Experimenting Motion Words: Processing Motion Capture Data

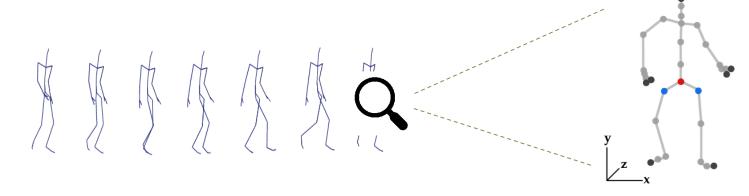
Petra Budíková, Vlastislav Dohnal, Jan Sedmidubský, Pavel Zezula

Outline

- motion words revision
- data whole actions, segmented
- distance density for DTW + L2
- creating motion words
- motion words quality
 - cluster analysis metrics Silhouette, Rand Index, U-ARI, 1NN consistency
 - retrieval quality
- motion sequence metrics
 - DTW with equality
 - Edit distance, N-W, S-W

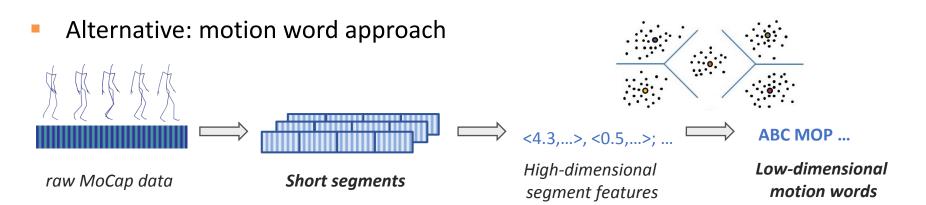
Motion capture (MoCap) data

 Continuous spatio-temporal characteristics of a human motion simplified into a discrete sequence of 3D skeletons



- Many application domains: computer animation, medicine, sports, ...
- Standard motion analysis operations: classification, subsequence search, semantic annotation
 - Common task: determining similarity of two motion sequences

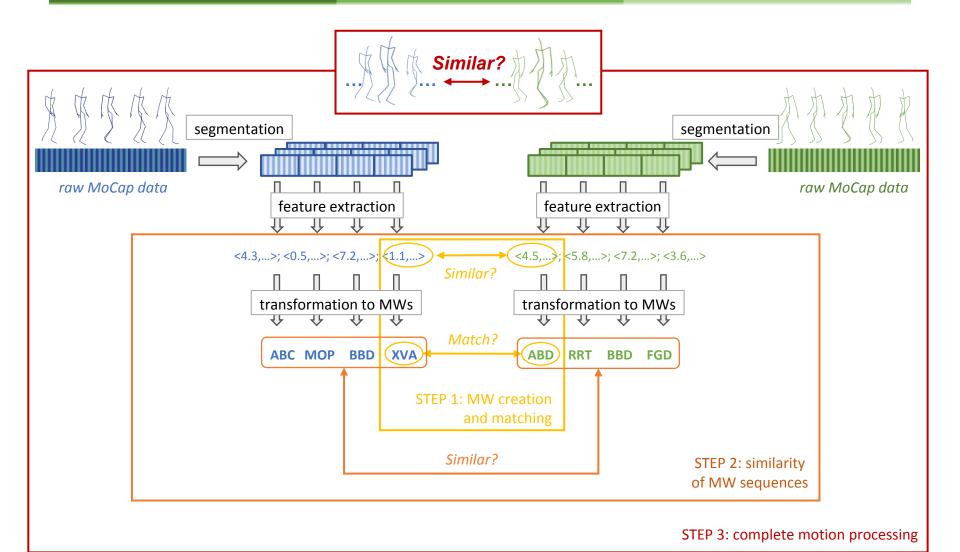
Evaluating motion similarity (cont.)



similarity of two motion sequences = similarity of the sequences of motion words

- Expected advantages:
 - Applicable to a wide range of MoCap processing tasks
 - Applicable for comparing motion sequences of any size
 - Compact motion representation, lower memory requirements
 - Efficient text-processing methods can be applied for indexing and retrieval

