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These are draft (work in progress) lecture notes for PB152. It is

expected to be gradually illed in, hopefully before the semester

ends. For now, it is mostly a printable version of the slides.

Organisation

• lectures, with an optional seminar

• written exam at the end

− multiple choice

− free-form questions

• 1 online test mid-term, 1 before exam

− mainly training for the exam proper

The written examwill consist of two parts, a multiple-choice test

(with exactly one correct answer on each question) and a free-

form question. Additionally, you will be required to pass a mid-

term test with the same pool of multiple-choice questions. The

question pool is known in advance: both the entiremid-term and

the multiple-choice part of the inal exam will contain questions

that are listed in these notes (on the last slide in each lecture).

The possible answers will be, however, not known in advance,

andwill be randomized for each instance of the test. Do not try to

learn the correct answer by its wording: you need to understand

the questions and the correct answers to pass the test.

Seminars

• a separate, optional course (code PB152cv)

• covers operating systems from a practical perspective

• get your hands on the things we’ll talk about here

• offers additional practice with C programming

The seminar is a goodway to gain some practical experiencewith

operating systems. Itwillmainly focuson interactionof programs

with OS services, but will also cover user-level issues like virtual-

isation, OS installation and shell scripting.

Mid-Term and End-Term Tests

• 24 hours to complete, 2 attempts possible

• 10 questions, picked from review questions

− mid-term irst 24, end-term second 24

• you need to pass either mid-term or end-term

• 7 out of 10 required for mid-term, 8 of 10 for end-term

• preliminary mid-term date: 11th of April, 6pm

Even though passing the mid-term/end-term online tests is easy

(and it is easy for you to collaborate), I strongly suggest that you

use theopportunity to evaluate yourknowledge for yourself, hon-

estly. The same questions will appear on the exam, and this time,

it won’t be possible to consult the slides, the internet or your

friends. Also, you will be only allowed 1 mistake (out of 10 ques-

tions). Use the few opportunities to practice for the exam wisely.

Study Materials

• this course is undergoing a major update

• lecture slides will be in the IS

− they will be added as we go

• you can also use slides from previous years

− they are already in study materials

− but: not everything is covered in those

You are reading the lecture notes for the course PB152 Operating

Systems. This is a supplementary resource based on the lecture

slides, but with additional details that would not it into the slide

format. These lecture notes should be self-contained in the sense

that they only rely on knowledge you have from other courses,

like PB150 Computer Systems (or PB151) or PB071 Principles of

Low-Level programming. Likewise, being familiarwith the topics

covered in these lecture notes is suf icient to pass the exam.

Books

• there are a few good OS books

• you are encouraged to get and read them

• A. Tanenbaum: Modern Operating Systems

• A. Silberschatz et al.: Operating System Concepts

• L. Skočovský: Principy a problémy OS UNIX

• W. Stallings: Operating Systems, Internals and Design

• many others, feel free to explore

The books mentioned here usually cover a lot more ground that

is possible to include in a single-semester course. The study of

operating systems is, however, very important inmany sub- ields

of computer science, and also in most programming disciplines.

Spending extra time on this topic will likely be well worth your

time.

Topics

1. Anatomy of an OS

2. System Libraries and APIs

3. The Kernel

4. File Systems

5. Basic Resources and Multiplexing

6. Concurrency and Locking

In the irst half of the semester, we will deal with the basic com-

ponents and abstractions used in general-purpose operating sys-

tems. The irst lecture will simply give an overview of the entire

OS and will attempt to give you an idea how those it together. In

the second lecture, we will cover the basic programming inter-

faces provided by the OS, provided mainly by system libraries.

Topics (cont’d)

7. Device Drivers

8. Network Stack

9. Command Interpreters & User Interfaces

10. Users and Permissions

11. Virtualisation & Containers

12. Special-Purpose Operating Systems

The second half of the semester will start with device drivers,

which form an important part of operating systems in general,

since theymediate communication between application software



and hardware peripherals connected to the computer. In a simi-

lar fashion, the network stack allows programs to communicate

with other computers (and software running on those other com-

puters) that are attached to a computer network.

Related Courses

• PB150/PB151 Computer Systems

• PB153 Operating Systems and their Interfaces

• PA150 Advanced OS Concepts

• PV062 File Structures

• PB071 Principles of Low-level programming

• PB173 Domain-speci ic Development in C/C++

There is a number of courses that overlap, provide prerequisite

knowledge or extend what you will learn here. The list above is

incomplete. The course PB153 is an alternative to this course.

Most students are expected to take PB071 in parallel with this

course, even thoughknowledge of Cwon’t be required for the the-

ory we cover. However, C basics will be needed for the optional

seminar (PB152cv).

Organisation of the Semester

• generally, one lecture = one topic

• there will be most likely 12 lectures

• a 50-minute review in the last lecture

• online mid-term in April

Semester Overview
This section gives a high-level overview of the topics that will be

covered in individual lectures.

2. System Libraries and APIs

• POSIX: Portable Operating System Interface

• UNIX: (almost) everything is a ile

• the least common denominator of programs: C

• user view: objects, archives, shared libraries

• compiler, linker

System libraries and their APIs provide the most direct access to

operating system services. In the second lecture, we will explore

howprogramsaccess those services andhow the system libraries

tie into the C programming language. Wewill also deal with basic

artifacts thatmake up programs: object iles, archive iles, shared

libraries and how those come about: how we go from a C source

ile all theway to an executable ile through compilation and link-

ing.

Throughout this lecture, we will use POSIX as our go-to source of

examples, since it is the operating system interface that is most

widely implemented. Moreover, there is abundance of documen-

tation and resources both online and of line.

3. The Kernel

• privileged CPU mode

• the boot process

• boundary enforcement

• kernel designs: micro, mono, exo,…

• system calls

In the third lecture, wewill focus on the kernel, arguably themost

important (and often the most complicated) part of an operating

system. We will start from the beginning, with the boot process:

how the kernel is loaded into memory, initialises the hardware

and starts the user-space components (that is, everything that is

not the kernel) of the operating system.

We will then talk about boundary enforcement: how the kernel

polices user processes so they cannot interfere with each other,

or with the underlying hardware devices. We will touch on how

this enforcementmakes it possible to allowmultiple users to share

a single computer without infringing on each other (or at least

limiting any such infringement).

Another topic of considerable interest will be how kernels are

designed and what is and what isn’t part of the kernel proper.

Wewill explore some of the trade-offs involved in the various de-

signs, especially with regards to security and correctness vs per-

formance.

Finally, we will look at the system call mechanism, which is how

the user-space communicates with the kernel, and requests var-

ious low-level operating system services.

4. File Systems

• why and how

• abstraction over shared block storage

• directory hierarchy

• everything is a ile revisited

• i-nodes, directories, hard & soft links

Next up are ile systems, which are a very widely used abstrac-

tion on top of persistent block storage, which is what hardware

storage devices provide. We will ask ourselves, irst of all, why

ilesystems are important andwhy they are so pervasively imple-

mented in operating systems, and then we will look at how they

work on the inside. In particular, we will explore the traditional

UNIX ilesystem, which offers important insights about the archi-

tecture of the operating system as a whole, and about important

aspects of the POSIX ile semantics.

5. Basic Resources and Multiplexing

• virtual memory, processes

• sharing CPUs & scheduling

• processes vs threads

• interrupts, clocks

One of the basic roles of the operating system is management of

various resources, starting with the most basic: the CPU cores

and the RAM. Since those resources are very important to every

process or program, we will spend the entire lecture on them.

In particular, we will look at the basic units of resource assign-

ment: threads for the CPU and processes for memory. We will

also look at the mechanisms used by the kernel to implement as-

signment and protection of those resources, namely the virtual

memory subsystem and the scheduler.

6. Concurrency and Locking

• inter-process communication

• accessing shared resources

• mutual exclusion



• deadlocks and deadlock prevention

Scheduling and slicing of CPU time is closely related to another

important topic that pervades operating system design: concur-

rency. We will take a high-level, introductory look at this topic,

since the details are often complicated, architecture-speci ic and

require deep understanding of both hardware (SMP, cache hier-

archies) and of kernels.

7. Device Drivers

• user vs kernel drivers

• interrupts &c.

• GPU

• PCI &c.

• block storage

• network devices, wi i

• USB

• bluetooth

8. Network Stack

• TCP/IP

• name resolution

• socket APIs

• irewalls and packet ilters

• network ile systems

9. Command Interpreters & User Interfaces

• interactive systems

• history: consoles and terminals

• text-based terminals, RS-232

• bash and other Bourne-style shells, POSIX

• graphical: X11, Wayland, OS X, Windows, Android, iOS

10. Users and Permissions

• multi-user systems

• isolation, ownership

• ile system permissions

• capabilities

11. Virtualisation & Containers

• resource multiplexing redux

• isolation redux

• multiple kernels on a single system

• type 1 and type 2 hypervisors

• virtio

12. Special-Purpose Operating Systems

• general-purpose vs special-purpose

• embedded systems

• real-time systems

• high-assurance systems (seL4)

Throughoutmost of the course,wewill have talkedabout general-

purpose operating systems: those that run on personal comput-

ers and servers. The last lecture will be dedicated to more spe-

cialised systems: those that run in washing machines, on satel-

lites oron theMars rovers. Wewill alsobrie ly coverhigh-assurance

systems, which focus on extremely high reliability and/or secu-

rity.

Part 1: Anatomy of an OS

In the irst lecture, we will irst pose the question “what is an op-

erating system” and give some short, but largely unsatisfactory

answers. Since anoperating system is a complex system, it is built

from a number of components. Each of those components is de-

scribedmore easily than the entire operating system, and for this

reason, wewill attempt to understand an operating system as the

sum of its parts.

Lecture Overview

1. Components

2. Interfaces

3. Classi ication

After talking aboutwhat is anoperating system,wewill givemore

details about its components and afterwards move on to the in-

terfaces between those components. Finally, we will look at clas-

sifying operating systems: this is another angle that could help

us pin down what an operating system is.

What is an OS?

• the software that makes the hardware tick

• and makes other software easier to write

Also

• catch-all phrase for low-level software

• an abstraction layer over the machine

• but the boundaries are not always clear

Our irst (very approximate) attempt at de ining an OS is via its

responsibilities towards hardware. Since it sits between hard-

ware and the rest of software, in some sense, it is what makes

the hardware work. Modern hardware alone is rarely capable of

achieving anything useful on its own. It needs to be programmed,

and the basic layer of programming is provided by the operating

system.

What is not (part of) an OS?

• irmware: (very) low level software

− much more hardware-speci ic than an OS

− often executes on auxiliary processors

• application software

− runs on top of an operating system

− this is what you got the computer for

− eg. games, spreadsheets, photo editing,…

One approach to understand what is an operating system could

be to look at things that are related, but are not an operating sys-

tem, nor a part of one. There is one additional software-ish layer



below the operating system, usually known as irmware. In a typ-

ical computer, many pieces of irmware are present, but most of

them execute on auxiliary processors – e.g. those in a WiFi card,

or in the graphics subsystem, in the hard drive and so on. In con-

trast, the operating system runs on the main processor. There

is one piece of irmware that typically runs on the main CPU: on

older systems, it’s known as BIOS, onmodern systems it is simply

known as “the irmware”.

In the other direction, on top of an operating system, there is a

whole bunch of application software. While some software of this

type might be bundledwith an operating system, it is not, strictly

speaking, a part of it. Application software is the programs that

you use to get things done, like text editors, word processors, but

also programming IDEs (integrated development environment),

computer games or web applications (do I say Facebook?). And

so on and so forth.

What does an OS do?

• interact with the user

• manage and multiplex hardware

• manage other software

• organises and manages data

• provides services for other programs

• enforces security

The tasks andduties that theoperating systemperformsare rather

varied. On one side, it takes care of the basic interaction with

the user: a command interpreter, a graphical user interface or

batch-mode job processing systemwith input provided as punch

cards. Then there is the hardware, which needs to be managed

and shared between individual programs and users. Installation

of additional (application) software is another of the responsibil-

ities of an operating system.

Organisation andmanagement of data is amajor task aswell: this

is what ile systems do. This again includes access control and

sharing amongusers of theunderlyinghardwarewhich stores the

actual bits and bytes.

Finally, there is the third side that the operating system inter-

faces with: the application software. In addition to the user and

the hardware, application programs need operating services to

be able to perform their function. Among other things, they need

to interact with users and use hardware resources, after all. It is

the operating system that is in charge of both.

Part 1.1: Components

What is an OS made of?

• the kernel

• system libraries

• system daemons / services

• user interface

• system utilities

Basically every OS has those.

Operating systems are made of a number of components, some

more fundamental thanothers. Basically all of the abovearepresent,

in some form, in any operating system (excluding perhaps the

smallest, most special-purpose systems). The kernel is the most

fundamental and lowest layer of an operating system, while sys-

tem libraries sit on top and use the services of the kernel. They

also broker the services of the kernel to user-level programs and

provide additional services (which do not need to be part of the

kernel itself).

The remaining layers are mostly made of programs in the usual

sense: other than being a part of the operating systems, there

isn’t much to distinguish them from user programs. The irst cat-

egory of such programs are system daemons or system services,

whichare typically long-runningprogramswhich react to requests

or perform maintenance tasks.

The user interface is slightly more complicated, in the sense that

it consists ofmultiple sub-components that alignwith other parts

here. The bullet point here summarises those parts of the user

interface that are more or less standard programs, like the com-

mand interpreter.

The Kernel

• lowest level of an operating system

• executes in privileged mode

• manages all the other software

− including other OS components

• enforces isolation and security

• provides low-level services to programs

The kernel is the lowest and arguably the most important part of

an operating system. Its main distinction is that it executes in a

special processormode (oftenknownasprivileged,monitoror su-

pervisormode). The main tasks of the kernel are management of

basic hardware resources (processor, memory) and speci ically

providing those resources to other software running on the com-

puter. This includes the rest of the operating system.

Another crucial task is enforcement of isolation and security. The

hardware typically providesmeans to isolate individual programs

from each other, but it is up to the software (OS kernel) to set up

those hardware facilities correctly and effectively.

Finaly, the kernel often provides the lowest level of various ser-

vices to the upper layers. Those are provided mainly in the form

of system calls, and mainly relate (directly or indirectly) to hard-

ware access.

System Libraries

• form a layer above the OS kernel

• provide higher-level services

− use kernel services behind the scenes

− easier to use than the kernel interface

• typical example: libc

− provides C functions like printf

− also known as msvcrt on Windows

System Daemons

• programs that run in the background

• they either directly provide services

− but daemons are different from libraries

− we will learn more in later lectures

• or perform maintenance or periodic tasks



• or perform tasks requested by the kernel

User Interface

• mediates user-computer interaction

• the main shell is typically part of the OS

− command line on UNIX or DOS

− graphical interfaces with a desktop and windows

− but also buttons on your microwave oven

• also building blocks for application UI

− buttons, tabs, text rendering, OpenGL…

− provided by system libraries and/or daemons

System Utilities

• small programs required for OS-related tasks

• e.g. system con iguration

− things like the registry editor on Windows

− or simple text editors

• ilesystem maintenance, daemon management,…

− programs like ls/dir or newfs or fdisk

• also bigger programs, like ile managers

Optional Components

• bundled application software

− web browser, media player,…

• (3rd-party) software management

• a programming environment

− eg. a C compiler & linker

− C header iles &c.

• source code

Part 1.2: Interfaces

Programming Interface

• kernel provides system calls

− ABI: Application Binary Interface

− de ined in terms of machine instructions

• system libraries provide APIs

− Application Programming Interface

− symbolic / high-level interfaces

− typically de ined in terms of C functions

− system calls also available as an API

Message Passing

• APIs do not always come as C functions

• message-passing interfaces are possible

− based on inter-process communication

− possible even across networks

• form of API often provided by system daemons

− may be also wrapped by C APIs

Portability

• some OS tasks require close HW cooperation

− virtual memory and CPU setup

− platform-speci ic device drivers

• but many do not

− scheduling algorithms

− memory allocation

− all sorts of management

• porting: changing a program to run in a new environ-

ment

− for an OS, typically new hardware

Hardware Platform

• CPU instruction set (ISA)

• busses, IO controllers

− PCI, USB, Ethernet,…

• irmware, power management

Examples

• x86 (ISA) – PC (platform)

• ARM – Snapdragon, i.MX 6,…

• m68k – Amiga, Atari,…

Platform & Architecture Portability

• an OS typically supports many platforms

− Android on many different ARM SoC’s

• quite often also different CPU ISAs

− long tradition in UNIX-style systems

− NetBSD runs on 15 different ISAs

− many of them comprise 6+ different platforms

• special-purpose systems are usually less portable

Code Re-Use

• it makes a lot of sense to re-use code

• majority of OS code is HW-independent

• this was not always the case

− pioneered by UNIX, which was written in C

− typical OS of the time was in machine language

− porting was basically “writing again”

Application Portability

• applications care more about the OS than about HW

− apps are written in high-level languages

− and use system libraries extensively

• it is enough to port the OS to new/different HW

− most applications can be simply recompiled

• still a major hurdle (cf. Itanium)

Application Portability (2)

• same application can often run on many OSes

• especially within the POSIX family

• but same app can run on Windows, macOS, UNIX,…

− Java, Qt (C++)

− web applications (HTML, JavaScript)

• many systems provide the same set of services

− differences are mostly in programming interfaces

− high-level libraries and languages can hide those



Abstraction

• instruction sets abstract over CPU details

• compilers abstract over instruction sets

• operating systems abstract over hardware

• portable runtimes abstract over operating systems

• applications sit on top of the abstractions

Abstraction Costs

• more complexity

• less ef iciency

• leaky abstractions

Abstraction Bene its

• easier to write and port software

• fewer constraints on HW evolution

Abstraction Trade-Offs

• powerful hardware allows more abstraction

• embedded or real-time systems not so much

− the OS is smaller & less portable

− same for applications

− more ef icient use of resources

Part 1.3: Classi ication

General-Purpose Operating Systems

• suitable for use in most situations

• lexible but complex and big

• run on both servers and clients

• cut down versions run on smartphones

• support variety of hardware

Themost important and interesting category is ‘general-purpose

operating systems’. This is the one that we will mostly talk about

in this course. The systems in this category are usually quite lex-

ible (so they can cover everything that people usually use com-

puters for) but, for the same reason, also quite complex. Often

the same operating system will be able to run on both so-called

‘server’ computers (those mainly sitting in data centres provid-

ing services to other computers remotely) and ‘client’ computers

– those that interact with users directly.

Likewise, the same operating system can, perhaps in a slimmed

down version, run on a smartphone, or a similar size- and power-

constrained device. All current major smartphone operating sys-

tems are of this type. Historically, there were a few more spe-

cialised phone operating systems, mainly because at that time,

phone hardware was considerably more constrained than it is

today. Nonetheless, an OS like Symbian, for instance, could con-

ceivably be used on personal computers assuming its hardware

support was extended.

Operating Systems: Examples

• Microsoft Windows

• Apple macOS & iOS

• Google Android

• Linux

• FreeBSD, OpenBSD

• MINIX

• many, many others

There is a whole bunch of operating systems, even of general-

purpose operating systems. While running the OS itself is not

the primary reason for getting a computer (application software

is), it does form an important part of user experience. Of course,

it also interfaces with computer hardware and with application

programs, and not all systems run on all computers and not all

applications run on all operating systems.

Special-Purpose Operating Systems

• embedded devices

− limited budget

− small, slow, power-constrained

− hard or impossible to update

• real-time systems

− must react to real-world events

− often safety-critical

− robots, autonomous cars, space probes,…

We have mentioned earlier, that general-purpose operating sys-

tems are usually large and complex. The smallest complete op-

erating systems (if they are not merely educational toys) start

around 100 thousand lines of code, but millions of lines is more

typical. It is not unheard of that an operating system contains

more than 10million lines of code. These amounts clearly repre-

sent thousands of man-years of work – writing your own operat-

ing system, solo, is not very realistic.

