay below 60

| PV204: Hardware Security Modules

| PV204: Hardware Security Modules

#include <Ports.h>

#include <RF12.h>

byte saveHdr, saveLen, saveData[RF12_MAXDATA];
word saveCrc;

void setup () {

 Serial.begin(57600);
 Serial.println("\n[sniffer] 868 MHz group 100");
 rf12_initialize(31, RF12_868MHZ, 100);
}

void printPacket(byte saveHdr, byte saveLen, byte saveData[RF12_MAXDATA]){
// … nice print of packet via Serial port, see full code at IS

}
void loop () {

 if (rf12_recvDone()) {

 // quickly save a copy of all volatile data

 saveLen = rf12_len;
 saveCrc = rf12_crc;
 saveHdr = rf12_hdr;
 if (saveLen <= sizeof(saveData)) { memcpy(saveData, (const void*) rf12_data, saveLen); }

 else { memset(saveData, 0xff, sizeof(saveData));}

 rf12_recvDone(); // release lock on info for next reception

 if (saveCrc != 0) {

 Serial.print("CRC error #");
 Serial.println(saveLen, DEC);
 } else { printPacket(saveHdr, saveLen, saveData);}

 }
}

Sniffer.ino

Sniffer application

• Download sniffer code from IS (sniffer.ino)

– FileNew, Paste sniffer code

– Compile and upload

• App listens for RF12 packets and prints it via Serial port

– rf12_initialize(31, RF12_868MHZ, 100);

– rf12_recvDone() – true if packet received

– rf12_recvDone()

– rf12_len, rf12_crc, rf12_hdr, rf12_data

• Global variables set by radio module

– Local copy of global variables (rf12_len  saveLen) made to:

• Prevent overwrite by another packet

• Enable radio module to start receiving next packet

| PV204: Hardware Security Modules

Basic transmission: one hop

• Pair together with one other colleague

– Write app that will blink LED X-times based on value inside

received packet

• First node is beacon sending counter

– Send is unicast to particular second node (not broadcast)

– Use different group (than 100)

• Second node – receiver blinking counter % 5

– Use sniffer application as basic, change nodeID

– rf12_initialize(17, RF12_868MHZ, group);

– Don’t forget to set LED output pin

• How far you can transmit? (try hall space)
| PV204: Hardware Security Modules

Packet acknowledgements

• Send packets can frequrntly get lost (noise, collision) or missed by

sender (performing other task)

– How can be sender sure that the packet was delivered?

– Sometimes does not care (broadcast or “UDP”-like transmission)

• If care, thank special message back from receiver can be

expected/required (ACK)

– Create packet for target node with bit flag that (A)CK = 1

– Receiver reply with special ACK packet upon successful reception

• Same header as received packet, but with (A)CK bit = 0 and (C)TL=1

–

| PV204: Hardware Security Modules

byte createHeader(boolean requireACK, byte destID){

 byte header = requireACK ? RF12_HDR_ACK : 0;
 header |= RF12_HDR_DST | destID;
 return header;
}

if(RF12_WANTS_ACK){

 rf12_sendStart(RF12_ACK_REPLY,0,0);
}

http://jeelabs.org/2010/12/11/rf12-acknowledgements/

Homework – Network sniffing

• Identify radio group which is being used

– Automatic or manual trials

– Possible range 1 – 200

• Create sniffer node that will capture as many packets as

possible from single network run

– Modify sniffer code from study materials

– 10 minutes transmission, 5 minutes silence (then repeat)

– Try to capture packets from multiple runs and compare

• Submit before: 18.4. 23:59

18 | PV204 Security technologies - Labs

Homework – Network sniffing

Submit 3 files:

• Scanner application (if used)

• Modified sniffer application

• Description of solution (max 1xA4)

– How network properties were found

– How was traffic logged

– How were packets analyzed

• Plain .txt file with captured traffic (example next slide)

– Will be evaluated automatically, the structure MUST match exactly

– Capture as many unique messages as possible

19 | PV204 Security technologies - Labs

Example .txt file you should submit

#440#time year

#458#random person

#464#secret break

| PV204: Hardware Security Modules