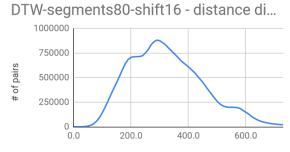
Processing with MWs: overview

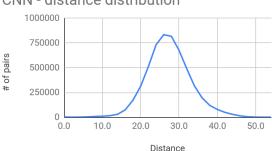


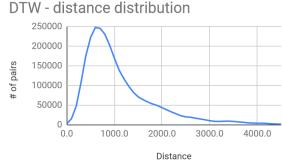
Slide 5/16

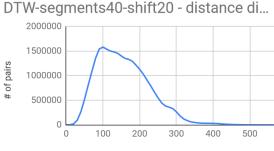
Data Sets (dist func. DTW on L2)

- hdm05-annotations_specific-1fold_130classes.data CNN distance distribution
 - CNN extracted descriptors (4,096 float vectors), 2345 objects
 - Euclidean distance
- hdm05-annotations_specific-coords_normPOSfps12.data
 - raw data 3d positions of joints, FPS reduced, 2345 objects
 - Euclidean distance on joints, DTW on sequences
- hdm05-annotations_specific-coords_normPOSfps12.data
 - segments80-shift16 (28104 objects)
 - segments40-shift20 (27404 objects)







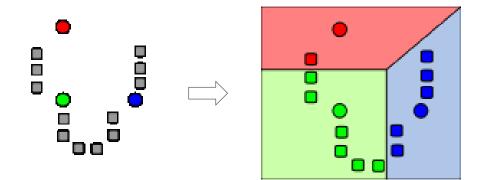


Distance

Distance

Creating Motion Words

- Motion word (basic version)
 - One-dimensional representation of MoCap data segment
 - Obtained by disjoint quantization of segments of MoCap data
 - One motion segment <-> one MW
- Quantization techniques
 - k-medoids
 - Voronoi partitioning with preselected cell centers
 - Incremental (space outliers), random



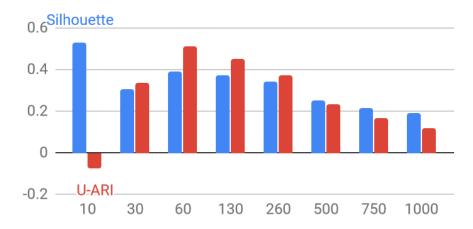
Motion Words Quality

- Cluster Analysis Measures
 - Silhouette coefficient ratio of average distance between segments having the same word (a) to the average distance to other words (b)
 - +1 well clustered
 - -1 poorly clustered
 - Rand Index similarity between two clusterings
 - Unsupervised variant based on two distance thresholds (similar, dissimilar)
 - TP close pairs having the same word
 - TN distant pair having different words
 - FP same word but not close
 - FN different word but close
 - Adjusted Rand Index
 - corrected-for-chance version (subtract agreement of random clustering)
 - Unsupervised variant (U-ARI)
 - INN consistency nearest neighbor of a segment should have the same word

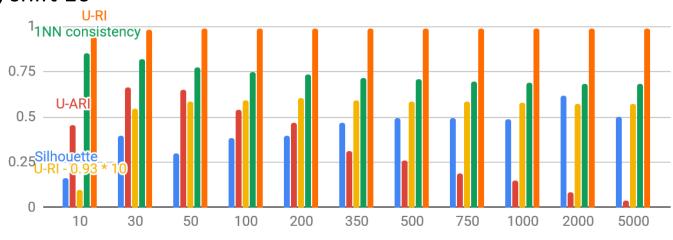
 $s(i) = rac{b(i)-a(i)}{\max\{a(i),b(i)\}}$ ngs $RI = rac{TP+TN}{TP+FP+FN+TN}$

K-medoids Vocabulary Quality

- Raw non-segmented data (hdm05-annotations_specific-coords_normPOS-fps12)
 - Varying pivots 10-1000