That said, special-purpose systems are often much smaller. They

usually only support far fewerhardwaredevices and theyprovide

simpler and less varied services to the ‘application’ software.

Size and Complexity

• operating systems are usually large and complex

• typically 100K and more lines of code

• 10+ million is quite possible

• many thousand man-years of work

• special-purpose systems are much smaller

Let’s recall that the kernel runs in privileged CPUmode. Any soft-

ware running in this mode is pretty much all-powerful and can

easily circumvent any access restrictions or security protections.

It is awell-known fact that themore code youhave, themore bugs

there are. Since bugs in the kernel can have far-fetching and cat-

astro ic consequences, it is imperative that there are as few as

possible. Evenmore importantly, device drivers often need hard-

ware access and the easiest (and sometimes only) way to achieve

that is by executing in kernel (privileged) mode.

As you may also know, device drivers are often of rather ques-

tionable quality: hardware vendors often consider those an after-

thought anddon’t pay toomuch attention to their software teams.

If thosedrivers thenexecute inkernelmode, this is a seriousprob-

lem. Different OS vendors employ different strategies to mitigate

this issue.

Accordingly, we would like to make kernels small and banish as

many drivers from the kernel as we could. It is, however, not an



easy (or even obviously right) thing to do. There are two main

design schools when it comes to kernel ‘size‘:

Kernel Revisited

• bugs in the kernel are very bad

− system crashes, data loss

− critical security problems

• bigger kernel means more bugs

• third-party drivers inside the kernel?

Monolithic Kernels

• lot of code in the kernel

• less abstraction, less isolation

• faster and more ef icient

Microkernels

• move as much as possible out of kernel

• more abstraction, more isolation

• slower and less ef icient

The monolithic kernel is an older and in some sense simpler de-

sign. A lot of code ends up in the kernel, which is not really a

problem until bugs happen. There is less abstraction involved in

this design, fewer interfaces and in general, fewer moving parts

for the same amount of functionality. Those traits then translate

to faster execution and more ef icient resource use. Such kernels

are calledmonolithic because everything that a traditional kernel

does is performed by a single (monolithic) piece of software.

The opposite of monolithic kernels are microkernels. The kernel

proper in such a system is the smallest possible subset of code

that must run in privileged mode. Everything that can be ban-

ished into user mode (of the processor) is. This design provides

a lot more isolation and requires more abstraction. The inter-

faces within different parts of the low-level OS services are more

complicated. However, subsystems are well isolated from each

other and faults do not propagate nearly as easily. However, op-

erating systems which use this kernel type run more slowly and

use resources less ef iciently.

Paradox?

• real-time & embedded systems often use microkernels

• isolation is good for reliability

• ef iciency also depends on the workload

− throughput vs latency

• real-time does not necessarily mean fast

Review Questions

1. What are the roles of an operating system?

2. What are the basic components of an OS?

3. What is an operating system kernel?

4. What is an Application Programming Interface?

Part 2: System Libraries and APIs

In this section, we will study the programming interfaces of op-

erating systems, irst in some generality, without a speci ic sys-

tem in mind. We will then go on to deal speci ically with the C-

language interface of POSIX systems.

Programming Interfaces

• kernel system call interface

• → system libraries / APIs←

• inter-process protocols

• command-line utilities (scripting)

In most operating systems, the lowest-level interface accessible

to application programs is the system call interface. It is, typically,

speci ied in terms of a machine-language-level protocol (that is,

an ABI), but usually also provided as a C API. This is the case for

POSIX-mandated system calls, but also on e.g. Windows NT sys-

tems.

Lecture Overview

1. The C Programming Language

2. System Libraries

− what is a library?

− header iles & libraries

3. Compiler & Linker

− object iles, executables

4. File-based APIs

In this lecture, we will start by reviewing (or perhaps introduc-

ing) the C programming language. Then we will move on to the

subject of libraries in general and system libraries in particular.

Wewill lookat how libraries enter theprogramcompilationprocess

andwhat other ingredients there are. Finally,wewill havea closer

look at a speci ic set of ile-based programming interfaces.

Sidenote: UNIX and POSIX

• we will mostly use those terms interchangeably

• it is a family of operating systems

− started in late 60s / early 70s

• POSIX is a speci ication

− a document describing what the OS should provide

− including programming interfaces

Wewill assume POSIX unless noted otherwise

Before we begin, it should be noted that throughout this course,

we will use POSIX and UNIX systems as examples. If a speci ic

function or interface is mentioned without further quali ication,

it is assumed to be speci ied by POSIX and implemented by UNIX-

like systems.

Part 2.1: The C Programming Language

The C programming language is one of the most commonly used

languages in operating system implementations. It is also the

subject of PB071, and at this point, you should be already familiar

with its basic syntax. Likewise, you are expected to understand



the concept of a function and other basic building blocks of pro-

grams. Even if you don’t know the speci ic C syntax, the idea is

very similar to any other programming language youmight know.

Programming Languages

• there are many different languages

− C, C++, Java, C#,…

− Python, Perl, Ruby,…

− ML, Haskell, Agda,…

• but C has a special place in most OSes

Differentprogramming languageshavedifferent use-cases inmind,

and exist at different levels of abstraction. Most languages other

than C that you will meet, both at the university and in practice,

are so-calledhigh-level languages. There are quite a few language

families, and there is a number of higher-level languages derived

from C, like C++, Java or C#.

For the purposes of this course, we will mostly deal with plain C,

andwith POSIX (Bourne-style) shell, which can also be thought of

as a programming language.

C: The Least Common Denominator

• except for assembly, C is the “bare minimum”

• you can almost think of C as portable assembly

• it is very easy to call C functions

• and to use C data structures

You can use C libraries in almost every language

You could think of C as a ‘portable assembler’, with a few minor

bells andwhistles in form of the standard library. Apart from this

library of basic and widely useful subroutines, C provides: ab-

straction from machine opcodes (with human-friendly in ix op-

erator syntax), structured control low and automatic local vari-

ables as its main advantages over assembly.

In particular the abstraction over the target processor and its in-

struction set proved to be instrumental in early operating sys-

tems, and helped establish the idea that an operating system is

an entity separate from the hardware.

On top of that, C is also popular as a systems programming lan-

guage because almost any program, regardless of what language

it is written in, can quite easily call C functions and use C data

structures.

The Language of Operating Systems

• many (most) kernels are written in C

• this usually extends to system libraries

• and sometimes to almost the entire OS

• non-C operating systems provide C APIs

Consequently, C has essentially become a ‘language of operating

systems’: most kernels and even the bulk of most operating sys-

tems is written in C. Each operating system (apart from perhaps

a few exceptions) provides a C standard library in some form and

can execute programs written in C (and more importantly, pro-

vide them with essential services).

Part 2.2: System Libraries

(System) Libraries

• mainly C functions and data types

• interfaces de ined in header iles

• de initions provided in libraries

− static libraries (archives): libc.a

− shared (dynamic) libraries: libc.so

• on Windows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

In this course, when we talk about libraries, we will mean C li-

braries speci ically. Not Python or Haskell modules, which are

quite different. That said, a typical C library has basically two

parts, one is header iles which provide a description of the in-

terface (the API) and the compiled library code (an archive or a

shared library).

The interface (as described in header iles) consists of functions

(for which, the types of arguments and the type of return value

are given in aheader ile) andof data structures. Thebodies of the

functions (their implementation) is what makes up the compiled

library code. To illustrate:

Declaration: what but not how

int sum( int a, int b );

De inition: how is the operation done?

int sum( int a, int b )

{

return a + b;

}

The irst example on this slide is a declaration: it tells us the name

of a function, its inputs and its output. The second example is

called a de inition (or sometimes a body) of the function and con-

tains the operations to be performed when the function is called.

Library Files

• /usr/lib on most Unices

− may be mixed with application libraries

− especially on Linux-derived systems

− also /usr/local/lib for user/app libraries

• on Windows: C:\Windows\System32

− user libraries often bundled with programs

The machine code that makes up the library (i.e. the code that

was generated from function de initions) resides in iles. Those

iles are what we usually call ‘libraries’ and they usually live in

a speci ic ilesystem location. On most UNIX system, those loca-

tions are /usr/lib and possibly /lib for system libraries and

/usr/local/lib for user or application libraries. On certain sys-

tems (especially Linux-based), user libraries are mixed with sys-

tem libraries and they are all stored in /usr/lib.



OnWindows, the situation is similar in that both system and ap-

plication libraries are installed in a common location. Addition-

ally, on Windows (and on macOS), shared libraries are often in-

stalled alongside the application.

Static Libraries

• stored in libfile.a, or file.lib (Windows)

• only needed for compiling (linking) programs

• the code is copied into the executable

• the resulting executable is also called static

− and is easier to work with for the OS

− but also more wasteful

Static libraries are only used when building executables and are

not required fornormal operationof the system. Therefore,many

operating systems do not install them by default – they have to

be installed separately as part of the developer kit. When a static

library is linked into a program, this basically entails copying the

machine code from the library into the inal executable.

In this scenario, after linking is performed, the library is no longer

needed since the executable contains all the code required for

its execution. For system libraries, this means that the code that

comes from the library is present on the system in many copies,

once in each program that uses the library. This is somewhat al-

leviated by linkers only copying the parts of the library that are

actually needed by the program, but there is still substantial du-

plication.

The duplication arising this way does not only affect the ile sys-

tem, but also memory (RAM) when those programs are loaded –

multiple copies of the same function will be loaded into memory

when such programs are executed.

Shared (Dynamic) Libraries

• required for running programs

• linking is done at execution time

• less code duplication

• can be upgraded separately

• but: dependency problems

The other approach to libraries is dynamic, or shared libraries. In

this case, the library is required to actually run the program: the

linker does not copy the machine code from the library into the

executable. Instead, it only notes that the library must be loaded

alongside with the program when the latter is executed..

This reduces code duplication, both on disk and in memory. It

also means that the library can be updated separately from the

application. This often makes updates easier, especially in case

a library is used by many programs and is, for example, found to

contain a security problem. In a static library, this would mean

that each program that uses the library needs to be updated. A

shared library can be replaced and the ixed code will be loaded

alongside programs as usual.

The downside is that it is dif icult to maintain binary compatibil-

ity – to ensure that programs that were built against one version

of the library also work with a later version. When this is vio-

lated, as often happens, people run into dependency problems

(also known as DLL hell on Windows).

Header Files

• on UNIX: /usr/include

• contains prototypes of C functions

• and de initions of C data structures

• required to compile C and C++ programs

Like static libraries, header iles are only required when building

programs, but not when using them. Header iles are fragments

of C source code, and on UNIX systems are traditionally stored

in /usr/include. User-installed header iles (i.e. not those pro-

videdby system libraries) liveunder/usr/local/include (though

again, on Linux-based systems user and systemheaders are often

intermixed in /usr/include).

Header Example 1 (from unistd.h)

int execv(char *, char **);

pid_t fork(void);

int pipe(int *);

ssize_t read(int, void *, size_t);

(and many more prototypes)

This is an excerpt from an actual system header ile, and declares

a few of the functions that comprise the POSIX C API.

Header Example 2 (from sys/time.h)

struct timeval

{

time_t tv_sec;

long tv_usec;

};

/* ... */

int gettimeofday(timeval *, timezone *);

int settimeofday(timeval *, timezone *);

The POSIX C Library

• libc – the C runtime library

• contains ISO C functions

− printf, fopen, fread

• and a number of POSIX functions

− open, read, gethostbyname,…

− C wrappers for system calls

System Calls: Numbers

• system calls are performed at machine level

• which syscall to perform is decided by a number

− e.g. SYS_write is 4 on OpenBSD

− numbers de ined by sys/syscall.h

− different for each OS

System Calls: the syscall function

• there is a C function called syscall



− prototype: int syscall( int number, ... )

• this implements the low-level syscall sequence

• it takes a syscall number and syscall parameters

− this is a bit like printf

− irst parameter decides what are the other parame-

ters

• (more about how syscall()works next week)

System Calls: Wrappers

• using syscall() directly is inconvenient

• libc has a function for each system call

− SYS_write→int write( int, char *, size_t

)

− SYS_open→ int open( char *, int )

− and so on and so forth

• those wrappers use syscall() internally

Portability

• libraries provide an abstraction layer over OS internals

• they are responsible for application portability

− along with standardised ilesystem locations

− and user-space utilities to some degree

• higher-level languages rely on system libraries

NeXT and Objective C

• the NeXT OS was built around Objective C

• system libraries had ObjC APIs

• in API terms, ObjC is very different from C

− also very different from C++

− traditional OOP features (like Smalltalk)

• this has been partly inherited into macOS

− evolving into Swift

System Libraries: UNIX

• the math library libm

− implements math functions like sin and exp

• thread library libpthread

• terminal access: libcurses

• cryptography: libcrypto (OpenSSL)

• the C++ standard library libstdc++ or libc++

System Libraries: Windows

• msvcrt.dll – the ISO C functions

• kernel32.dll – basic OS APIs

• gdi32.dll – Graphics Device Interface

• user32.dll – standard GUI elements

Documentation

• manual pages on UNIX

− try e.g. man 2 write on aisa.fi.muni.cz

− section 2: system calls

− section 3: library functions (man 3 printf)

• MSDN for Windows

− https://msdn.microsoft.com

• you can learn a lot from those sources

Part 2.3: Compiler & Linker

C Compiler

• many POSIX systems ship with a C compiler

• the compiler takes a C source ile as input

− a text ile with a .c suf ix

• and produces an object ile as its output

− binary ile with machine code in it

− but cannot be directly executed

Object Files

• contain native machine (executable) code

• along with static data

− e.g. string literals used in the program

• possibly split into a number of sections

− .text, .rodata, .data and so on

• and metadata

− list of symbols (functionnames) and their addresses

Object File Formats

• a.out – earliest UNIX object format

• COFF – Common Object File Format

− adds support for sections over a.out

• PE – Portable Executable (MSWindows)

• Mach-O – Mach Microkernel Executable (macOS)

• ELF–Executable andLinkable Format (allmodernUnices)

Archives (Static Libraries)

• static libraries on UNIX are called archives

• this is why they get the .a suf ix

• they are like a zip ile full of object iles

• plus a table of symbols (function names)

Linker

• object iles are incomplete

• they can refer to symbols that they do not de ine

− the de initions can be in libraries

− or in other object iles

• a linker puts multiple object iles together

− to produce a single executable

− or maybe a shared library

Symbols vs Addresses

• we use symbolic names to call functions &c.

• but the callmachine instruction needs an address

• the executable will eventually live in memory

• data and instructions need to be given addresses

• what a linker does is assign those addresses

Resolving Symbols

• the linker processes one object ile at a time



• it maintains a symbol table

− mapping symbols (names) to addresses

− dynamically updated as more objects are processed

• objects can only use symbols already in the table

• resolving symbols = inding their addresses

Executable

• inished image of a program to be executed

• usually in the same format as object iles

• but already complete, with symbols resolved

− but: may use shared libraries

− in that case, some symbols remain unresolved

Shared Libraries

• each shared library only needs to be in memory once

• shared libraries use symbolic names (like object iles)

• there is a “mini linker” in the OS to resolve those names

− usually known as a runtime linker

− resolving = inding the addresses

• shared libraries can use other shared libraries

− they can form a DAG (Directed Acyclic Graph)

Addresses Revisited

• when you run a program, it is loaded into memory

• parts of theprogramrefer to other parts of theprogram

− thismeans theyneed toknowwhere itwill be loaded

− this is a responsibility of the linker

• shared libraries use position-independent code

− works regardless of the base address it is loaded at

− we won’t go into detail on how this is achieved

Compiler, Linker &c.

• the C compiler is usually called cc

• the linker is known as ld

• the archive (static library) manager is ar

• the runtime linker is often known as ld.so

Part 2.4: File-Based APIs

Everything is a File

• part of the UNIX design philosophy

• directories are iles

• devices are iles

• pipes are iles

• network connections are (almost) iles

Why is Everything a File

• re-use the comprehensive ile system API

• re-use existing ile-based command-line tools

• bugs are bad simplicity is good

• want to print? cat file.txt > /dev/ulpt0

− (reality is a little more complex)

What is a Filesystem?

• a set of iles and directories

• usually lives on a single block device

− but may also be virtual

• directories and iles form a tree

− directories are internal nodes

− iles are leaf nodes

File Paths

• ilesystems use paths to point at iles

• a string with / as a directory delimiter

− the delimiter is \ on Windows

• a leading / indicates the ilesystem root

• e.g. /usr/include

The File Hierarchy

/

usrvarhome

include lib

unistd.hstdio.h libc.a libm.a

xrockai

The Role of Files and Filesystems

• very central in Plan9

• central in most UNIX systems

− cf. Linux pseudo- ilesystems

− /proc provides info about all processes

− /sys gives info about the kernel and devices

• somewhat reduced in Windows

• quite suppressed in Android (and more on iOS)

The Filesystem API

• you open a ile (using the open() syscall)

• you can read() and write() data

• you close() the ile when you are done

• you can rename() and unlink() iles

• you can use mkdir() to create directories

File Descriptors

• the kernel keeps a table of open iles

• the ile descriptor is an index into this table

• you do everything using ile descriptors

• non-Unix systems have similar concepts

− descriptors are called handles on Windows

Regular iles

• these contain sequential data (bytes)

• may have inner structure but the OS does not care

• there is metadata attached to iles

− like when were they last modi ied



− who can and who cannot access the ile

• you read() and write() iles

Directories

• a list of iles and other directories

− internal nodes of the ilesystem tree

− directories give names to iles

• can be opened just like iles

− but read() and write() is not allowed

− iles are created with open() or creat()

− directories with mkdir()

− directory listing with opendir() and readdir()

Mounts

• UNIX joins all ile systems into a single hierarchy

• the root of one ilesystem becomes a directory in an-

other

− this is called a mount point

• Windows uses drive letters instead (C:, D: &c.)

Devices

• block and character devices are (special) iles

• block devices are accessed one block at a time

− a typical block device would be a disk

− includes USB mass storage, lash storage, etc

− you can create a ile system on a block device

• character devices are more like normal iles

− terminals, tapes, serial ports, audio devices

Pipes

• pipes are a simple communication device

• one program can write() data to the pipe

• another program can read() that same data

• each end of the pipe gets a ile descriptor

• a pipe can live in the ilesystem (named pipe)

Sockets

• the socket API comes from early BSD Unix

• socket represents a (possible) network connection

• sockets are more complicated than normal iles

− establishing connections is hard

− messages get lost much more often than ile data

• you get a ile descriptor for an open socket

• you can read() and write() to sockets

Socket Types

• sockets can be internet or unix domain

− internet sockets connect to other computers

− Unix sockets live in the ilesystem

• sockets can be stream or datagram

− stream sockets are like iles

− you can write a continuous stream of data

− datagram sockets can send individual messages

Review Questions

5. What is a shared (dynamic) library?

6. What does a linker do?

7. What is a symbol in an object ile?

8. What is a ile descriptor?

Part 3: The Kernel

This lecture is about the kernel, the lowest layer of an operating

system. It will be in 5 parts:

Lecture Overview

1. privileged mode

2. booting

3. kernel architecture

4. system calls

5. kernel-provided services

First, we will look at processor modes and how they mesh with

the layering of the operating system. Wewill move on to the boot

process, because it somewhat illustrates the relationshipbetween

the kernel and other components of the operating system, and

also between the irmware and the kernel. We will look at more

detail at kernel architecture: things that we already hinted at in

previous lectures, and will also look at exokernels and uniker-

nels, in addition to the architectureswe already know (micro and

monolithic kernels).

The fourth part will focus on system calls and their binary inter-

face – i.e. how system calls are actually implemented at the ma-

chine level. This is closely related to the irst part of the lecture

about processor modes, and builds on the knowledge we gained

last week about how system calls look at the C level.

Finally, we will look at what are the services that kernels provide

to the rest of the operating system,what are their responsibilities

andwewill also lookmore closely at howmicrokernel and hybrid

operating systems work.

Reminder: Software Layering

• → the kernel←

• system libraries

• system services / daemons

• utilities

• application software

Part 3.1: Privileged Mode

CPU Modes

• CPUsprovide aprivileged (supervisor) andausermode

• this is the case with all modern general-purpose CPUs

− not necessarily with micro-controllers

• x86 provides 4 distinct privilege levels

− most systems only use ring 0 and ring 3

− Xen paravirtualisation uses ring 1 for guest kernels



There is a number of operations that only programs running in

supervisormode canperform. This allowskernels to enforcebound-

aries betweenuser programs. Sometimes, there are intermediate

privilege levels, which allow iner-grained layering of the operat-

ing system, for instance, drivers can run in a less privileged level

than the ‘core’ of the kernel, providing a level of protection for

the kernel from its own device drivers. Youmight remember that

device drivers are the most problematic part of any kernel.

In addition todevicedrivers,multi-layerprivilege systems inCPUs

can be used in certain virtualisation systems. More about this to-

wards the end of the semester.

Privileged Mode

• many operations are restricted in user mode

− this is how user programs are executed

− also most of the operating system

• software running in privilegedmode can do ~anything

− most importantly it can program the MMU

− the kernel runs in this mode

The kernel executes in privileged mode of the processor. In this

mode, the software is allowed to do anything that’s possible. In

particular, it can (re)programthememorymanagementunit (MMU,

see next slide). Since MMU is how program separation is imple-

mented, code executing in privileged mode is allowed to change

the memory of any program running on the computer. This ex-

plains why we want to reduce the amount of code running in su-

pervisor (privileged) mode to a minimum.

The way most operating systems operate, the kernel is the only

piece of software that is allowed to run in this mode. The code in

system libraries, daemons and so on, including application soft-

ware, is restricted to theusermodeof theprocessor. In thismode,

the MMU cannot be programmed, and the software can only do

what the MMU allows based on the instructions it got from the

kernel.

Memory Management Unit

• is a subsystem of the processor

• takes care of address translation

− user software uses virtual addresses

− the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

Let’s have a closer look at the MMU. Its primary role is address

translation. Addresses that programs refer to are virtual – they

do not correspond to ixed physical locations in memory chips.

Whenever you look at, say, a pointer in C code, that pointer’s nu-

meric value is an address in some virtual address space. The job

of theMMU is to translate that virtual address into a physical one

– which has a ixed relationship with some physical capacitor or

other electronic device that remembers information.

How those addresses are mapped is programmable: the kernel

can tell the MMU how the translation goes, by providing it with

translation tables. We will discuss how page tables work in a

short while; what is important now is that it is the job of the ker-

nel to build them and send them to the MMU.

Paging

• physical memory is split into frames

• virtual memory is split into pages

• pages and frames have the same size (usually 4KiB)

• frames are places, pages are the content

• page tables map between pages and frames

Before we get to virtual addresses, let’s have a look at the other

major use for the address translationmechanism, and that is pag-

ing. We do so, because it perhaps better illustrates how the MMU

works. In this viewpoint, we split physical memory (the physi-

cal address space) into frames, which are storage areas: places

where we can put data and retrieve it later. Think of them as

shelves in a bookcase.

The virtual address space is then split into pages: actual pieces

of data of some ixed size. Pages do not physically exist, they just

represent some bits that the program needs stored. You could

think of a page as a really big integer. Or you can think of pages

as a bunch of books that its into a single shelf.

The page table, then, is an catalog, or an address book of sorts.

Programs attach names to pages – the books – but the hardware

can only locate shelves. The job of the MMU is to take a name

of the book and ind the physical shelf where the book is stored.

Clearly, the operating system is free tomove the books around, as

long as it keeps the page table – the catalog – up to date. Remain-

ing software won’t know the difference.

Swapping Pages

• RAM used to be a scarce resource

• paging allows the OS to move pages out of RAM

− a page (content) can be written to disk

− and the frame can be used for another page

• not as important with contemporary hardware

• useful for memory mapping iles (cf. next lecture)

If we are short on shelf space, we may want to move some books

into storage. Then we can use the shelf we freed up for some

other books. However, hardware can only retrieve information

from shelves and therefore if a program asks for a book that is

currently in storage, the operating system must arrange things

so that it is moved from storage to a shelf before the program is

allowed to continue.

This process is called swapping: the OS, when pressed for mem-

ory,will evict pages fromRAMontodiskor someotherhigh-capacity

(but slow) medium. It will only page them back in when they are

required. In contemporary computers,memory is not very scarce

and this use-case is not very important.

However, it allows another neat trick: instead of opening a ile

and reading it using open and read system calls, we can use so-

called memory mapped iles. This basically provides the content

of the ile as a chunk of memory that can be read or even writ-

ten to, and the changes are sent back to the ilesystem. We will

discuss this in more detail next week.

Look Ahead: Processes

• process is primarily de ined by its address space

− address space meaning the valid virtual addresses

• this is implemented via the MMU

• whenchangingprocesses, a different page table is loaded

− this is called a context switch



• the page table de ines what the process can see

We will deal with processes later in the course, but let me just

quickly introduce the concept now so we can appreciate how im-

portant the MMU is for a modern operating system.

Memory Maps

• different view of the same principles

• the OS maps physical memory into the process

• multiple processes canhave the sameRAMareamapped

− this is called shared memory

• often, a piece of RAM is onlymapped in a single process

Page Tables

• the MMU is programmed using translation tables

− those tables are stored in RAM

− they are usually called page tables

• and they are fully in the management of the kernel

• the kernel can ask the MMU to replace the page table

− this is how processes are isolated from each other

Kernel Protection

• kernel memory is usually mapped into all processes

− this substantially improves performance on many

CPUs

− well, until Meltdown hit us, anyway

• kernel pages have a special ‘supervisor’ lag set

− code executing in user mode cannot touch them

− else, user code could tamper with kernel memory

Part 3.2: Booting

Starting the OS

• upon power on the system is in a default state

− mainly because RAM is volatile

• the entire platform needs to be initialised

− this is irst and foremost the CPU

− and the console hardware (keyboard, monitor,…)

− then the rest of the devices

Boot Process

• the process starts with a built-in hardware init

• when ready, the hardware hands off to the irmware

− this was BIOS on 16 and 32 bit systems

− replaced with EFI on current amd64 platforms

• the irmware then loads a bootloader

• the bootloader loads the kernel

Boot Process (cont’d)

• the kernel then initialises device drivers

• and the root ilesystem

• then it hands off to the init process

• at this point, the user space takes over

User-mode Initialisation

• initmounts the remaining ile systems

• the init process starts up user-mode system services

• then it starts application services

• and inally the login process

After Log-In

• the login process initiates the user session

• loads desktop modules and application software

• drops the user in a (text or graphical) shell

• now you can start using the computer

CPU Init

• this depends on both architecture and platform

• on x86, the CPU starts in 16-bit mode

• on legacy systems, BIOS& bootloader stay in thismode

• the kernel then switches to protected mode during its

boot

Bootloader

• historically limited to tens of kilobytes of code

• the bootloader locates the kernel on disk

− it often allows the operator to choose different ker-

nels

− limited understanding of ile systems

• then it loads the kernel image into RAM

• and hands off control to the kernel

Modern Booting on x86

• on modern system, the bootloader runs in protected

mode

− or even the long mode on 64-bit CPUs

• the irmware understands the FAT ilesystem

− it can load iles from there into memory

− this vastly simpli ies the boot process

Booting ARM

• on ARM boards, there is no uni ied irmware interface

• U-boot is as close as one gets to uni ication

• the bootloader needs low-level hardware knowledge

• this makes writing bootloaders for ARM quite tedious

• current U-boot can use the EFI protocol from PCs

Part 3.3: Kernel Architecture

Architecture Types

• monolithic kernels (Linux, *BSD)

• microkernels (Mach, L4, QNX, NT,…)

• hybrid kernels (macOS)

• type 1 hypervisors (Xen)

• exokernels, rump kernels

Microkernel

• handles memory protection



• (hardware) interrupts

• task / process scheduling

• message passing

• everything else is separate

Monolithic kernels

• all that a microkernel does

• plus device drivers

• ile systems, volume management

• a network stack

• data encryption,…

Microkernel Redux

• we need a lot more than a microkernel provides

• in a “true” microkernel OS, there are many modules

• each device driver runs in a separate process

• the same for ile systems and networking

• those modules / processes are called servers

Hybrid Kernels

• based around a microkernel

• and a gutted monolithic kernel

• the monolithic kernel is a big server

− takes care of stuff not handled by the microkernel

− easier to implement than true microkernel OS

− strikes middle ground on performance

Micro vs Mono

• microkernels are more robust

• monolithic kernels are more ef icient

− less context switching

• what is easier to implement is debatable

− in the short view, monolithic wins

• hybrid kernels are a compromise

Exokernels

• smaller than a microkernel

• much fewer abstractions

− applications only get block storage

− networking is much reduced

• only research systems exist

Type 1 Hypervisors

• also known as bare metal or native hypervisors

• they resemble microkernel operating systems

− or exokernels, depending on the viewpoint

• the “applications” for a hypervisor are operating sys-

tems

− hypervisor can use coarser abstractions than an OS

− entire storage devices instead of a ilesystem

Unikernels

• kernels for running a single application

− makes little sense on real hardware

− but can be very useful on a hypervisor

• bundle applications as virtual machines

− without the overhead of a general-purpose OS

Exo vs Uni

• an exokernel runs multiple applications

− includes process-based isolation

− but abstractions are very bare-bones

• unikernel only runs a single application

− provides more-or-less standard services

− e.g. standard hierarchical ile system

− socket-based network stack / API

Part 3.4: System Calls

Reminder: Kernel Protection

• kernel executes in privileged mode of the CPU

• kernel memory is protected from user code

But: Kernel Services

• user code needs to ask kernel for services

• how do we switch the CPU into privileged mode?

• cannot be done arbitrarily (security)

System Calls

• hand off execution to a kernel routine

• pass arguments into the kernel

• obtain return value from the kernel

• all of this must be done safely

Trapping into the Kernel

• there are a few possible mechanisms

• details are very architecture-speci ic

• in general, the kernel sets a ixed entry address

− an instruction can change the CPU into privileged

mode

− while at the same time jumping to this address

Trap Example: x86

• there is an int instruction on those CPUs

• this is called a software interrupt

− interrupts are normally a hardware thing

− interrupt handlers run in privileged mode

• it is also synchronous

• the handler is set in IDT (interrupt descriptor table)

Software Interrupts

• those are available on a range of CPUs

• generally not very ef icient for system calls

• extra level of indirection

− the handler address is retrieved frommemory

− a lot of CPU state needs to be saved



Aside: SW Interrupts on PCs

• those are used even in real mode

− legacy 16-bit mode of 80x86 CPUs

− BIOS ( irmware) routines via int 0x10 & 0x13

− MS-DOS API via int 0x21

• and on older CPUs in 32-bit protected mode

− Windows NT uses int 0x2e

− Linux uses int 0x80

Trap Example: amd64 / x86_64

• sysenter and syscall instructions

− and corresponding sysexit / sysret

• the entry point is stored in a machine state register

• there is only one entry point

− unlike with software interrupts

• quite a bit faster than interrupts

Which System Call?

• often there are many system calls

− there are more than 300 on 64-bit Linux

− about 400 on 32-bit Windows NT

• but there is only a handful of interrupts

− and only one sysenter address

Reminder: System Call Numbers

• each system call is assigned a number

• available as SYS_write &c. on POSIX systems

• for the “universal” int syscall( int sys, ... )

• this number is passed in a CPU register

System Call Sequence

• irst, libc prepares the system call arguments

• and puts the system call number in the correct register

• then the CPU is switched into privileged mode

• this also transfers control to the syscall handler

System Call Handler

• the handler irst picks up the system call number

• and decides where to continue

• you can imagine this as a giant switch statement

switch ( sysnum )

{

case SYS_write: return syscall_write();

case SYS_read: return syscall_read();

/* many more */

}

System Call Arguments

• each system call has different arguments

• how they are passed to the kernel is CPU-dependent

• on 32-bit x86, most of them are passed in memory

• on amd64 Linux, all arguments go into registers

− 6 registers available for arguments

Part 3.5: Kernel Services

What Does a Kernel Do?

• memory & process management

• task (thread) scheduling

• device drivers

− SSDs, GPUs, USB, bluetooth, HID, audio,…

• ile systems

• networking

Additional Services

• inter-process communication

• timers and time keeping

• process tracing, pro iling

• security, sandboxing

• cryptography

Reminder: Microkernel Systems

• the kernel proper is very small

• it is accompanied by servers

• in “true” microkernel systems, there are many servers

− each device, ilesystem, etc. is separate

• in hybrid systems, there is one, or a few

− a “superserver” that resembles a monolithic kernel

Kernel Services

• we usually don’t care which server provides what

− each system is different

− for services, we take a monolithic view

• the services are used through system librares

− they abstract away many of the details

− e.g. whether a service is a system call or an IPC call

User-Space Drivers in Monolithic Systems

• not all device drivers are part of the kernel

• case in point: printer drivers

• also some USB devices (not the USB bus though)

• part of the GPU/graphics stack

− memory and output management in kernel

− most of OpenGL in user space

Review Questions

9. What CPU modes are there and how are they used?

10. What is the memory management unit?

11. What is a microkernel?

12. What is a system call?

Part 4: File Systems

Lecture Overview

1. Filesystem Basics

2. The Block Layer

3. Virtual Filesystem Switch

4. The UNIX Filesystem



5. Advanced Features

Part 4.1: Filesystem Basics

What is a File System?

• a collection of iles and directories

• (mostly) hierarchical

• usually exposed to the user

• usually persistent (across reboots)

• ile managers, command line, etc.

What is a (Regular) File?

• a sequence of bytes

• and some basic metadata

− owner, group, timestamp

• the OS does not care about the content

− text, images, video, source code are all the same

− executables are somewhat special

What is a Directory?

• a list of name ile mappings

• an associative container if you will

− semantically, the value types are not homogeneous

− syntactically, they are just i-nodes

• one directory = one component of a path

− /usr/local/bin

What is an i-node?

• an anonymous, ile-like object

• could be a regular ile

− or a directory

− or a special ile

− or a symlink

Files are Anonymous

• this is the case with UNIX

− not all ile systems work like this

• there are pros and cons to this approach

− e.g. open iles can be unlinked

• names are assigned via directory entries

What Else is a Byte Sequence?

• characters coming from a keyboard

• bytes stored on a magnetic tape

• audio data coming from a microphone

• pixels coming from a webcam

• data coming on a TCP connection

Writing Byte Sequences

• sending data to a printer

• playing back audio

• writing text to a terminal (emulator)

• sending data over a TCP stream

Special Files

• many things look somewhat like iles

• let’s exploit that and unify them with iles

• recall part 2 on APIs: “everything is a ile”

− the API is the same for special and regular iles

− not the implementation though

File System Types

• fat16, fat32, vfat, exfat (DOS, lash media)

• ISO 9660 (CD-ROMs)

• UDF (DVD-ROM)

• NTFS (Windows NT)

• HFS+ (macOS)

• ext2, ext3, ext4 (Linux)

• ufs, ffs (BSD)

Multi-User Systems

• ile ownership

• ile permissions

• disk quotas

Ownership & Permissions

• we assume a discretionary model

• whoever creates a ile is its owner

• ownership can be transferred

• the owner decides about permissions

− basically read, write, execute

Disk Quotas

• disks are big but not in inite

• bad things happen when the ile system ills up

− denial of service

− programs may fail and even corrupt data

• quotas limits the amount of space per user

Part 4.2: The Block Layer

Disk-Like Devices

• disk drives provide block-level access

• read and write data in 512-byte chunks

− or also 4K on big modern drives

• a big numbered array of blocks

Aside: Disk Addressing Schemes

• CHS: Cylinder, Head, Sector

− structured adressing used in (very) old drives

− exposes information about relative seek times

− useless with variable-length cylinders

− 10:4:6 CHS = 1024 cylinders, 16 heads, 63 sectors

• LBA: Logical Block Addessing

− linear, unstructured address space

− started as 22, later 28,… now 48 bit



Block-Level Access

• disk drivers only expose linear addressing

• one block (sector) is the minimum read/write size

• many sectors can be written “at once”

− sequential access is faster than random

− maximum throughput vs IOPS

Aside: Access Times

• block devices are slow (compared to RAM)

− RAM is slow (compared to CPU)

• we cannot treat drives as an extension of RAM

− not even fastest modern lash storage

− latency: HDD 3–12 ms, SSD 0.1 ms, RAM 70 ns

Block Access Cache

• caching is used to hide latency

− same principle between CPU and RAM

• iles recently accessed are kept in RAM

− many cache management policies exist

• implemented entirely in the OS

− many devices implement their own caching

− but the amount of fast memory is usually limited

Write Buffers

• the write equivalent of the block cache

• data is kept in RAM until it can be processed

• must synchronise with caching

− other users may be reading the ile

I/O Scheduler (Elevator)

• reads and writes are requested by users

• access ordering is crucial on a mechanical drive

− not as important on an SSD

− but sequential access is still much preferred

• requests are queued (recall, disks are slow)

− but they are not processed in FIFO order

RAID

• hard drives are also unreliable

− backups help, but take a long time to restore

• RAID = Redundant Array of Inexpensive Disks

− live-replicate same data across multiple drives

− many different con igurations

• the system stays online despite disk failures

RAID Performance

• RAID affects the performance of the block layer

• often improved reading throughput

− data is recombined frommultiple channels

• write performance is more mixed

− may require a fair amount of computation

− more data needs to be written for redundancy

Block-Level Encryption

• symmetric & length-preserving

• encryption key is derived from a passphrase

• also known as “full disk encryption”

• incurs a small performance penalty

• very important for security / privacy

Storing Data in Blocks

• splitting data into ixed-size chunks is unnatural

• there is no permission system for individual blocks

− this is unlike virtual (paged) memory

− it’d be really inconvenient for users

• processes are not persistent, but block storage is

Filesystem as Resource Sharing

• usually only 1 or few disks per computer

• many programs want to store persistent data

• ile system allocates space for the data

− which blocks belong to which ile

• different programs can write to different iles

− no risk of trying to use the same block

Filesystem as Abstraction

• allows the data to be organised into iles

• enables the user to manage and review data

• iles have arbitrary & dynamic size

− blocks are transparently allocated & recycled

• structured data instead of a lat block array

Part 4.3: Virtual Filesystem Switch

Virtual File System Layer

• many different ilesystems

• the OS wants to treat them all alike

• VFS provides an internal, in-kernel API

• ilesystem syscalls are hooked up to VFS

VFS in OOP terms

• VFS provides an abstract class, filesystem

• each ilesystem implementation derives filesystem

− e.g. class iso9660 : public filesystem

• each actual ile system gets an instance

− /home, /usr, /mnt/usbflash each one

− the kernel uses the abstract interface to talk to them

The filesystem Class

struct handle { /* ... */ };

struct filesystem

{

virtual int open( const char * path ) = 0;

virtual int read( handle file, ... ) = 0;

/* ... */

}



Filesystem-Speci ic Operations

• open: look up the ile for access

• read, write – self-explanatory

• seek: move the read/write pointer

• sync: lush data to disk

• mmap: memory-mapped IO

• select: IO readiness noti ication

Standard IO

• the usual way to use iles

• open the ile

− operations to read and write bytes

• data has to be buffered in user space

− and then copied to/from kernel space

• not very ef icient

Memory-mapped IO

• uses virtual memory (cf. last lecture)

• treat a ile as if it was swap space

• the ile is mapped into process memory

− page faults indicate that data needs to be read

− dirty pages cause writes

• available as the mmap system call

Sync-ing Data

• recall that the disk is very slow

• waiting for each write to hit disk is inef icient

• but if data is held in RAM, what if power is cut?