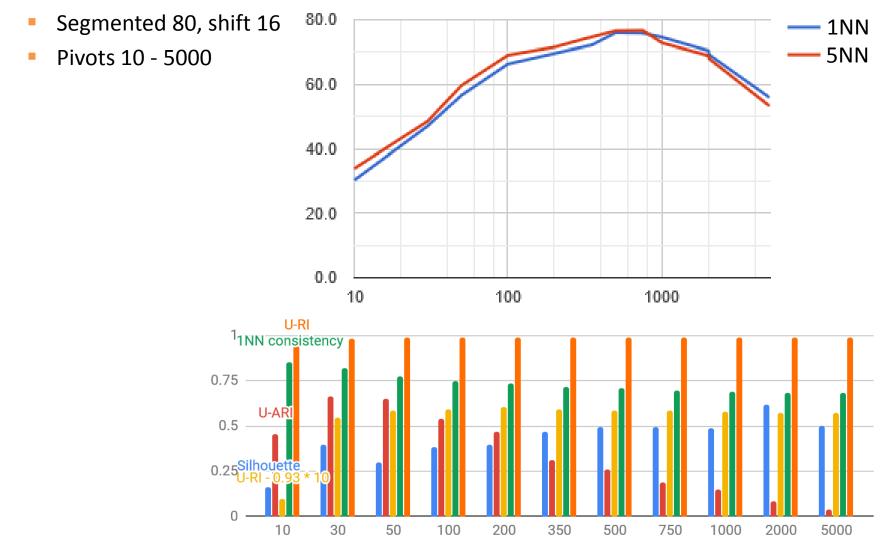


Segmented 80, shift 16



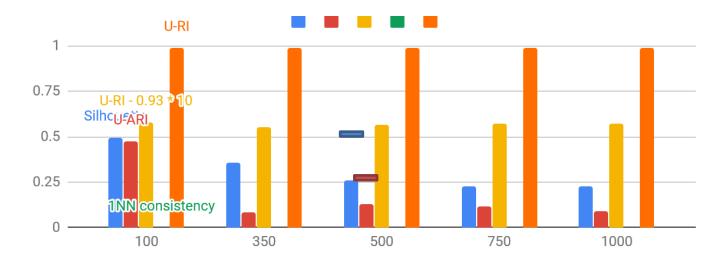
K-medoids Vocabulary Classification Precision

hdm05's ground truth – 130 classes: kNN classifier used



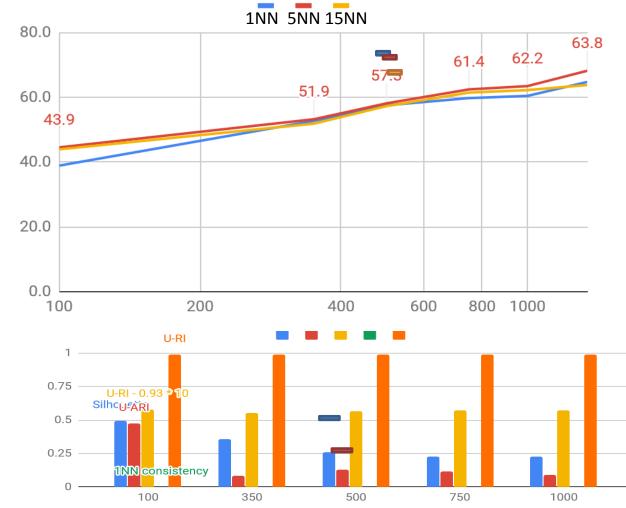
Voronoi Vocabulary Quality

- Random pivots vs. incremental ones
 - 100-1000 random pivots; 500 incremental ones



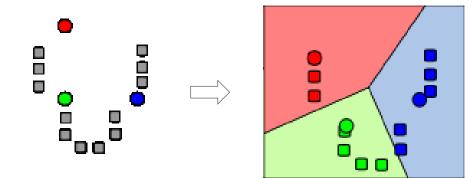
Voronoi Vocabulary Classification Precision

- Random pivots vs. incremental ones
 - 100-1500 random pivots; 500 incremental ones