− the sync operation ensures the data has hit disk

− often used in database implementations

Filesystem-Agnostic Operations

• handling executables

• fcntl handling

• special iles

• management of ile descriptors

• ile locks

Executables

• memory mapped (like mmap)

• may be paged in lazily

• executables must be immutable while running

• but can be still unlinked from the directory

The fcntl Syscall

• mostly operations relating to ile descriptors

− synchronous vs asynchronous access

− blocking vs non-blocking

− close on exec: more on this in a later lecture

• also one of the several locking APIs

Special Files

• device nodes, pipes, sockets,…

• only metadata for special iles lives on disk

− this includes permissions & ownership

− type and properties of the special ile

• they are just different kind of an i-node

• open, read, write, etc. bypass the ilesystem

File Locking

• multiple programs writing the same ile is bad

− operations will come in randomly

− the resulting ile will be a mess

• ile locks ix this problem

− multiple APIs: fcntl vs flock

− differences on networked ilesystems

Mount Points

• recall that there is only a single directory tree

• but there are multiple disks and ilesystems

• ile systems can be joined at directories

• root of one becomes a subdirectory of another

Part 4.4: The UNIX Filesystem

Superblock

• holds toplevel information about the ilesystem

• locations of i-node tables

• locations of i-node and free space bitmaps

• block size, ilesystem size

I-Nodes

• recall that i-node is an anonymous ile

− or a directory, or a special

• i-nodes only have numbers

• directories tie names to i-nodes

I-Node Allocation

• often a ixed number of i-nodes

• i-nodes are either used or free

• free i-nodes may be stored in a bitmap

• alternatives: B-trees

I-Node Content

• exact content of an i-node depends on its type

• regular ile i-nodes contain a list of data blocks

− both direct and indirect (via a data block)

• symbolic links contain the target path

• special devices describe what device they represent

Attaching Data to I-Nodes

• a few direct block addresses in the i-node

− eg. 10 refs, 4K blocks, max. 40 kilobytes

• indirect data blocks

− a block full of addresses of other blocks

− one indirect block approx. 2 MiB of data

• extents: a contiguous range of blocks



Fragmentation

• internal – not all blocks are fully used

− iles are of variable size, blocks are ixed

− a 4100 byte ile needs 2 4 KiB blocks

• external – free space is non-contiguous

− happens when many iles try to grow at once

− this means new iles are also fragmented

Fragmentation Problems

• performance: can’t use fast sequential IO

− programs often read iles sequentially

− fragmention random IO on the device

• metadata size: can’t use long extents

• internal: waste of disk space

Directories

• uses data blocks (like regular iles)

• but the blocks hold name i-node maps

• modern ile systems use hashes or trees

• the format of directory data is ilesystem-speci ic

File Name Lookup

• we often need to ind a ile based on a path

• each component means a directory search

• directories can have many thousands entries

Old-Style Directories

• unsorted sequential list of entries

• new entries are simply appended at the end

• unlinking can create holes

• lookup in large directories is very inef icient

Hash-Based Directories

• only need one block read on average

• often the most ef icient option

• extendible hashing

− directories can grow over time

− gradually allocates more blocks

Tree-Based Directories

• self-balancing search trees

• optimised for block-level access

• B trees, B+ trees, B* trees

• logarithmic number of reads

− this is worst case, unlike hashing

Hard Links

• multiple names can refer to the same i-node

− names are given by directory entries

− we call such multiple-named iles hard links

− it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries

− i-node numbers are only unique within a ilesystem

Soft Links (Symlinks)

• they exist to lift the one-device limitation

• soft links to directories are OK

− this can cause loops in the ilesystem

• the soft link i-node contains a path

− the meaning can change when paths change

• dangling link: points to a non-existent path

Free Space

• similar problem to i-node allocation

− but regards data blocks

• goal: quickly locate data blocks to use

− also: keep data of a single ile close together

− also: minimise external fragmentation

• usually bitmaps or B-trees

File System Consistency

• what happens if power is cut?

• data buffered in RAM is lost

• the IO scheduler can re-order disk writes

• the ile system can become corrupt

Journalling

• also known as an intent log

• write down what was going to happen synchronously

• ix the actual metadata based on the journal

• has a performance penalty at run-time

− reducesdowntimebymaking consistency checks fast

− may also prevent data loss

Part 4.5: Advanced Features

What Else Can Filesystems Do?

• transparent ile compression

• ile encryption

• block de-duplication

• snapshots

• checksums

• redundant storage

File Compression

• use one of the standard compression algorithms

− must be fairly general-purpose (i.e. not JPEG)

− and of course lossless

− e.g. LZ77, LZW, Huffman Coding,…

• quite challenging to implement

− the length of the ile changes (unpredictably)

− ef icient random access inside the ile

File Encryption

• use symmetric encryption for individual iles

− must be transparent to upper layers (applications)

− symmetric crypto is length-preserving

− encrypted directories, inheritance, &c.



• a new set of challenges

− key and passphrase management

Block De-duplication

• sometimes the same data block appears many times

− virtual machine images are a common example

− also containers and so on

• some ilesystems will identify those cases

− internally point many iles to the same block

− copy on write to preserve illusion of separate iles

Snapshots

• it is convenient to be able to copy entire ilesystems

− but this is also expensive

− snapshots provide an ef icient means for this

• snapshot is a frozen image of the ilesystem

− cheap, because snapshots share storage

− easier than de-duplication

− again implemented as copy-on-write

Checksums

• hardware is unreliable

− individual bytes or sectors may get corrupted

− this may happen without the hardware noticing

• the ilesystem may store checksums along with meta-

data

− and possibly also ile content

− this protects the integrity of the ilesystem

• beware: not cryptographically secure

Redundant Storage

• like ilesystem-level RAID

• data and metadata blocks are replicated

− may be between multiple local block devices

− but also across a cluster / many computers

• drastically improves fault tolerance

Review Questions

13. What is a block device?

14. What is an IO scheduler?

15. What does memory-mapped IO mean?

16. What is an i-node?

Part 5: Basic Resources & Multiplexing

Lecture Overview

1. processes and virtual memory

2. thread scheduling

3. interrupts and clocks

Part 5.1: Processes and Virtual Memory

Prehistory: Batch Systems

• irst computers ran one program at a time

• programs were scheduled ahead of time

• we are talking punch cards &c.

• and computers that took an entire room

History: Time Sharing

• “mini” computers could run programs interactively

• teletype terminals, screens, keyboards

• multiple users at the same time

• hence, multiple programs at the same time

Processes: Early View

• process is an executing program

• there can be multiple processes

• various resources belong to a process

• each process belongs to a particular user

Process Resources

• memory (address space)

• processor time

• open iles (descriptors)

− also working directory

− also network connections

Process Memory Segments

• program text: contains instructions

• data: static and dynamic data

− with a separate read-only section

• stack memory: execution stack

− return addresses

− automatic variables

Process Memory

• each process has its own address space

• this means processes are isolated from each other

• requires that the CPU has an MMU

• implemented via paging (page tables)

Process Switching

• switching processes means switching page tables

• physical addresses do not change

• but the mapping of virtual addresses does

• large part of physical memory is not mapped

− could be completely unallocated (unused)

− or belong to other processes

Paging and TLB

• address translation is slow

• recently-used pages are stored in a TLB

− short for Translation Look-aside Buffer

− very fast hardware cache

• the TLB needs to be lushed on process switch

− this is fairly expensive (microseconds)



Processor Time Sharing

• CPU time is sliced into time shares

• time shares (slices) are like memory frames

• process computation is like memory pages

• processes are allocated into time shares

Multiple CPUs

• execution of a program is sequential

• instructions depend on results of previous instructions

• one CPU = one instruction sequence

• physical limits on CPU speed multiple cores

Threads

• how to use multiple cores in one process?

• threads: a new unit of CPU scheduling

• each thread runs sequentially

• one process can have multiple threads

What is a Thread?

• thread is a sequence of instructions

• different threads run different instructions

− as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack

• multiple threads can share an address space

Modern View of a Process

• in a modern view, process is an address space

• threads are the right scheduling abstraction

• process is a unit of memory management

• thread is a unit of computation

• old view: one process = one thread

Memory Segment Redux

• one (shared) text segment

• a shared read-write data segment

• a read-only data segment

• one stack for each thread

Fork

• how do we create new processes?

• by fork-ing existing processes

• fork creates an identical copy of a process

• execution continues in both processes

− each of them gets a different return value

Lazy Fork

• paging can make fork quite ef icient

• we start by copying the page tables

• initially, all pages are marked read-only

• the processes start out sharing memory

Lazy Fork: Faults

• the shared memory becomes copy on write

• fault when either process tries to write

− remember the memory is marked as read-only

• the OS checks if thememory is supposed to bewritable

− if yes, it makes a copy and allows the write

Init

• on UNIX, fork is the only way to make a process

• but fork splits existing processes into 2

• the irst process is special

• it is directly spawned by the kernel on boot

Process Identi ier

• processes are assigned numeric identi iers

• also known as PID (Process ID)

• those are used in process management

• used calls like kill or setpriority

Process vs Executable

• process is a dynamic entity

• executable is a static ile

• an executable contains an initial memory image

− this sets up memory layout

− and content of the text and data segments

Exec

• on UNIX, processes are created via fork

• how do we run programs though?

• exec: load a new executable into a process

− this completely overwrites process memory

− execution starts from the entry point

• running programs: fork + exec

Part 5.2: Thread Scheduling

What is a Scheduler?

• scheduler has two related tasks

− plan when to run which thread

− actually switch threads and processes

• usually part of the kernel

− even in micro-kernel operating systems

Switching Threads

• threads of the same process share an address space

− a partial context switch is needed

− only register state has to be saved and restored

• no TLB lushing – lower overhead

Fixed vs Dynamic Schedule

• ixed schedule = all processes known in advance

− only useful in special / embedded systems

− can conserve resources

− planning is not part of the OS

• most systems use dynamic scheduling

− what to run next is decided periodically



Preemptive Scheduling

• tasks (threads) just run as if they owned the CPU

• the OS forcibly takes the CPU away from them

− this is called preemption

• pro: a faulty program cannot block the system

• somewhat less ef icient than cooperative

Cooperative Scheduling

• threads (tasks) cooperate to share the CPU

• each thread has to explicitly yield

• this can be very ef icient if designed well

• but a bad program can easily block the system

Scheduling in Practice

• cooperative on Windows 3.x for everything

• cooperative for threads on classic Mac OS

− but preemptive for processes

• preemptive on pretty much every modern OS

− including real-time and embedded systems

Waiting and Yielding

• threads often need to wait for resources or events

− they could also use software timers

• a waiting thread should not consume CPU time

• such a thread will yield the CPU

• it is put on a list and later woken up by the kernel

Run Queues

• runnable (not waiting) threads are queued

• could be priority, round-robin or other queue types

• scheduler picks threads from the run queue

• preempted threads are put back

Priorities

• what share of the CPU should a thread get?

• priorities are static and dynamic

• dynamic priority is adjusted as the thread runs

− this is done by the system / scheduler

• a static priority is assigned by the user

Fairness

• equal (or priority-based) share per thread

• what if one process has many more threads?

• what if one user has many more processes?

• what if one user group has many more active users?

Fair Share Scheduling

• we can use a multi-level scheduling scheme

• CPU is sliced fairly irst among user groups

• then among users

• then among processes

• and inally among threads

Scheduling Strategies

• irst in, irst served (batch systems)

• earliest deadline irst (realtime)

• round robin

• ixed priority preemptive

• fair share scheduling (multi-user)

Interactivity

• throughput vs latency

• latency is more important for interactive workloads

− think phone or desktop systems

− but also web servers

• throughput is more important for batch systems

− think render farms, compute grids, simulation

Reducing Latency

• shorter time slices

• more willingness to switch tasks (more preemption)

• dynamic priorities

• priority boost for foreground processes

Maximising Throughput

• longer time slices

• reduce context switches to minimum

• cooperative multitasking

Multi-Core Schedulers

• traditionally one CPU, many threads

• nowadays: many threads, many CPUs (cores)

• more complicated algorithms

• more complicated & concurrent-safe data structures

Scheduling and Caches

• threads can move between CPU cores

− important when a different core is idle

− and a runnable thread is waiting for CPU

• but there is a price to pay

− thread / process data is extensively cached

− caches are typically not shared by all cores

Core Af inity

• modern schedulers try to avoid moving threads

• threads are said to have an af inity to a core

• an extreme case is pinning

− this altogether prevents the thread to be migrated

• practically, this practice improves throughput

− even if nominal core utilisation may be lower

NUMA Systems

• non-uniform memory architecture

− different memory is attached to different CPUs

− each symmetric blockwithin aNUMA is called anode

• migrating a process to a different node is expensive

− thread vs node ping-pong can kill performance



− threads of one process should live on one node

Part 5.3: Interrupts and Clocks

Interrupt

• a way for hardware to request attention

• CPU mechanism to divert execution

• partial (CPU state only) context switch

• switch to privileged (kernel) CPU mode

Hardware Interrupts

• asynchronous, unlike software interrupts

• triggered via bus signals to the CPU

• IRQ = interrupt request

− just a different name for hardware interrupts

• PIC = programmable interrupt controller

Interrupt Controllers

• PIC: simple circuit, typically with 8 input lines

− peripherals connect to the PIC with wires

− PIC delivers prioritised signals to the CPU

• APIC: advanced programmable interrupt controller

− split into a shared IO APIC and per-core local APIC

− typically 24 incoming IRQ lines

• OpenPIC, MPIC: similar to APIC, used by e.g. Freescale

Timekeeping

• PIT: programmable interval timer

− crystal oscillator + divider

− IRQ line to the CPU

• local APIC timer: built-in, per-core clock

• HPET: high-precision event timer

• RTC: real-time clock

Timer Interrupt

• generated by the PIT or the local APIC

• the OS can set the frequency

• a hardware interrupt happens on each tick

• this creates an opportunity for bookkeeping

• and for preemptive scheduling

Timer Interrupt and Scheduling

• measure howmuch time the current thread took

• if it ran out of its slice, preempt it

− pick a new thread to execute

− perform a context switch

• those checks are done on each tick

− rescheduling is usually less frequent

Timer Interrupt Frequency

• typical is 100 Hz

• this means a 10 ms scheduling slice (quantum)

• 1 kHz is also possible

− harms throughput but improves latency

Tickless Kernels

• the timer interrupt wakes up the CPU

• this can be inef icient if the system is idle

• alternative: use one-off timers

− allows the CPU to sleep longer

− this improves power ef iciency on light loads

Tickless Scheduling

• slice length (quantum) becomes part of the planning

• if a core is idle, wake up on next software timer

− synchronisation of software timers

• other interrupts are delivered as normal

− network or disk activity

− keyboard, mice,…

Other Interrupts

• serial port

− data is available on the port

• network hardware

− data is available in a packet queue

• keyboards, mice

− user pressed a key, moved the mouse

• USB devices in general

Interrupt Routing

• not all CPU cores need to see all interrupts

• APIC can be told how to deliver IRQs

− the OS can route IRQs to CPU cores

• multi-core systems: IRQ load balancing

− useful to spread out IRQ overhead

− especially useful with high-speed networks

Review Questions

17. What is a thread and a process?

18. What is a (thread, process) scheduler?

19. What do fork and exec do?

20. What is an interrupt?

Part 6: Concurrency and Locking

This lecturewill dealwith the issues that arise from runningmul-

tiple threads and processes at the same time, both using time-

sharing of a single processor and by executing on multiple phys-

ical CPU cores.

Lecture Overview

1. Inter-Process Communication

2. Synchronisation

3. Deadlocks

In the irst part, we will explore the basic why’s and how’s of

inter-process and inter-thread communication. This will natu-

rally lead to questions about shared resources, and to the topic

of thread synchronisation, mutual exclusion and so on. Finally,



we will deal with waiting and deadlocks, which arise whenever

multiple threads can wait for each other.

What is Concurrency?

• events that can happen at the same time

• it is not important if it does, only that it can

• events can be given a happens-before partial order

• they are concurrent if unordered by happens-before

Why Concurrency?

• problem decomposition

− different tasks can be largely independent

• re lecting external concurrency

− serving multiple clients at once

• performance and hardware limitations

− higher throughput on multicore computers

Parallel Hardware

• hardware is inherently parallel

• software is inherently sequential

• something has to give

− hint: it’s not going to be hardware

Part 6.1: Inter-Process Communication

Communication is an important part of all but the most trivial

software. While themechanismsdescribed in this section are tra-

ditionally known as inter-process communication (IPC), we will

also consider cases where threads of a single process use those

mechanisms (and will not use a special name, even the commu-

nication is, in fact, intra-process in those cases).

Reminder: What is a Thread

• thread is a sequence of instructions

• each instruction happens-before the next

− or: happens-before is a total order on the thread

• basic unit of scheduling

Reminder: What is a Process

• the basic unit of resource ownership

− primarily memory, but also open iles &c.

• may contain one or more threads

• processes are isolated from each other

− IPC creates gaps in that isolation

I/O vs Communication

• take standard input and output

− imagine process A writes a ile

− later, process B reads that ile

• communication happens in real time

− between two running threads / processes

− automatic: without user intervention

Direction

• bidirectional communication is typical

− this is analogous to a conversation

• but unidirectional communication also makes sense

− e.g. sending commands to a child process

− do acknowledgments count as communication?

Communication Example

• network services are a typical example

• take a web server and a web browser

• the browser sends a request for a web page

• the server responds by sending data

Files

• it is possible to communicate through iles

• multiple processes can open the same ile

• one can write data and another can process it

− the original program picks up the results

− typical when using programs as modules

A File-Based IPC Example

• iles are used e.g. when you run cc file.c

− it irst runs apreprocessor: cpp -o file.i file.c

− then the compiler proper: cc1 -o file.o file.i

− and inally a linker: ld file.o crt.o -lc

• the intermediate iles may be hidden in /tmp

− and deleted when the task is completed

Directories

• communication by placing iles or links

• typical use: a spool directory

− clients drop iles into the directory for processing

− a server periodically picks up iles in there

• used for e.g. printing and email

Pipes

• a device for moving bytes in a stream

− note the difference frommessages

• one process writes, the other reads

• the reader blocks if the pipe is empty

• the writer blocks if the pipe buffer is full

UNIX and Pipes

• pipes are used extensively in UNIX

• pipelines built via the shell’s | operator

• e.g. ls | grep hello.c

• most useful for processing data in stages

Especially in the case of user-setup pipes (via shell pipelines), the

boundary between IPC and “standard IO” is rather blurry. Pro-

grams in UNIX are often written in a style, where they read input,

process it and write the result as their output. This makes them

amenable for use in pipelines. While pipes are arguably “more

automatic” thandropping theoutput in a ile and running another

command to process the ile, there is also a degree of manual in-

tervention. Another way to look at the difference may be that



a pipe is primarily an IPC mechanism, while a ile is primarily a

storage mechanism.

Sockets

• similar to, but more capable than pipes

• allows one server to talk to many clients

• each connection acts like a bidirectional pipe

• could be local but also connected via a network

Shared Memory

• memory is shared when multiple threads can access it

− happens naturally for threads of a single process

− the primary means of inter-thread communication

• many processes can map same piece of physical mem-

ory

− this is the more traditional setting

− hence also allows inter-process communication

Message Passing

• communication using discrete messages

• we may or may not care about delivery order

• we can decide to tolerate message loss

• often used across a network

Part 6.2: Synchronisation

Shared Variables

• structured view of shared memory

• typical in multi-threaded programs

• e.g. any global variable in a program

• but may also live in memory from malloc

Shared Heap Variable

void *thread( int *x ) { *x = 7; }

int main()

{

pthread_t id;

int *x = malloc( sizeof( int ) );

pthread_create( &id, NULL, thread, x );

}

Race Condition: Example

• consider a shared counter, i

• and the following two threads

int i = 0;

void thread1() { i = i + 1; }

void thread2() { i = i - 1; }

What is the value of i after both inish?

Race on a Variable

• memory access is not atomic

• take x = x + 1

a₀ ← load x | b₀ ← load x

a₁ ← a₀ + 1 | b₁ ← b₀ + 1

store a₁ x | store b₁ x

Critical Section

• any section of code that must not be interrupted

• the statement x = x + 1 could be a critical section

• what is a critical section is domain-dependent

− another example could be a bank transaction

− or an insertion of an element into a linked list

Race Condition: De inition

• (anomalous) behaviour that depends on timing

• typically among multiple threads or processes

• an unexpected sequence of events happens

• recall that ordering is not guaranteed

Races in a Filesystem

• the ile system is also a shared resource

• and as such, prone to race conditions

• e.g. two threads both try to create the same ile

− what happens if they both succeed?

− if both write data, the result will be garbled

Mutual Exclusion

• only one thread can access a resource at once

• ensured by a mutual exclusion device (a.k.a mutex)

• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

Semaphore

• somewhat more general than a mutex

• allowsmultiple interchangeable instancesof a resource

− that many threads can enter the critical section

• basically an atomic counter

Monitors

• a programming language device (not OS-provided)

• internally uses standard mutual exclusion

• data of the monitor is only accessible to its methods

• only one thread can enter themonitor at any given time

Condition Variables

• what if the monitor needs to wait for something?

• imagine a bounded queue implemented as a monitor

− what happens if it becomes full?

− the writer must be suspended

• condition variables have wait and signal operations

Spinlocks

• a spinlock is the simplest form of a mutex

• the lockmethod repeatedly tries to acquire the lock

− this means it is taking up processor time

− also known as busy waiting



• spinlocks between threads on the same CPU are very

bad

− but can be very ef icient between CPUs

Suspending Mutexes

• these need cooperation from the OS scheduler

• when lock acquisition fails, the thread sleeps

− it is put on a waiting queue in the scheduler

• unlocking the mutex will wake up the waiting thread

• needs a system call slow compared to a spinlock

Condition Variables Revisited

• same principle as a suspending mutex

• the waiting thread goes into a wait queue

• thesignalmethodmoves the threadback to a runqueue

• the busy-wait version is known as polling

Barrier

• sometimes, parallel computation proceeds in phases

− all threads must inish phase 1

− before any can start phase 2

• this is achieved with a barrier

− blocks all threads until the last one arrives

− waiting threads are usually suspended

Dining Philosophers

Readers and Writers

• imagine a shared database

• many threads can read the database at once

• but if one is writing, no other can read nor write

• what if there are always some readers?

Read-Copy-Update

• the fastest lock is no lock

• RCU allows readers to work while updates are done

− make a copy and update the copy

− point new readers to the updated copy

• when is it safe to reclaim memory?

Part 6.3: Deadlocks

Shared Resources

• hardware comes in a limited number of instances

• many devices can only do one thing at a time

• think printers, DVD writers, tape drives,…

• we want to use the devices ef iciently sharing

Network-based Sharing

• sharing is not limited to processes on one computer

• printers and scanners can be network-attached

• all computers on network may need to coordinate ac-

cess

− this could lead to multi-computer deadlocks

Locks as Resources

• we explored locks in the previous section

• locks (mutexes) are also a form of resource

− a mutex can be acquired (locked) and released

− a locked mutex belongs to a particular thread

• locks are proxy (stand-in) resources

Preemptable Resources

• sometimes, held resources can be taken away

• this is the case with e.g. physical memory

− a process can be swapped to disk if need be

• preemtability may also depend on context

− maybe paging is not available

Non-preemptable Resources

• those resources cannot be (easily) taken away

• think photo printer in the middle of a page

• or a DVD burner in the middle of writing

• non-preemptable resources can cause deadlocks

Resource Acquisition

• a process needs to request access to a resource

• this is called an acquisition

• when the request is granted, it can use the device

• after it is done, it must release the device

− this makes it available for other processes

Waiting

• what to do if we wish to acquire a busy resource?

• unless we don’t really need it, we have to wait

• this is the same as waiting for a mutex

• the thread is moved to a wait queue

Resource Deadlock

• two resources, A and B

• two processes, P and Q

• P acquires A, Q acquires B

• P tries to acquire B but has to wait for Q

• Q tries to acquire A but has to wait for P



Deadlock Conditions

1. mutual exclusion

2. hold and wait condition

3. non-preemtability

4. circular wait

Deadlock is only possible if all 4 are present.

Non-Resource Deadlocks

• not all deadlocks are due to resource contention

• imagine a message-passing system

• process A is waiting for a message

• process B sends a message to A and waits for reply

• the message is lost in transit

Example: Pipe Deadlock

• recall that both the reader and writer can block

• what if we create a pipe in each direction?

• process A writes data and tries to read a reply

− it blocks because the opposite pipe is empty

• process B reads the data but waits for more deadlock

Deadlocks: Do We Care?

• deadlocks can be very hard to debug

• they can also be exceedingly rare

• we may ind the risk of a deadlock acceptable

• just reboot everything if we hit a deadlock

− also known as the ostrich algorithm

Deadlock Detection

• we can at least try to detect deadlocks

• usually by checking the circular wait condition

• keep a graph ofwho ownswhat andwhowaits forwhat

• if there is a loop in the graph deadlock

Deadlock Recovery

• if a preemptable resource is involved, reassign it

• otherwise, it may be possible to do a rollback

− this needs elaborate checkpointing mechanisms

• all else failing, kill some of the processes

− the devices may need to be re-initialised

Deadlock Avoidance

• we can possibly deny acquisitions to avoid deadlocks

• weneed toknowthemaximumresources for eachprocess

• avoidance relies on safe states

− worst case all processes ask formaximumresources

− safe means we can avoid a deadlock in the worst

case

Deadlock Prevention

• deadlock avoidance is typically impractical

• there are 4 conditions for deadlocks to exist

• we can try attacking those conditions

• if we can remove one of them, deadlocks are prevented

Prevention via Spooling

• this attacks the mutual exclusion property

• multiple programs could write to a printer

• the data is collected by a spooling daemon

• which then sends the jobs to the printer in sequence

This can trade a deadlock on the printer for a deadlock on disk

space. However, disk space is much more likely to be preempt-

able in this scenario, since a job blocked by a full disk can be can-

celed (and erased from disk) and later retried.

Prevention via Reservation

• we can also try removing hold-and-wait

• for instance, we can only allow batch acquisition

− the process must request everything at once

− this is usually impractical

• alternative: release and re-acquire

Prevention via Ordering

• this approach eliminates circular waits

• we impose a global order on resources

• a process can only acquire resources in this order

− must release + re-acquire if the order is wrong

• it is impossible to form a cycle this way

Livelock

• in a deadlock, no progress can be made

• but it’s not much better if processes go back and forth

− for instance releasing and re-acquiring resources

− they make no useful progress

− they additionally consume resources

• this is as livelock and is just as bad as a deadlock

Starvation

• starvationhappenswhenaprocess can’tmakeprogress

• generalisation of both deadlock and livelock

• for instance, unfair scheduling on a busy system

• also recall the readers and writers problem

Review Questions

21. What is a mutex?

22. What is a deadlock?

23. What are the conditions for a deadlock to form?

24. What is a race condition?

Part 7: Device Drivers

Lecture Overview

1. Drivers, IO and Interrupts

2. System and Expansion Busses

3. Graphics

4. Persistent Storage



5. Networking and Wireless

Part 7.1: Drivers, IO and Interrupts

Input and Output

• we will mostly think in terms of IO

• peripherals produce and consume data

• input – reading data produced by a device

• output – sending data to a device

What is a Driver?

• piece of software that talks to a device

• usually quite speci ic / unportable

− tied to the particular device

− and also to the operating system

• often part of the kernel

Kernel-mode Drivers

• they are part of the kernel

• running with full kernel privileges

− including unrestricted hardware access

• no or minimal context switching overhead

− fast but dangerous

Microkernels

• drivers are excluded frommicrokernels

• but the driver still needs hardware access

− this could be a special memory region

− it may need to react to interrupts

• in principle, everything can be done indirectly

− but this may be quite expensive, too

User-mode Drivers

• many drivers can run completely in user space

• this improves robustness and security

− driver bugs can’t bring the entire system down

− nor can they compromise system security

• possibly at some cost to performance

Drivers in Processes

• user-mode drivers typically run in their own process

• this means context switches

− every time thedevicedemands attention (interrupt)

− every time another process wants to use the device

• the driver needs system calls to talk to the device

− this incurs even more overhead

In-Process Drivers

• what if a (large portion of) a driver could be a library

• best of both worlds

− no context switch overhead for requests

− bugs and security problems remain isolated

• often used for GPU-accelerated 3D graphics

Port-Mapped IO

• early CPUs had very limited address space

− 16-bit addresses mean 64KB of memory

• peripherals got a separate address space

• special instructions for using those addresses

− e.g. in and out on x86 processors

Memory-mapped IO

• devices share address space with memory

• more common in contemporary systems

• IO uses the same instructions as memory access

− load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

Programmed IO

• input or output is driven by the CPU

• the CPU must wait until the device is ready

• would usually run at bus speed

− 8 MHz for ISA (and hence ATA-1)

• PIO would talk to a buffer on the device

Interrupt-driven IO

• peripherals are much slower than the CPU

− polling the device is expensive

• the peripheral can signal data availability

− and also readiness to accept more data

• this frees up CPU to do other work in the meantime

Interrupt Handlers

• also known as irst-level interrupt handler

• they must run in privileged mode

− they are part of the kernel by de inition

• the low-level interrupt handler must inish quickly

− it will mask its own interrupt to avoid re-entering

− and schedule any long-running jobs for later (SLIH)

Second-level Handler

• does any expensive interrupt-related processing

• can be executed by a kernel thread

− but also by a user-mode driver

• usually not time critical (unlike irst-level handler)

− can use standard locking mechanisms

Direct Memory Access

• allows the device to directly read/write memory

• this is a huge improvement over programmed IO

• interrupts only indicate buffer full/empty

• the device can read and write arbitrary physical mem-

ory

− opens up security / reliability problems

IO-MMU

• like the MMU, but for DMA transfers

• allows the OS to limit memory access per device



• very useful in virtualisation

• only recently found its way into consumer computers

Part 7.2: System and Expansion Busses

History: ISA (Industry Standard Architecture)

• 16-bit system expansion bus on IBM PC/AT

• programmed IO and interrupts (but no DMA)

• a ixed number of hardware-con igured interrupt lines

− likewise for I/O port ranges

− the HW settings then need to be typed back for SW

• parallel data and address transmission

MCA, EISA

• MCA: Micro Channel Architecture

− proprietary to IBM, patent-encumbered

− 32-bit, software-driven device con iguration

− expensive and ultimately a market failure

• EISA: Enhanced ISA

− a 32-bit extension of ISA

− mostly created to avoid MCA licensing costs

− short-lived and replaced by PCI

VESA Local Bus

• memory mapped IO & DMA on otherwise ISA systems

• tied to the 80486 line of Intel CPUs (and AMD clones)

• primarily for graphics cards

− but also used with hard drives

• quickly fell out of use with the arrival of PCI

PCI: Peripheral Component Interconnect

• a 32-bit successor to ISA

− 33 MHz (compared to 8 MHz for ISA)

− later revisions at 66 MHz, PCI-X at 133 MHz

− added support for bus-mastering and DMA

• still a shared, parallel bus

− all devices share the same set of wires

Bus Mastering

• normally, the CPU is the bus master

− which means it initiates communication

• it’s possible to have multiple masters

− they need to agree on a con lict resolution protocol

• usually used for accessing the memory

DMA (Direct Memory Access)

• the most common form of bus mastering

• the CPU tells the device what and where to write

• the device then sends data directly to RAM

− the CPU can work on other things in the meantime

− completion is signaled via an interrupt

Plug and Play

• the ISA system for IRQ con iguration was messy

• MCA pioneered software-con igured devices

• PCI further improved on MCA with “Plug and Play”

− each PCI device has an ID it can tell the system

− allows for enumeration andautomatic con iguration

PCI IDs and Drivers

• PCI allows for device enumeration

• device identi iers can be paired to device drivers

• this allows the OS to load and con igure its drivers

− or even download / install drivers from a vendor

AGP: Accelerated Graphics Port

• PCI eventually became too slow for GPUs

− AGP is based onPCI and only improves performance

− enumeration and con iguration stays the same

• adds a dedicated point-to-point connection

• multiple transfers per clock (up to 8, for 2 GB/s)

PCI Express

• the current high-speed peripheral bus for PC

• builds on / extends conventional PCI

• point-to-point, serial data interconnect

• much improved throughput (up to ~30GB/s)

USB: Universal Serial Bus

• primarily for external peripherals

− keyboards, mice, printers,…

− replaced a host of legacy ports

• later revisions allow high-speed transfers

− suitable for storage devices, cameras &c.

• device enumeration, capability negotiation

USB Classes

• a set of vendor-neutral protocols

• HID = human-interface device

• mass storage = disk-like devices

• audio equipment

• printing

Other USB Uses

• ethernet adapters

• usb-serial adapters

• wi i adapters (dongles)

− there isn’t a universal protocol

− each USBWiFi adapter needs

• bluetooth

ARM Busses

• ARM is typically used in System-on-a-Chip designs

• those use a proprietary bus to connect peripherals

• there is less need for enumeration

− the entire system is baked into a single chip

• the peripherals can be pre-con igured



USB and PCIe on ARM

• USB nor PCIe are exclusive to the PC platform

• most ARM SoC’s support USB devices

− for slow and medium-speed off-SoC devices

− e.g. used for ethernet on RPi 1

• some ARM SoC’s support PCI Express

− this allows for high-speed off-SoC peripherals

PCMCIA & PC Card

• People Can’t Memorize Computer Industry Acronyms

− PC = Personal Computer, MC = Memory Card

• hotplug-capable notebook expansion bus

• used for memory cards, network adapters, modems

• comes with its own set of drivers (cardbus)

ExpressCard

• an expansion card standard like PCMCIA / PC Card

• based on PCIe and USB

− can mostly re-use drivers for those standards

• not in wide use anymore

− last update was in 2009, introducing USB 3 support

− the industry association disbanded the same year

miniPCIe, mSATA, M.2

• those are physical interfaces, not special busses

• they provide some mix of PCIe, SATA and USB

− also other protocols like I²C, SMBus,…

• used mainly for compact SSDs and wireless

− also GPS, NFC, bluetooth,…

Part 7.3: Graphics and GPUs

Graphics Cards

• initially just a device to drive displays

• reads pixels from memory and provides display signal

− basically a DAC with a clock

− the memory can be part of the graphics card

• evolved acceleration capabilities

Graphics Accelerator

• allows common operations to be done in hardware

• like drawing lines or illed polygons

• the pixels are computed directly in video RAM

• this can save considerable CPU time

3D Graphics

• rendering 3D scenes is computationally intensive

• CPU-based, software-only rendering is possible

− texture-less in early light simulators

− bitmap textures since ’95 / ’96 (Descent, Quake)

• CAD workstation had 3D accelerators (OpenGL ’92)

GPU (Graphical Processing Unit)

• a term coined by nVidia near the end of ’90s

• originally a purpose-built hardware renderer

− based on polygonal meshes and Z buffering

• increasingly more lexible and programmable

• on-board RAM, high-speed connection to system RAM

GPU Drivers

• split into a number of components

• graphics output / frame buffer access

• memory management is often done in kernel

• geometry, textures &c. are prepared in-process

• front end API: OpenGL, Direct3D, Vulkan,…

Shaders

• current GPUs are computation devices

• the GPU has its own machine code for shaders

• the GPU driver contains a shader compiler

− either all the way from a high level language (HLSL)

− or starting with an intermediate code (SPIR)

Mode Setting

• this part deals with screen con iguration and resolu-

tion

• including support for e.g. multiple displays

• usually also supports primitive (SW-only) framebuffer

• often done by a kernel with minimum user-level sup-

port

Graphics Servers

• multiple apps cannot all drive the graphics card

− the graphics hardware needs to be shared

− one option is a graphics server

• provides an IPC-based drawing and/orwindowing API

• performs painting on behalf of the applications

Compositors

• a more direct way to share graphics cards

• each application gets its own buffer to paint into

• painting is mostly done by a (context-switched) GPU

• the individual buffers are then composed onto screen

− composition is also hardware-accelerated

GP-GPU

• general-purpose GPU (CUDA, OpenCL,…)

• used for computation instead of just graphics

• basically a return of vector processors

• close to CPUs but not part of normal OS scheduling

Part 7.4: Persistent Storage

Drivers

• split into adapter, bus and device drivers

• often a single driver per device type

− at least for disk drives and CD-ROMs

• bus enumeration and con iguration



• data addressing and data transfers

IDE / ATA

• Integrated Drive Electronics

− disk controller becomes part of the disk

− standardised as ATA-1 (AT Attachment…)

• based on the ISA bus, but with cables

• later adapted for non-disk use via ATAPI

ATA Enumeration

• each ATA interface can attach only 2 drives

− the drives are HW-con igured as master/slave

− this makes enumeration quite simple

• multiple ATA interfaces were standard

• no need for speci ic HDD drivers

PIO vs DMA

• original IDE could only use programmed IO

• this eventually became a serious bottleneck

• later ATA revisions include DMAmodes

− up to 160MB/s with highest DMAmodes

− compare 1900MB/s for SATA 3.2

SATA

• serial, point-to-point replacement for ATA

• hardware-level incompatible to (parallel) ATA

− but SATA inherited the ATA command set

− legacymode allows PATAdrivers to talk to SATA dri-

ves

• hot-swap capable – replace drives in a running system

AHCI (Advanced Host Controller Interface)

• vendor-neutral interface to SATA controllers

− in theory only a single ‘AHCI’ driver is needed

• an alternative to ‘legacy mode’

• NCQ = Native Command Queuing

− allows the drive to re-order requests

− another layer of IO scheduling

The PATA-compatible mode hides most features.

ATA and SATA Drivers

• the host controller (adapter) is mostly vendor-neutral

• the bus driver will expose the ATA command set

− including support for command queuing

• device driver uses the bus driver to talk to devices

• partially re-uses SCSI drivers for ATAPI &c.

SCSI (Small Computer System Interface)

• originated with minicomputers in the 80’s

• more complicated and capable than ATA

− ATAPI basically encapsulates SCSI over ATA

• device enumeration, including aggregates

− e.g. entire enclosures with many drives

• also allows CD-ROM, tapes, scanners (!)