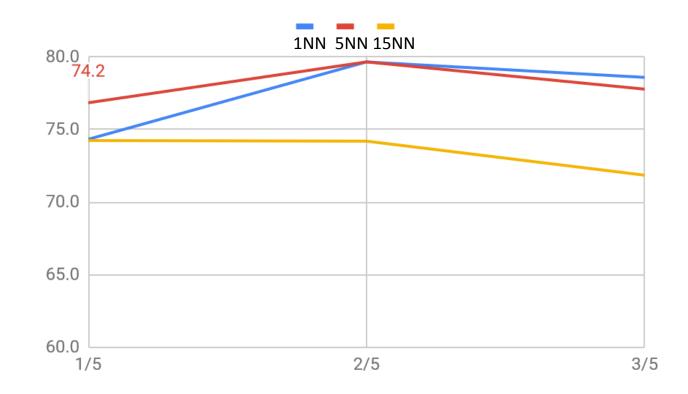
Creating General Motion Words

- Motion word (generalized version)
 - Diminish border problems by multiple independent "clusterings"
- Quantization techniques
 - k-medoids
 - Voronoi partitioning with preselected cell centers
 - Incremental (space outliers), random



Voronoi Vocabulary Classification Precision

5 independent Voronoi partitionings over 500 incremental pivots



Motion Sequence Metrics

- Raw data, 2345 sequences
 - Segments quantized using different vocabulary
 - Sequences from 1 to 52 segments (words)
 - **Distance Density** Edit distance 180000 160000 -k-medoids 1000 140000 120000 k-medoids 500 incremental 100000 80000 60000 40000 20000 0 Smith-Waterman 10 20 50 0 30 60 40
- Noodloman Wunse
- Needleman-Wunsch
- DTW

• • • •

Conclusions

• More experiments to do...

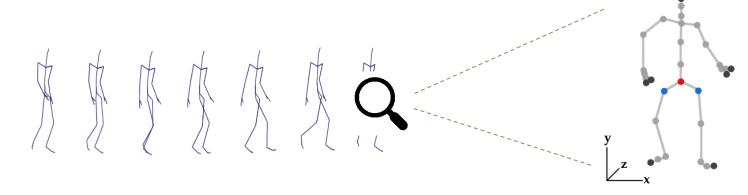
Outline

- WHY motion words?
 - Challenges of motion data processing
 - Limitations of existing approaches
 - Inspiration from related fields
- HOW can motions be represented by motion words?
 - Overview of our approach
 - Discussion of individual steps
 - Preliminary results

WHY motion words?

Motion capture (MoCap) data

 Continuous spatio-temporal characteristics of a human motion simplified into a discrete sequence of 3D skeletons



- Many application domains: computer animation, medicine, sports, ...
- Standard motion analysis operations: classification, subsequence search, semantic annotation
 - Common task: determining similarity of two motion sequences

Evaluating motion similarity

State-of-the-art: features trained for whole actions

<0, 0, 5.2, 8.1, 0, 2.3, -1.1, 0, ...>,

raw MoCap data

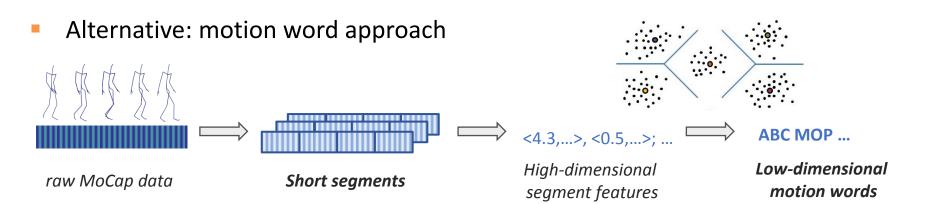
Action-sized segments

High-dimensional segment features

similarity of two motion sequences = similarity of the respective two features

- Advantages:
 - High-precision neural networks can be trained
 - Suitable for action recognition
- Disadvantages:
 - Limited applicability e.g. for subsequence search
 - Typically works for a limited range of segment sizes
 - High memory requirements (data replication) and retrieval costs

Evaluating motion similarity (cont.)