SCSI Drivers

• split into a host bus adapter (HBA) driver

• a generic SCSI bus and command component

− often re-used in both ATAPI and USB storage

• and per-device or per-class drivers

− optical drives, tapes, CD/DVD-ROM

− standard disk and SSD drives

iSCSI

• basically SCSI over TCP/IP

• entirely software-based

• allows standard computers to serve as block storage

• takes advantage of fast cheap ethernet

• re-uses most of the SCSI driver stack

NVMe: Non-Volatile Memory Express

• a fairly simple protocol for PCIe-attached storage

• optimised for SSD-based devices

− much bigger andmore command queues than AHCI

− better / faster interrupt handling

• stresses concurrency in the kernel block layer

USB Mass Storage

• an USB device class (vendor-neutral protocol)

− one driver for the entire class

• typically USB lash drives, but also external disks

• USB 2 is not suitable for high-speed storage

− USB 3 introduced UAS = USB-Attached SCSI

Tape Drives

• unlike disk drives, only allow sequential access

• needs support for media ejection, rewinding

• can be attached with SCSI, SATA, USB

• parts of the driver will be bus-neutral

• mainly for data backup, capacities 6-15TB

Optical Drives

• mainly used as a read-only distribution medium

• laser-facilitated reading of a rotating disc

• can be again attached to SCSI, SATA or USB

• conceived for audio playback very slow seek

Optical Disk Writers (Burners)

• behaves more like a printer for optical disks

• drivers are often done in user space

• attached by one of the standard disk busses

• special programs required to burn disks

− alternative: packet-writing drivers

Part 7.5: Networking and Wireless



Networking

• networks allow multiple computers to exchange data

− this could be iles, streams or messages

• there are wired and wireless networks

• we will only deal with the lowest layers for now

• NIC = Network Interface Card

Ethernet

• speci ies the physical media

• on-wire format and collision resolution

• in modern setups, mostly point-to-point links

− using active packet switching devices

• transmits data in frames (low-level packets)

Addressing

• at this level, only local addressing

− at most a single LAN segment

• uses baked-in MAC addresses

− MAC = Media Access Control

• addresses belong to interfaces, not computers

Transmit Queue

• packets are picked up frommemory

• the OS prepares packets into the transmit queue

• the device picks them up asynchronously

• similar to how SATA queues commands and data

Receive Queue

• data is also queued in the other direction

• the NIC copies packets into a receive queue

• it invokes an interrupt to tell the OS about new items

− the NIC may batch multiple packets per interrupt

• if the queue is not cleared quickly packet loss

Multi-Queue Adapters

• fast adapters can saturate a CPU

− e.g. 10GbE cards, or multi-port GbE

• these NICs can manage multiple RX and TX queues

− each queue gets its own interrupt

− different queues can be handled by different CPU

cores

Checksum and TCP Of loading

• more advanced adapters can of load certain features

• commonly computationofmandatorypacket checksums

• but also TCP-related features

• this needs both driver support and TCP/IP stack sup-

port

WiFi

• wireless network interface – “wireless ethernet”

• shared medium – electromagnetic waves in air

• (almost) mandatory encryption

− otherwise easy to eavesdrop or even actively attack

• avery complexprotocol (relative tohardware standards)

− assisted by irmware running on the adapter

Bluetooth

• a wireless alternative to USB

• allows short-distance radio links with peripherals

− input (keyboard, mice, game controllers)

− audio (headsets, speakers)

− data transmission (e.g. smartphone sync)

− gadgets (watches, heartrate monitoring, GPS,…)

Part 8: Network Stack

Lecture Overview

1. Networking Intro

2. The TCP/IP Stack

3. Using Networks

4. Network File Systems

Part 8.1: Networking Intro

Host and Domain Names

• hostname = human readable computer name

• hierarchical system, big-endian: www.fi.muni.cz

• FQDN = fully-quali ied domain name

• the local suf ix may be omitted (ping aisa)

Network Addresses

• address = machine-friendly and numeric

• IPv4 address: 4 octets (bytes): 192.168.1.1

• IPv6 address: 16 octets

• Ethernet (MAC): 6 octets, c8:5b:76:bd:6e:0b

Network Types

• LAN = Local Area Network

− Ethernet: wired, up to 10Gb/s

− WiFi (802.11): wireless, up to 1Gb/s

• WAN =Wide Area Network (the Internet)

− PSTN, xDSL, PPPoE

− GSM, 2G (GPRS, EDGE), 3G (UMTS), 4G (LTE)

− also LAN technologies – Ethernet, WiFi

Networking Layers

2. Link (Ethernet, WiFi)

3. Network (IP)

4. Transport (TCP, UDP,…)

7. Application (HTTP, SMTP,…)

Networking and Operating Systems

• a network stack is a standard part of an OS

• large part of the stack lives in the kernel

− although this only applies to monolithic kernels

− microkernels use user-space networking



• another chunk is in system libraries & utilities

Kernel-Side Networking

• device drivers for networking hardware

• network and transport protocol layers

• routing and packet iltering ( irewalls)

• networking-related system calls (sockets)

• network ile systems (SMB, NFS)

System Libraries

• the socket and related APIs

• host name resolution (a DNS client)

• encryption and data authentication (SSL, TLS)

• certi icate handling and validation

System Utilities

• network con iguration (ifconfig)

• diagnostics (ping, traceroute)

• packet logging and inspection (tcpdump)

• route management (route, bgpd)

Networking Aspects

• packet format

− what are the units of communication

• addressing

− how are the sender and recipient named

• packet delivery

− how a message is delivered

Protocol Nesting

• protocols run on top of each other

• this is why it is called a network stack

• higher levels make use of the lower levels

− HTTP uses abstractions provided by TCP

− TCP uses abstractions provided by IP

Packet Nesting

• higher-level packets are just data to the lower level

• an Ethernet frame can carry an IP packet in it

• the IP packet can carry a TCP packet

• the TCP packet can carry an HTTP request

Stacked Delivery

• delivery is, in the abstract, point-to-point

− routing is mostly hidden from upper layers

− the upper layer requests delivery to an address

• lower-layer protocols are usually packet-oriented

− packet size mismatches can cause fragmentation

• a packet can pass through different low-level domains

Layers vs Addressing

• not as straightforward as packet nesting

− address relationships are tricky

• special protocols exist to translate addresses

− DNS for hostname vs IP address mapping

− ARP for IP vs MAC address mapping

ARP (Address Resolution Protocol)

• inds the MAC that corresponds to an IP

• required to allow packet delivery

− IP uses the link layer to deliver its packets

− the link layer must be given a MAC address

• the OS builds a map of IP MAC translations

Ethernet

• link-level communication protocol

• largely implemented in hardware

• the OS uses a well-de ined interface

− packed receive and submit

− using MAC addresses (ARP is part of the OS)

Packet Switching

• shared media are inef icient due to collisions

• ethernet is typically packet switched

− a switch is usually a hardware device

− but also in software (usually for virtualisation)

− physical connections form a star topology

Bridging

• bridges operate at the link layer (layer 2)

• a bridge is a two-port device

− each port is connected to a different LAN

− the bridge joins the LANs by forwarding frames

• can be done in hardware or software

− brctl on Linux, ifconfig on OpenBSD

Tunneling

• tunnels are virtual layer 2 or 3 devices

• they encapsulate traf ic using a higher-level protocol

• tunneling is used to implementVirtual PrivateNetworks

− a software bridge can operate over an UDP tunnel

− the tunnel is usually encrypted

PPP (Point-to-Point Protocol)

• a link-layer protocol for 2-node networks

• available over many physical connections

− phone lines, cellular connections, DSL, Ethernet

− often used to connect endpoints to the ISP

• supported by most operating systems

− split between the kernel and system utilities

Wireless

• WiFi is mostly like (slow, unreliable) Ethernet

• needs encryption since anyone can listen

• also authentication to prevent rogue connections

− PSK (pre-shared key), EAP / 802.11x

• encryption needs key management



Part 8.2: The TCP/IP Stack

IP (Internet Protocol)

• uses 4 byte (v4) or 16 byte (v6) addresses

− split into network and host parts

• it is a packet-based protocol

• is a best-effort protocol

− packets may get lost, reordered or corrupted

IP Networks

• IP networks roughly correspond to LANs

− hosts on the same network are located with ARP

− remote networks are reached via routers

• a netmask splits the address into network/host parts

• IP typically runs on top of Ethernet or PPP

Routing

• routers forward packets between networks

• somewhat like bridges but layer 3

• routers act as normal LAN endpoints

− but represent entire remote IP networks

− or even the entire Internet

Services and TCP/UDP Port Numbers

• networks are generally used to provide services

− each computer can host multiple

• different services can run on different ports

• port is a 16-bit number and some ar given names

− port 25 is SMTP, port 80 is HTTP,…

ICMP: Internet Control Message Protocol

• control messages (packets)

− destination host/network unreachable

− time to live exceeded

− fragmentation required

• diagnostic packets, e.g. the ping command

− echo request and echo reply

− combine with TTL for traceroute

TCP: Transmission Control Protocol

• a stream-oriented protocol on top of IP

• works like a pipe (transfers a byte sequence)

− must respect delivery order

− and also re-transmit lost packets

• must establish connections

TCP Connections

• the endpoints must establish a connection irst

• each connection serves as a separate data stream

• a connection is bidirectional

• TCP uses a 3-way handshake: SYN, SYN/ACK, ACK

Sequence Numbers

• TCP packets carry sequence numbers

• these numbers are used to re-assemble the stream

− IP packets can arrive out of order

• they are also used to acknowledge reception

− and subsequently to manage re-transmission

Packet Loss and Re-transmission

• packets can get lost for a variety of reasons

− a link goes down for an extended period of time

− buffer overruns on routing equipment

• TCP sends acknowledgments for received packets

− the ACKs use sequence numbers to identify packets

UDP: User (Unreliable) Datagram Protocol

• TCP comes with non-trivial overhead

− and its guarantees are not always required

• UDP is a much simpler protocol

− a very thin wrapper around IP

− with minimal overhead on top of IP

Name Resolution

• users do not want to remember numeric addresses

− phone numbers are bad enough

• host names are used instead

• can be stored in a ile, e.g. /etc/hosts

− not very practical for more than 3 computers

− but there are millions of computers on the Internet

DNS: Domain Name Service

• hierarchical protocol for name resolution

− runs on top of TCP or UDP

• domain names are split into parts using dots

− each domain knows whom to ask for the next bit

− the name database is effectively distributed

DNS Recursion

• take www.fi.muni.cz. as an example domain

• resolution starts from the right at root servers

− the root servers refer us to the cz. servers

− the cz. servers refer us to muni.cz

− inally muni.cz. tells us about fi.muni.cz

DNS Recursion Example

$ dig www.fi.muni.cz. A +trace

. IN NS j.root-servers.net.

cz. IN NS b.ns.nic.cz.

muni.cz. IN NS ns.muni.cz.

fi.muni.cz. IN NS aisa.fi.muni.cz.

www.fi.muni.cz. IN A 147.251.48.1

DNS Record Types

• A is for (IP) Address

• AAAA is for an IPv6 Address

• CNAME is for an alias



• MX is for mail servers

• and many more

Firewalls

• the name comes from building construction

− a ire-proof barrier between parts of a building

• the idea is to separate networks from each other

− making attacks harder from the outside

− limiting damage in case of compromise

Packet Filtering

• packet iltering is how irewalls areusually implemented

• can be done on a router or at an endpoint

• dedicated routers + packet ilters are more secure

− a single such irewall protects the entire network

− less opportunity for mis-con iguration

Packet Filter Operation

• packet ilters operate on a set of rules

− the rules are generally operator-provided

• each incoming packet is classi ied using the rules

• and then dispatched accordingly

− may be forwarded, dropped, rejected or edited

Packet Flter Examples

• packet ilters are often part of the kernel

• the rule parser is a system utility

− it loads rules from a con iguration ile

− and sets up the kernel-side ilter

• there are multiple implementations

− iptables, nftables in Linux

− pf in OpenBSD, ipfw in FreeBSD

Part 8.3: Using Networks

Sockets Reminder

• the socket API comes from early BSD Unix

• socket represents a (possible) network connection

• you get a ile descriptor for an open socket

• you can read() and write() to sockets

− but also sendmsg() and recvmsg()

Socket Types

• sockets can be internet or unix domain

− internet sockets work across networks

• stream sockets are like iles

− you can write a continuous stream of data

− usually implemented using TCP

• datagram sockets send individual messages

− usually implemented using UDP

Creating Sockets

• a socket is created using the socket() function

• it can be turned into a server using listen()

− individual connections are establishedwithaccept()

• or into a client using connect()

Resolver API

• libc contains a resolver

− available asgethostbyname (andgethostbyname2)

− also gethostbyaddr for reverse lookups

• can look in many different places

− most systems support at least /etc/hosts

− and DNS-based lookups

Network Services

• servers listen on a socket for incoming connections

− a client actively establishes a connection to a server

• the network simply transfers data between them

• interpretation of the data is a layer 7 issue

− could be commands, ile transfers,…

Network Service Examples

• (secure) remote shell – sshd

• the internet email suite

− MTA = Mail Transfer Agent, speaks SMTP

− SMTP = Simple Mail-Transfer Protocol

• the world wide web

− web servers provide content ( iles)

− clients and servers speak HTTP and HTTPS

Client Software

• the ssh command talks uses the SSH protocol

− a very useful system utility on virtually all UNIXes

• web browser is the client for world wide web

− browsers are complex application programs

− some of them bigger than even operating systems

• email client is also known as a MUA (Mail User Agent)

Part 8.4: Network File Systems

Why Network Filesystems?

• copying iles back and forth is impractical

− and also error-prone (which is the latest version?)

• how about storing data in a central location

• and sharing it with all the computers on the LAN

NAS (Network-Attached Storage)

• a (small) computer dedicated to storing iles

• usually running a cut down operating system

− often based on Linux or FreeBSD

• provides ile access to the network

• sometimes additional app-level services

− e.g. photo management, media streaming,…

NFS (Network File System)

• the traditional UNIX networked ilesystem

• hooked quite deep into the kernel



− assumes generally reliable network (LAN)

• ilesystems are exported for use over NFS

• the client side mounts the NFS-exported volume

NFS History

• originated in Sun Microsystems in the 80s

• v2 implemented in System V, DOS,…

• v3 appeared in ’95 and is still in use

• v4 arrives in 2000, improving security

VFS Reminder

• implementation mechanism for multiple FS types

• an object-oriented approach

− open: look up the ile for access

− read, write – self-explanatory

− rename: rename a ile or directory

RPC (Remote Procedure Call)

• any protocol for calling functions on remote hosts

− ONC-RPC = Open Network Computing RPC

− NFS is based on ONC-RPC (also known as Sun RPC)

• NFS basically runs VFS operations using RPC

− this makes it easy to implement on UNIX-like sys-

tems

Port Mapper

• ONC-RPC is executed over TCP or UDP

− but it is more dynamic wrt. available services

• TCP/UDP port numbers are assigned on demand

• portmap translates fromRPC services to port numbers

− the port mapper itself listens on port 111

The NFS Daemon

• also known as nfsd

• provides NFS access to a local ile system

• can run as a system service

• or it can be part of the kernel

− this is more typical for performance reasons

SMB (Server Message Block)

• a network ile system fromMicrosoft

• available in Windows since version 3.1 (1992)

− originally ran on top of NetBIOS

− later versions used TCP/IP

• SMB1 accumulated a lot of cruft and complexity

SMB 2.0

• simpler than SMB1 due to fewer retro its and compat

• better performance and security

• support for symbolic links

• available since Windows Vista (2006)

Part 9: Shells & User Interfaces

Lecture Overview

1. Command Interpreters

2. The Command Line

3. Graphical Interfaces

Part 9.1: Command Interpreters

Shell

• programming language centered on OS interaction

• rudimentary control low

• untyped, text-centered variables

• dubious error handling

Interactive Shells

• almost all shells have an interactive mode

• the user inputs a single statement on keyboard

• when con irmed, it is immediately executed

• this forms the basis of command-line interfaces

Shell Scripts

• a shell script is an (executable) ile

• in simplest form, it is a sequence of commands

− each command goes on a separate line

− executing a script is about the same as typing it

• but can use structured programming constructs

Shell Upsides

• very easy to write simple scripts

• irst choice for simple automation

• often useful to save repetitive typing

• de initely not good for big programs

Bourne Shell

• a speci ic language in the “shell” family

• the irst shell with consistent programming support

− available since 1976

• still widely used today

− best known implementation is bash

− /bin/sh is mandated by POSIX

The name bash stands for Bourne Again Shell (bad puns should

be a human right).

C Shell

• also known as csh, irst released in 1978

• more C-like syntax than sh (Bourne Shell)

− but not really very C-like at all

• improved interactive mode (over sh from ’76)

• also still used today (tcsh)

Korn Shell

• also known as ksh, released in 1983

• middle ground between sh and csh

• basis of the POSIX.2 requirements



• a number of implementations exists

Commands

• typically a name of an executable

− may also be control low or a built-in

• the executable is looked up in the ilesystem

• the shell doas a fork + exec

− this means new process for each command

− process creation is fairly expensive

Built-in Commands

• cd change the working directory

• export for setting up environment

• echo print a message

• exec replace the shell process (no fork)

Variables

• variable names are made of letters and digits

• using variables is indicated with $

• setting variables does not use the $

• all variables are global (except subshells)

VARIABLE="some text"

echo $VARIABLE

Variable Substitution

• variables are substituted as text

• $foo is simply replaced with the content of foo

• arithmetic is not well supported in most shells

− or any expression syntax, e.g. relational operators

− consider z=$(($x + $y)) for addition in bash

Command Substitution

• basically like variable substitution

• written as `command`or $(command)

− irst executes the command

− and captures its standard output

− then replaces $(command)with the output

Quoting

• whitespace is an argument separator in shell

• multi-word arguments must be quoted

• quotes can be double quotes "" or single ''

− double quotes allow variable substitution

Quoting and Substitution

• whitespace from variable substitution must be quoted

− `foo=“hello world”``

− ls $foo is different than ls "$foo"

• bad quoting is a very common source of bugs

• consider also ilenames with spaces in them

The irst command, ls $foo will expand into ls hello world

andexecutedwithargv[1] = "hello" andargv[2] = "world",

in effect looking for two separate iles. The latter, ls "$foo"",

will be executed with argv[1] = "hello world"’.

Special Variables

• $? is the result of last command

• $$ is the PID of the current shell

• $1 through $9 are positional parameters

− $# is the number of parameters

• $0 is the name of the shell (argv[0])

Environment

• is like shell variables but not the same

• the environment is passed to all executed programs

− but a child cannot modify environment of its parent

• variables are moved into the environment by export

• environment variables often act as settings

Important Environment Variables

• $PATH tells the system where to ind programs

• $HOME is the home directory of the current user

• $EDITOR and $VISUAL set which text editor to use

• $EMAIL is the email address of the current user

• $PWD is the current working directory

Globbing

• patterns for quickly listing multiple iles

• e.g. ls *.c shows all iles ending in .c

• *matches any number of characters

• ? matches one arbitrary character

• works on entire paths (ls src/*/*.c)

Conditionals

• allows conditional execution of commands

• if cond; then cmd1; else cmd2; fi

• also elif cond2; then cmd3; fi

• cond is also a command (the exit code is used)

test (evaluating boolean expressions)

• originally an external program, also known as [

− nowadays built-in in most shells

− works around lack of expressions in shell

• evaluates its arguments and returns true or false

− can be used with if and while constructs

test Examples

• test file1 -nt file2 ‘nt’ = newer than

• test 32 -gt 14 ‘gt’ = greater than

• test foo = bar string equality

• combines with variable substitution (test $y = x)

Loops

• while cond; do cmd; done

− cond is a command, like in if

• for i in 1 2 3 4; do cmd; done



− allows globs: for f in *.c; do cmd; done

− also command substitution

− for f in `seq 1 10`; do cmd; done

Case Analysis

• selects a command based on pattern matching

• case $x in *.c) cc $x;; *) ls $x;; esac

− yes, case really uses unbalanced parens

− the ;; indicates end of a case

Command Chaining

• ; (semicolon): run two commands in sequence

• && run the second command if the irst succeeded

• || run the second command if the irst failed

• e.g. compile and run: cc file.c && ./a.out

Pipes

• shells can run pipelines of commands

• cmd1 | cmd2 | cmd3

− all commands are run in parallel

− output of cmd1 becomes input of cmd2

− output of cmd2 is processed by cmd3

echo hello world | sed -e s,hello,goodbye,

Functions

• you can also de ine functions in shell

• mostly a light-weight alternative to scripts

− no need to export variables

− but cannot be invoked by non-shell programs

• functions can also set variables

Recall that the environment is only passed down, never back up.

This means that a shell script setting a variable will not affect the

parent shell. In functions (andwhen scripts are invoked using .),

variables can be set as normal.

Part 9.2: The Command Line

Interactive Shell

• the shell displays a prompt and waits

• the user types in a command and hits enter

• the command is executed immediately

• output is printed to the terminal

Command Completion

• most shells let you use TAB to auto-complete

− works at least for command names and ile names

− but “smart completion” is common

• interactive history: hit “up” to recall a command

− also interactive history search, e.g. C-r in bash

Prompt

• the string printed when shell expects a command

• controlled by the PS1 environment variable

• usually showsat least yourusernameand thehostname

• also: working directory, battery status, time, weather,

…

Job Control

• only one program can run in the foreground (terminal)

• but a running program can be suspended (C-z)

• and resumed in background (bg) or in foreground (fg)

• use & to run a command in background: ./spambot &

Terminal

• can print text and read text from a keyboard

• normally everything is printed on the last line

• the text could contain escape (control) sequences

− for printing colourful text or clearing the screen

− also for printing text at a speci ic coordinate

Older text scrolls upwards: this is the mode used in normal shell

usage. This scrollback behaviour is automatic in the terminal.

Full-screen terminal applications (whichuse coordinate-basedprint-

ing) will not use the capability.

Terminal (emulator) is typically a program these days, but used

to be a dedicated piece of hardware.

Full-Screen Terminal Apps

• applications can use the entire terminal screen

• a library abstracts away the low-level control sequences

− the library is called ncurses for new curses

− different terminals use different control sequences

• special characters exist to draw frames and separators

UNIX Text Editors

• sed – stream editor, non-interactive

• ed – line oriented, interactive

• vi – visual, screen oriented

• ex – line-oriented mode of vi

TUI: Text User Interface

• the program draws a 2D interface on a terminal

• these types of interfaces can be quite comfortable

• they are often easier to program than GUIs

• very low bandwidth requirements for remote use

Part 9.3: Graphical Interfaces

Windowing Systems

• each application runs in its own window

− or possibly multiple windows

• multiple applications can be shown on screen

• windows can be moved around, resized &c.

− facilitated by frames around window content

− generally known as windowmanagement

Window-less Systems

• especially popular on smaller screens



• applications take the entire screen

− give or take status or control widgets

• task switching via a dedicated screen

A GUI Stack

• graphics card driver, mode setting

• drawing/painting (usually hardware-accelerated)

• multiplexing (e.g. using windows)

• widgets: buttons, labels, lists,…

• layout: what goes where on the screen

Well-known GUI Stacks

• Windows

• macOS, iOS

• X11

• Wayland

• Android

Portability

• GUI “toolkits” make portability easy

− Qt, GTK, Swing, HTML5+CSS,…

− many of them run on all major platforms

• code portability is not the only issue

− GUIs come with look and feel guidelines

− portable applications may fail to it

Text Rendering

• a surprisingly complex task

• unlike terminals, GUIs use variable pitch fonts

− brings up issues like kerning

− hard to predict pixel width of a line

• bad interaction with printing (cf. WYSIWIG)

Bitmap Fonts

• characters are represented as pixel arrays

− usually just black and white

• traditionally pixel-drawn by hand

− very time consuming (many letters, sizes, variants)

• the result is sharp but jagged (not smooth)

Outline Fonts

• Type1, TrueType – based on splines

• they can be scaled to arbitrary pixel sizes

• same font can be used for screen and for print

• rasterisation is usually done in software

Hinting, Anti-Aliasing

• screens are low resolution devices

− typical HD displays have DPI around 100

− laser printers have DPI of 300 or more

• hinting: deform outlines to better it a pixel grid

• anti-aliasing: smooth outlines using grayscale

X11 (X Window System)

• a traditional UNIX windowing system

• provides a C API (xlib)

• built-in network transparency (socket-based)

• core protocol version 11 from 1987

X11 Architecture

• X server provides graphics and input

• X client is an application that uses X

• a windowmanager is a (special) client

• a compositor is another special client

Remote Displays

• application is running on computer A

• the display is not the console of A

− could be a dedicated graphical terminal

− could be another computer on a LAN

− or even across the internet

Remote Display Protocols

• one approach is pushing pixels

− VNC (Virtual Network Computing)

• X11 uses a custom drawing protocol

• others use high-level abstractions

− NeWS (PostScript-based)

− HTML5 + JavaScript

VNC (Virtual Network Computing)

• sends compressed pixel data over the wire

− can leverage regularities in pixel data

− can send incremental updates

• and input events in the other direction

• no support for peripherals or ile sync

Basically the only virtue of VNC is simplicity. Security is an after-

thought and not super-compatible across implementations. It is

mainlydesigned for low-bandwidth, high-latencynetworks (i.e. the

Internet).

RDP (Remote Desktop Protocol)

• more sophisticated than VNC (but proprietary)

• can also send drawing commands over the wire

− like X11, but using DirectX drawing

− also allows remote OpenGL

• support for audio, remote USB &c.

RDP is primarily based on the pixel-pushing paradigm, but there

is a number of extensions that allow sending high-level rendering

commands for local, hardware-accelerated processing. In some

setups, this includes remote acceleratedOpenGLand/orDirect3D.

SPICE (SimpleProtocol for Indep. ComputingEnv.)

• open protocol somewhere between VNC and RDP

• can send OpenGL (but only over a local socket)

• two-way audio, USB, clipboard integration



• still mainly based on pushing (compressed) pixels

Remote Desktop Security

• the user needs to be authenticated over network

− passwords are easy, biometric data less so

• the data stream should be encrypted

− not part of the X11 or NeWS protocols

− or even HTTP by default (used for HTML5/JS)

For instance, RDP in Windows 10 does not support ingerprint

logins (itwas supported on earlier versions, butwas disabled due

to security laws).

Part 10: Access Control

Lecture Overview

1. Multi-User Systems

2. File Systems

3. Sub-user Granularity

Part 10.1: Multi-User Systems

Users

• originally a proxy for people

• currently a more general abstraction

• user is the unit of ownership

• many permissions are user-centered

Computer Sharing

• computer is a (often costly) resource

• ef iciency of use is a concern

− a single user rarely exploits a computer fully

• data sharing makes access control a necessity

Ownership

• various objects in an OS can be owned

− primarily iles and processes

• the owner is typically whoever created the object

− ownership can be transferred

− usually at the impetus of the original owner

Process Ownership

• each process belongs to some user

• the process acts on behalf of the user

− the process gets the same privilege as its owner

− this both constrains and empowers the process

• processes are active participants

File Ownership

• each ile also belongs to some user

• this gives rights to the user (or rather their processes)

− they can read and write the ile

− they can change permissions or ownership

• iles are passive participants

Access Control Models

• owners usually decide who can access their objects

− this is known as discretionary access control

• in high-security environments, this is not allowed

− known as mandatory access control

− a central authority decides the policy

(Virtual) System Users

• users are an useful ownership abstraction

• various system services get their own “fake” users

• this allows them to own iles and processes

• and also limit their access to the rest of the OS

Principle of Least Privilege

• entities should have minimum privilege required

− applies to software components

− but also to human users of the system

• this limits the scope of mistakes

− and also of security compromises

Privilege Separation

• different parts of a system need different privilege

• least privilege dictates splitting the system

− components are isolated from each other

− they are given only the rights they need

• components communicate using the simplest feasible

IPC

Process Separation

• recall that each process runs in its own address space

− but shared memory can be requested

• each user has a view of the ilesystem

− a lot more is shared by default in the ilesystem

− especially the namespace (directory hierarchy)

Access Control Policy

• there are 3 pieces of information

− the subject (user)

− the verb (what is to be done)

− the object (the ile or other resource)

• there are many ways to encode this information

Access Rights Subjects

• in a typical OS those are (possibly virtual) users

− sub-user units are possible (e.g. programs)

− roles and groups could also be subjects

• the subject must be named (names, identi iers)

− easy on a single system, hard in a network

Access Rights Verbs

• the available “verbs” (actions) depend on object type

• a typical object would be a ile

− iles can be read, written, executed

− directories can be searched or listed or changed



• network connections can be established &c.

Access Rights Objects

• anything that can be manipulated by programs

− although not everything is subject to access control

• could be iles, directories, sockets, shared memory,…

• object names depend on their type

− ile paths, i-node numbers, IP addresses,…

Subjects in POSIX

• there are 2 types of subjects: users and groups

• each user can belong to multiple groups

• users are split into normal users and root

− root is also known as the super-user

User Management

• the system needs a database of users

• in a network, user identities often need to be shared

• could be as simple as a text ile

− /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

LDAP and Active Directory are popular choices for centralised

network-level user databases.

User and Group Identi iers

• users and groups are represented as numbers

− this improves ef iciency of many operations

− the numbers are called uid and gid

• those numbers are valid on a single computer

− or at most, a local network

Changing Identities

• each process belongs to a particular user

• ownership is inherited across fork()

• super-user processes can use setuid()

• exec() can sometimes change a process owner

Login

• a super-user process manages user logins

• the user types their name and provides credentials

− upon successful authentication, login calls fork()

− the child calls setuid() to the user

− and uses exec() to start a shell for the user

User Authentication

• the user needs to authenticate themselves

• passwords are the most commonly used method

− the system needs to know the right password

− user should be able to change their password

• biometric methods are also quite popular

Remote Login

• authentication over network is more complicated

• passwords are easiest, but not easy

− encryption is needed to safely transmit passwords

− along with computer authentication

• 2-factor authentication is a popular improvement

Computer Authentication

• how to ensurewe send the password to the right party?

− anattacker could impersonateour remote computer

• usually via asymmetric cryptography

− a private key can be used to sign messages

− the server will sign a message establishing its iden-

tity

2-factor Authentication

• 2 different types of authentication

− harder to spoof both at the same time

• there are a few factors to pick from

− something the user knows (password)

− something the user has (keys)

− what the user is (biometric)

Enforcement: Hardware

• all enforcement begins with the hardware

− the CPU provides a privileged mode for the kernel

− DMAmemory and IO instructions are protected

• the MMU allows the kernel to isolate processes

− and protect its own integrity

Enforcement: Kernel

• kernel uses hardware facilities to implement security

− it stands between resources and processes

− access is mediated through system calls

• ile systems are part of the kernel

• user and group abstractions are part of the kernel

Enforcement: System Calls

• the kernel acts as an arbitrator

• a process is trapped in its own address space

• processes use system calls to access resources

− kernel can decide what to allow

− based on its access control model and policy

Enforcement: Service APIs

• userland processes can enforce access control

− usually system services which provide IPC API

• e.g. via the getpeereid() system call

− tells the caller which user is connected to a socket

− user-level access control is rooted in kernel facilities

Part 10.2: File Systems

File Access Rights

• ile systems are a case study in access control

• all modern ile systems maintain permissions



− the only extant exception is FAT (USB sticks)

• different systems adopt different representation

Representation

• ile systems are usually object-centric

− permissions are attached to individual objects

− easily answers “who can access this ile”?

• there is a ixed set of verbs

− those may be different for iles and directories

− different systems allow different verbs

The UNIX Model

• each ile and directory has a single owner

• plus a single owning group

− not limited to those the owner belongs to

• ownership and permissions are attached to i-nodes

Access vs Ownership

• POSIX ties ownership and access rights

• only 3 subjects can be named on a ile

− the owner (user)

− the owning group

− anyone else

Access Verbs in POSIX File Systems

• read: read a ile, list a directory

• write: write a ile, link/unlink i-nodes to a directory

• execute: exec a program, enter the directory

• execute as owner (group): setuid/setgid

Permission Bits

• basic UNIX permissions can be encoded in 9 bits

• 3 bits per 3 subject designations

− irst comes the owner, then group, then others

− written as e.g. rwxr-x--- or 0750

• plus two numbers for the owner/group identi iers

Changing File Ownership

• the owner and root can change ile owners

• chown and chgrp system utilities

• or via the C API

− chown(), fchown(), fchownat(), lchown()

− same set for chgrp

Changing File Permissions

• again available to the owner and to root

• chmod is the user space utility

− either numeric argument: chmod 644 file.txt

− or symbolic: chmod +x script.sh

• and the corresponding system call (numeric-only)

setuid and setgid

• special permissions on executable iles

• they allow exec to also change the process owner

• often used for granting extra privileges

− e.g. the mount command runs as the super-user

Sticky Directories

• ile creation and deletion is a directory permission

− this is problematic for shared directories

− in particular the system /tmp directory

• in a sticky directory, different rules apply

− new iles can be created as usual

− only the owner can unlink a ile from the directory

Access Control Lists

• ACL is a list of ACE’s (access control elements)

− each ACE is a subject + verb pair

− it can name an arbitrary user

• ACL is attached to an object ( ile, directory)

• more lexible than the traditional UNIX system

ACLs and POSIX

• part of POSIX.1e (security extensions)

• most POSIX systems implement ACLs

− this does not supersede UNIX permission bits

− instead, they are interpreted as part of the ACL

• ile system support is not universal (but widespread)

Device Files

• UNIX represents devices as special i-nodes

− this makes them subject to normal access control

• the particular device is described in the i-node

− only a super-user can create device nodes

− users could otherwise gain access to any device

Sockets and Pipes

• named sockets and pipes are just i-nodes

− also subject to standard ile permissions

• especially useful with sockets

− a service sets up a named socket in the ile system

− ile permissions decide who can talk to the service

Special Attributes

• lags that allow additional restrictions on ile use

− e.g. immutable iles (cannot be changed by anyone)

− append-only iles (for log ile integrity protection)

− compression, copy-on-write controls

• non-standard (Linux chattr, BSD chflags)

Network File System

• NFS 3.0 simply transmits numeric uid and gid

− the numbering needs to be synchronised

− can be done via a central user database

• NFS 4.0 uses per-user authentication

− the user authenticates to the server directly

− ilesystem uid and gid values are mapped



File System Quotas

• storage space is limited, shared by users

− iles take up storage space

− ile ownership is also a liability

• quotas set up limits space use by users

− exhausted quota can lead to denial of access

Removable Media

• access control at ile system level makes no sense

− other computers may choose to ignore permissions

− user names or id’s would not make sense anyway

• option 1: encryption (for denying reads)

• option 2: hardware-level controls

− usually read-only vs read-write on the entiremedium

The chroot System Call

• each process in UNIX has its own root directory

− for most, this coincides with the system root

• the root directory can be changed using chroot()

• can be useful to limit ile system access

− e.g. in privilege separation scenarios

Uses of chroot

• chroot alone is not a security mechanism

− a super-user process can get out easily

− but not easy for a normal user process

• also useful for diagnostic purposes

• and as lightweight alternative to virtualisation

Part 10.3: Sub-User Granularity

Users are Not Enough

• users are not always the right abstraction

− creating users is relatively expensive

− only a super-user can create new users

• you may want to include programs as subjects

− or rather, the combination user + program

Naming Programs

• users have user names, but how about programs?

• option 1: cryptographic signatures

− portable across computers but complex

− establishes identity based on the program itself

• option 2: i-node of the executable

− simple, local, identity based on location

Program as a Subject

• program: passive ( ile) vs active (processes)

− only a process can be a subject

− but program identity is attached to the ile

• rights of a process depend on its program

− exec()will change privileges

Mandatory Access Control

• delegates permission control to a central authority

• often coupled with security labels

− classi ies subjects (users, processes)

− and also objects ( iles, sockets, programs)

• the owner cannot change object permissions

Security labels are a generalisation of user groups.

Capabilities

• not all verbs (actions) need to take objects

• e.g. shutting down the computer (there is only one)

• mounting ile systems (they can’t be always named)

• listening on ports with number less than 1024

Dismantling the root User

• the traditional root user is all-powerful

− “all or nothing” is often unsatisfactory

− violates the principle of least privilege

• many special properties of root are capabilities

− root then becomes the user with all capabilities

− other users can get selective privileges

Security and Execution

• security hinges on what is allowed to execute

• arbitrary code execution are the worst exploits

− this allows unauthorized execution of code

− same effect as impersonating the user

− almost as bad as stolen credentials

Untrusted Input

• programs often process data from dubious sources

− think image viewers, audio & video players

− archive extraction, font rendering,…

• bugs in programs can be exploited

− the program can be tricked into executing data

Process as a Subject

• some privileges can be tied to a particular process

− those only apply during the lifetime of the process

− often restrictions rather than privileges

− this is how privilege dropping is done

• processes are identi ied using their numeric pid

− restrictions are inherited across fork()

Sandboxing

• tries to limit damage from code execution exploits

• the program drops all privileges it can

− this is done before it touches any of the input

− the attacker is stuck with the reduced privileges

− this can often prevent a successful attack

Untrusted Code

• traditionally, you would only execute trusted code



− usually based on reputation or other external fac-

tors

− this does not scale to a large number of vendors

• it is common to execute untrusted, even dubious code

− this can be okay with suf icient sandboxing

API-Level Access Control

• capability system for user-level resources

− things like contact lists, calendars, bookmarks

− objects not provided directly by the kernel

• enforcement e.g. via a virtual machine

− not applicable to execution of native code

− alternative: an IPC-based API

Android/iOS Permissions

• applications from a store are semi-trusted

• typically single-user computers/devices

• permissions are attached to apps instead of users

• partially virtual users, partially API-level

Part 11: Virtualisation & Containers

Lecture Overview

1. Hypervisors

2. Containers

3. Management

Part 11.1: Hypervisors

What is a Hypervisor

• also known as a Virtual Machine Monitor

• allows execution of multiple operating systems

• like a kernel that runs kernels

• improves hardware utilisation

Motivation

• OS-level sharing is tricky

− user isolation is often insuf icient

− only root can install software

• the hypervisor/OS interface is simple

− compared to OS-application interfaces

Virtualisation in General

• many resources are “virtualised”

− physical memory by the MMU

− peripherals by the OS

• makes resource management easier

• enables isolation of components

Hypervisor Types

• type 1: bare metal

− standalone, microkernel-like

• type 2: hosted

− runs on top of normal OS

− usually need kernel support

Type 1 (Bare Metal)

• IBM z/VM

• (Citrix) Xen

• Microsoft Hyper-V

• VMWare ESX

Type 2 (Hosted)

• VMWare (Workstation, Player)

• Oracle VirtualBox

• Linux KVM

• FreeBSD bhyve

• OpenBSD vmm

History

• started with mainframe computers

• IBM CP/CMS: 1968

• IBM VM/370: 1972

• IBM z/VM: 2000

Desktop Virtualisation

• x86 hardware lacks virtual supervisor mode

• software-only solutions viable since late 90s

− Bochs: 1994

− VMWare Workstation: 1999

− QEMU: 2003

Paravirtualisation

• introduced as VMI in 2005 by VMWare

• alternative approach in Xen in 2006

• relies on modi ication of the guest OS

• near-native speed without HW support

The Virtual x86 Revolution

• 2005: virtualisation extensions on x86

• 2008: MMU virtualisation

• unmodi ied guest at near-native speed

• most software-only solutions became obsolete

Paravirtual Devices

• special drivers for virtualised devices

− block storage, network, console

− random number generator

• faster than software emulation

− orthogonal to CPU/MMU virtualisation

Virtual Computers

• usually known as Virtual Machines

• everything in the computer is virtual

− either via hardware (VT-x, EPT)

− or software (QEMU, virtio,…)

• much easier to manage than actual hardware



Essential Resources

• the CPU and RAM

• persistent (block) storage

• network connection

• a console device

CPU Sharing

• same principle as normal processes

• there is a scheduler in the hypervisor

− simpler, with different trade-offs

• privileged instructions are trapped

RAM Sharing

• very similar to standard paging

• software (shadow paging)

• or hardware (second-level translation)

• ixed amount of RAM for each VM

Shadow Page Tables

• the guest system cannot access the MMU

• set up shadow table, invisible to the guest

• guest page tables are sync’d to the sPT by VMM

• the gPT can be made read-only to cause traps

The trap can then synchronise the gPT with the sPT, which are

translated versions of each other. The ‘physical’ addresses stored

in the gPT are virtual addresses of the hypervisor. The sPT stores

real physical addresses, since it is used by the real MMU.

Second-Level Translation

• hardware-assisted MMU virtualisation

• adds guest-physical to host-physical layer

• greatly simpli ies the VMM

• also much faster than shadow page tables

Network Sharing

• usually a paravirtualised NIC

− transports frames between guest and host

− usually connected to a SW bridge in the host

− alternatives: routing, NAT

• a single physical NIC is used by everyone

Virtual Block Devices

• usually also paravirtualised

• often backed by normal iles

− maybe in a special format

− e.g. based on copy-on-write

• but can be a real block device

Special Resources

• mainly useful in desktop systems

• GPU / graphics hardware

• audio equipment

• printers, scanners,…

PCI Passthrough

• an anti-virtualisation technology

• based on an IO-MMU (VT-D, AMD-Vi)

• a virtual OS can touch real hardware

− only one OS at a time, of course

GPUs and Virtualisation

• can be assigned (via VT-d) to a single OS

• or time-shared using native drivers (GVT-g)

• paravirtualised

• shared by other means (X11, SPICE, RDP)

Peripherals

• useful either via passthrough

− audio, webcams,…

• or standard sharing technology

− network printers & scanners

− networked audio servers

Peripheral Passthrough

• virtual PCI, USB or SATA bus

• forwarding to a real device

− e.g. a single USB stick

− or a single SATA drive

Suspend & Resume

• the VM can be quite easily stopped

• the RAM of a stopped VM can be copied

− e.g. to a ile in the host ilesystem

− along with registers and other state

• and also later loaded and resumed

Migration Basics

• the stored state can be sent over network

• and resumed on a different host

• as long as the virtual environment is same

• this is known as paused migration

Live Migration

• uses asynchronous memory snapshots

• host copies pages and marks them read-only

• the snapshot is sent as it is constructed

• changed pages are sent at the end

Live Migration Handoff

• the VM is then paused

• registers and last few pages are sent

• the VM is resumed at the remote end

• usually within a few milliseconds

Memory Ballooning

• how to deallocate “physical” memory?

− i. e. return it to the hypervisor

• this is often desirable in virtualisation



• needs a special host/guest interface

Part 11.2: Containers

What are Containers?

• OS-level virtualisation

− e.g. virtualised network stack

− or restricted ile system access

• not a complete virtual computer

• turbocharged processes

Why Containers

• virtual machines take a while to boot

• each VM needs its own kernel

− this adds up if you need many VMs

• easier to share memory ef iciently

• easier to cut down the OS image

Kernel Sharing

• multiple containers share a single kernel

• but not user tables, process tables,…

• the kernel must explicitly support this

• another level of isolation (process, user, container)

Boot Time

• a light virtual machine takes a second or two

• a container can take under 50ms

• but VMs can be suspended and resumed

• but dormant VMs take up a lot more space

chroot

• the mother of all container systems

• not very sophisticated or secure

• but allows multiple OS images under 1 kernel

• everything else is shared

chroot-based Containers

• process tables, network, etc. are shared

• the superuser must also be shared

• containers have their own view of the ilesystem

− including system libraries and utilities

BSD Jails

• an evolution of the chroot container

• adds user and process table separation

• and a virtualised network stack

− each jail can get its own IP address

• root in the jail has limited power

Linux VServer

• like BSD jails but on Linux

− FreeBSD jail 2000, VServer 2001

• not part of the mainline kernel

• jailed root user is partially isolated

Namespaces

• visibility compartments in the Linux kernel

• virtualizes common resources

− the ilesystem hierarchy (including mounts)

− process tables

− networking (IP address)

cgroups

• controls resource allocation in Linux

• a CPU group is a fair scheduling unit

• a memory group sets limits on memory use

• mostly orthogonal to namespaces

LXC

• mainline Linux way to do containers

• based on namespaces and cgroups

• relative newcomer (2008, 7 years after vserver)

• feature set similar to VServer, OpenVZ &c.

User-Mode Linux

• halfway between a container and a virtual machine

• an early fully paravirtualised system

• a Linux kernel runs as a process on another Linux

• integrated in Linux 2.6 in 2003

DragonFlyBSD Virtual Kernels

• very similar to User-Mode Linux

• part of DFlyBSD since 2007

• uses standard libc, unlike UML

• paravirtual ethernet, storage and console

User Mode Kernels

• easier to retro it securely

− uses existing security mechanisms

− for the host, mostly a standard process

• the kernel needs to be ported though

− analogous to a new hardware platform

Migration

• not widely supported, unlike in hypervisors

• process state is much harder to serialise

− ile descriptors, network connections &c.

• somewhat mitigated by fast shutdown/boot time

Part 11.3: Management

Disk Images

• disk image is the embodiment of the VM

• the virtual OS needs to be installed

• the image can be a simple ile

• or a dedicated block device on the host

Snapshots



• making a copy of the image = snapshot

• can be done more ef iciently: copy on write

• alternative to OS installation

− make copies of the freshly installed image

− and run updates after cloning the image

Duplication

• each image will have a copy of the system

• copy-on-write snapshots can help

− most of the base system will not change

− regression as images are updated separately

• block-level de-duplication is expensive

File Systems

• disk images contain entire ile systems

• the virtual disk is of (apparently) ixed size

• sparse images: unwritten area is not stored

• initially only ilesystem metadata is allocated

Overcommit

• the host can allocate more resources than it has

• this works as long as not many VMs reach limits

• enabled by sparse images and CoW snapshots

• also applies to available RAM

Thin Provisioning

• the act of obtaining resources on demand

• the host system can be extended as needed

− to keep pace with growing guest demands

• alternatively, VMs can be migrated out

• improves resource utilisation

Con iguration

• each OS has its own con iguration iles

• same methods apply as for physical networks

− software con iguration management

• bundled services are deployed to VMs

Bundling vs Sharing

• bundling makes deployment easier

• the bundled components have known behaviour

• but updates are much trickier

• this also prevents resource sharing

Security

• hypervisors have a decent track record

− security here means protection of host from guest

− breaking out is still possible sometimes

• containers are more of a mixed bag

− many hooks are needed into the kernel

Updates

• each system needs to be updated separately

− this also applies to containers

• blocks coming from a common ancestor are shared

− but updating images means loss of sharing

Container vs VM Updates

• de-duplication may be easier in containers

− shared ile system – e.g. link farming

• kernel updates: containers and type 2 hypervisors

− can be mitigated by live migration

• type 1 hypervisors need less downtime

Docker

• automated container image management

• mainly a service deployment tool

• containers share a single Linux kernel

− the kernel itself can run in a VM

• rides on a wave of bundling resurgence

The Cloud

• public virtualisation infrastructure

• “someone else’s computer”

• the guests are not secure against the host

− entire memory is exposed, including secret keys

− host compromise is fatal

• the host is mostly secure from the guests

Part 12: Review

What is an OS made of?

• the kernel

• system libraries

• system daemons / services

• user interface

• system utilities

Basically every OS has those.

The Kernel

• lowest level of an operating system

• executes in privileged mode

• manages all the other software

− including other OS components

• enforces isolation and security

• provides low-level services to programs

System Libraries

• form a layer above the OS kernel

• provide higher-level services

− use kernel services behind the scenes

− easier to use than the kernel interface

• typical example: libc

− provides C functions like printf

− also known as msvcrt on Windows

Programming Interfaces



• kernel system call interface

• system libraries / APIs

• inter-process protocols

• command-line utilities (scripting)

(System) Libraries

• mainly C functions and data types

• interfaces de ined in header iles

• de initions provided in libraries

− static libraries (archives): libc.a

− shared (dynamic) libraries: libc.so

• on Windows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

Shared (Dynamic) Libraries

• required for running programs

• linking is done at execution time

• less code duplication

• can be upgraded separately

• but: dependency problems

Why is Everything a File

• re-use the comprehensive ile system API

• re-use existing ile-based command-line tools

• bugs are bad simplicity is good

• want to print? cat file.txt > /dev/ulpt0

− (reality is a little more complex)

What is a Filesystem?

• a set of iles and directories

• usually lives on a single block device

− but may also be virtual

• directories and iles form a tree

− directories are internal nodes

− iles are leaf nodes

File Descriptors

• the kernel keeps a table of open iles

• the ile descriptor is an index into this table

• you do everything using ile descriptors

• non-Unix systems have similar concepts

Regular iles

• these contain sequential data (bytes)

• may have inner structure but the OS does not care

• there is metadata attached to iles

− like when were they last modi ied

− who can and who cannot access the ile

• you read() and write() iles

Privileged CPU Mode

• many operations are restricted in user mode

− this is how user programs are executed

− also most of the operating system

• software running in privilegedmode can do ~anything

− most importantly it can program the MMU

− the kernel runs in this mode

Memory Management Unit

• is a subsystem of the processor

• takes care of address translation

− user software uses virtual addresses

− the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

What does a Kernel Do?

• memory & process management

• task (thread) scheduling

• device drivers

− SSDs, GPUs, USB, bluetooth, HID, audio,…

• ile systems

• networking

Kernel Architecture Types

• monolithic kernels (Linux, *BSD)

• microkernels (Mach, L4, QNX, NT,…)

• hybrid kernels (macOS)

• type 1 hypervisors (Xen)

• exokernels, rump kernels

System Call Sequence

• irst, libc prepares the system call arguments

• and puts the system call number in the correct register

• then the CPU is switched into privileged mode

• this also transfers control to the syscall handler

What is an i-node?

• an anonymous, ile-like object

• could be a regular ile

− or a directory

− or a special ile

− or a symlink

Disk-Like Devices

• disk drives provide block-level access

• read and write data in 512-byte chunks

− or also 4K on big modern drives

• a big numbered array of blocks

I/O Scheduler (Elevator)

• reads and writes are requested by users

• access ordering is crucial on a mechanical drive

− not as important on an SSD

− but sequential access is still much preferred

• requests are queued (recall, disks are slow)

− but they are not processed in FIFO order



Filesystem as Resource Sharing

• usually only 1 or few disks per computer

• many programs want to store persistent data

• ile system allocates space for the data

− which blocks belong to which ile

• different programs can write to different iles

− no risk of trying to use the same block

Filesystem as Abstraction

• allows the data to be organised into iles

• enables the user to manage and review data

• iles have arbitrary & dynamic size

− blocks are transparently allocated & recycled

• structured data instead of a lat block array

Memory-mapped IO

• uses virtual memory (cf. last lecture)

• treat a ile as if it was swap space

• the ile is mapped into process memory

− page faults indicate that data needs to be read

− dirty pages cause writes

• available as the mmap system call

Fragmentation

• internal – not all blocks are fully used

− iles are of variable size, blocks are ixed

− a 4100 byte ile needs 2 4 KiB blocks

• external – free space is non-contiguous

− happens when many iles try to grow at once

− this means new iles are also fragmented

Hard Links

• multiple names can refer to the same i-node

− names are given by directory entries

− we call such multiple-named iles hard links

− it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries

− i-node numbers are only unique within a ilesystem

Process Resources

• memory (address space)

• processor time

• open iles (descriptors)

− also working directory

− also network connections

Process Memory

• each process has its own address space

• this means processes are isolated from each other

• requires that the CPU has an MMU

• implemented via paging (page tables)

Process Switching

• switching processes means switching page tables

• physical addresses do not change

• but the mapping of virtual addresses does

• large part of physical memory is not mapped

− could be completely unallocated (unused)

− or belong to other processes

What is a Thread?

• thread is a sequence of instructions

• different threads run different instructions

− as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack

• multiple threads can share an address space

Fork

• how do we create new processes?

• by fork-ing existing processes

• fork creates an identical copy of a process

• execution continues in both processes

− each of them gets a different return value

Process vs Executable

• process is a dynamic entity

• executable is a static ile

• an executable contains an initial memory image

− this sets up memory layout

− and content of the text and data segments

Exec

• on UNIX, processes are created via fork

• how do we run programs though?

• exec: load a new executable into a process

− this completely overwrites process memory

− execution starts from the entry point

• running programs: fork + exec

What is a Scheduler?

• scheduler has two related tasks

− plan when to run which thread

− actually switch threads and processes

• usually part of the kernel

− even in micro-kernel operating systems

Interrupt

• a way for hardware to request attention

• CPU mechanism to divert execution

• partial (CPU state only) context switch

• switch to privileged (kernel) CPU mode

Timer Interrupt

• generated by the PIT or the local APIC

• the OS can set the frequency

• a hardware interrupt happens on each tick

• this creates an opportunity for bookkeeping

• and for preemptive scheduling



What is Concurrency?

• events that can happen at the same time

• it is not important if it does, only that it can

• events can be given a happens-before partial order

• they are concurrent if unordered by happens-before

Why Concurrency?

• problem decomposition

− different tasks can be largely independent

• re lecting external concurrency

− serving multiple clients at once

• performance and hardware limitations

− higher throughput on multicore computers

Critical Section

• any section of code that must not be interrupted

• the statement x = x + 1 could be a critical section

• what is a critical section is domain-dependent

− another example could be a bank transaction

− or an insertion of an element into a linked list

Race Condition: De inition

• (anomalous) behaviour that depends on timing

• typically among multiple threads or processes

• an unexpected sequence of events happens

• recall that ordering is not guaranteed

Mutual Exclusion

• only one thread can access a resource at once

• ensured by a mutual exclusion device (a.k.a mutex)

• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

Deadlock Conditions

1. mutual exclusion

2. hold and wait condition

3. non-preemtability

4. circular wait

Deadlock is only possible if all 4 are present.

Starvation

• starvationhappenswhenaprocess can’tmakeprogress

• generalisation of both deadlock and livelock

• for instance, unfair scheduling on a busy system

• also recall the readers and writers problem

What is a Driver?

• piece of software that talks to a device

• usually quite speci ic / unportable

− tied to the particular device

− and also to the operating system

• often part of the kernel

Drivers and Microkernels

• drivers are excluded frommicrokernels

• but the driver still needs hardware access

− this could be a special memory region

− it may need to react to interrupts

• in principle, everything can be done indirectly

− but this may be quite expensive, too

Interrupt-driven IO

• peripherals are much slower than the CPU

− polling the device is expensive

• the peripheral can signal data availability

− and also readiness to accept more data

• this frees up CPU to do other work in the meantime

Memory-mapped IO

• devices share address space with memory

• more common in contemporary systems

• IO uses the same instructions as memory access

− load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

Direct Memory Access

• allows the device to directly read/write memory

• this is a huge improvement over programmed IO

• interrupts only indicate buffer full/empty

• the device can read and write arbitrary physical mem-

ory

− opens up security / reliability problems

GPU Drivers

• split into a number of components

• graphics output / frame buffer access

• memory management is often done in kernel

• geometry, textures &c. are prepared in-process

• front end API: OpenGL, Direct3D, Vulkan,…

Storage Drivers

• split into adapter, bus and device drivers

• often a single driver per device type

− at least for disk drives and CD-ROMs

• bus enumeration and con iguration

• data addressing and data transfers

Networking Layers

2. Link (Ethernet, WiFi)

3. Network (IP)

4. Transport (TCP, UDP,…)

7. Application (HTTP, SMTP,…)

Networking and Operating Systems

• a network stack is a standard part of an OS

• large part of the stack lives in the kernel



− although this only applies to monolithic kernels

− microkernels use user-space networking

• another chunk is in system libraries & utilities

Kernel-Side Networking

• device drivers for networking hardware

• network and transport protocol layers

• routing and packet iltering ( irewalls)

• networking-related system calls (sockets)

• network ile systems (SMB, NFS)

IP (Internet Protocol)

• uses 4 byte (v4) or 16 byte (v6) addresses

− split into network and host parts

• it is a packet-based protocol

• is a best-effort protocol

− packets may get lost, reordered or corrupted

TCP: Transmission Control Protocol

• a stream-oriented protocol on top of IP

• works like a pipe (transfers a byte sequence)

− must respect delivery order

− and also re-transmit lost packets

• must establish connections

UDP: User (Unreliable) Datagram Protocol

• TCP comes with non-trivial overhead

− and its guarantees are not always required

• UDP is a much simpler protocol

− a very thin wrapper around IP

− with minimal overhead on top of IP

DNS: Domain Name Service

• hierarchical protocol for name resolution

− runs on top of TCP or UDP

• domain names are split into parts using dots

− each domain knows whom to ask for the next bit

− the name database is effectively distributed

NFS (Network File System)

• the traditional UNIX networked ilesystem

• hooked quite deep into the kernel

− assumes generally reliable network (LAN)

• ilesystems are exported for use over NFS

• the client side mounts the NFS-exported volume

Shell

• programming language centered on OS interaction

• rudimentary control low

• untyped, text-centered variables

• dubious error handling

Interactive Shells

• almost all shells have an interactive mode

• the user inputs a single statement on keyboard

• when con irmed, it is immediately executed

• this forms the basis of command-line interfaces

Shell Scripts

• a shell script is an (executable) ile

• in simplest form, it is a sequence of commands

− each command goes on a separate line

− executing a script is about the same as typing it

• but can use structured programming constructs

Terminal

• can print text and read text from a keyboard

• normally everything is printed on the last line

• the text could contain escape (control) sequences

− for printing colourful text or clearing the screen

− also for printing text at a speci ic coordinate

A GUI Stack

• graphics card driver, mode setting

• drawing/painting (usually hardware-accelerated)

• multiplexing (e.g. using windows)

• widgets: buttons, labels, lists,…

• layout: what goes where on the screen

X11 (X Window System)

• a traditional UNIX windowing system

• provides a C API (xlib)

• built-in network transparency (socket-based)

• core protocol version 11 from 1987

Users

• originally a proxy for people

• currently a more general abstraction

• user is the unit of ownership

• many permissions are user-centered

User Management

• the system needs a database of users

• in a network, user identities often need to be shared

• could be as simple as a text ile

− /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

User Authentication

• the user needs to authenticate themselves

• passwords are the most commonly used method

− the system needs to know the right password

− user should be able to change their password

• biometric methods are also quite popular

Ownership

• various objects in an OS can be owned

− primarily iles and processes



• the owner is typically whoever created the object

− ownership can be transferred

− usually at the impetus of the original owner

Access Control Policy

• there are 3 pieces of information

− the subject (user)

− the verb (what is to be done)

− the object (the ile or other resource)

• there are many ways to encode this information

Sandboxing

• tries to limit damage from code execution exploits

• the program drops all privileges it can

− this is done before it touches any of the input

− the attacker is stuck with the reduced privileges

− this can often prevent a successful attack

What is a Hypervisor

• also known as a Virtual Machine Monitor

• allows execution of multiple operating systems

• like a kernel that runs kernels

• isolation and resource sharing

Hypervisor Types

• type 1: bare metal

− standalone, microkernel-like

• type 2: hosted

− runs on top of normal OS

− usually need kernel support

Paravirtual Devices

• special drivers for virtualised devices

− block storage, network, console

− random number generator

• faster than software emulation

− orthogonal to CPU/MMU virtualisation

VM Suspend & Resume

• the VM can be quite easily stopped

• the RAM of a stopped VM can be copied

− e.g. to a ile in the host ilesystem

− along with registers and other state

• and also later loaded and resumed

What are Containers?

• OS-level virtualisation

− e.g. virtualised network stack

− or restricted ile system access

• not a complete virtual computer

• turbocharged processes

Bundling vs Sharing

• bundling makes deployment easier

• the bundled components have known behaviour

• but updates are much trickier

• this also prevents resource sharing

The End

Actually…

• a 2-part, written inal exam

• test: 9/10 required

− pool of 44 questions (in the slides)

• free-form text

− one of the 11 lecture topics

− 1 page A4: be concise but comprehensive