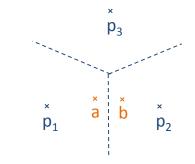


similarity of two motion sequences = similarity of the sequences of motion words

- Expected advantages:
 - Applicable to a wide range of MoCap processing tasks
 - Applicable for comparing motion sequences of any size
 - Compact motion representation, lower memory requirements
 - Efficient text-processing methods can be applied for indexing and retrieval

Inspiration: visual words

- Around 2000, local image descriptors were very popular for image retrieval
 - Effective, but not efficient: a high number (500-3000) of high-dimensional (128 for SIFT) features per single image!
- Josef Sivic, Andrew Zisserman: Video Google: A Text Retrieval Approach to Object Matching in Videos. ICCV 2003.
 - Use clustering to quantize feature descriptors into visual words
 - Apply text-processing techniques
- Many following works:
 - Feature quantization:
 - Trying to overcome efficiency problems:
 - hierarchical k-means, approximate k-means, randomized methods
 - Trying to minimize "border problems":
 - Fuzzy clustering (weighted combination of several visual words for each feature)
 - Consensus clustering (multiple visual vocabularies, different levels of consensus)
 - Spatial verification of candidates



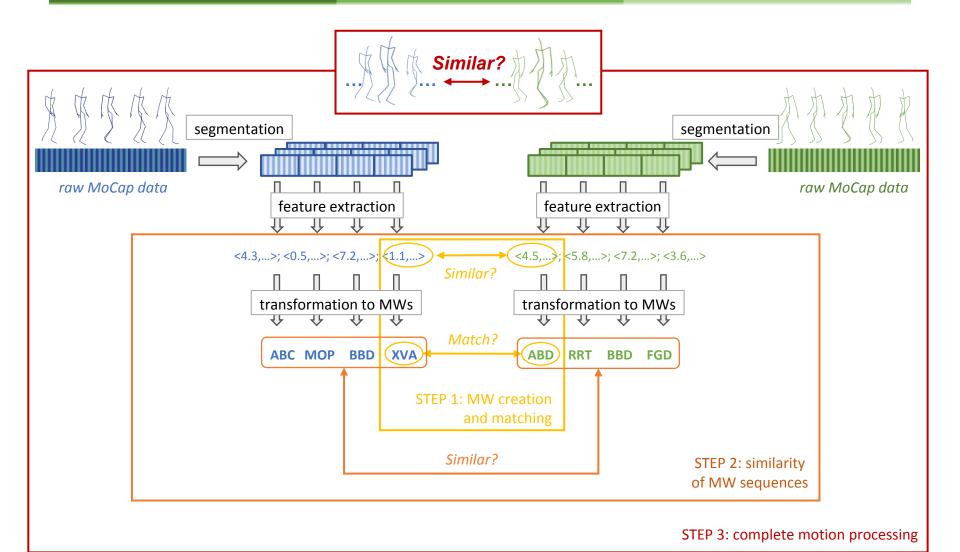
DB image with high BoW similarity

Similar ideas in motion processing

- Rongyi Lan, Huaijiang Sun: Automated human motion segmentation via motion regularities. The Visual Computer 31(1): 35-53 (2015)
 - Cluster individual poses into motion words
 - Agglomerative hierarchical clustering
 - Apply probabilistic modeling to discover motion topics
- Aristidou, A., Cohen-Or, D., Hodgins, J. K., Chrysanthou, Y., & Shamir, A. (2018). Deep Motifs and Motion Signatures. In *SIGGRAPH Asia 2018*
 - Break motion sequences to short-term movements called motion words
 - Cluster the motion words into motion motifs
 - K-means clustering algorithm, mutually exclusive clusters
 - The signature of a motion sequence S is defined as the normalized histogram of its words in all K clusters.
 - For comparisons, use tf-idf weighting and Earth Mover's Distance

Motion words – HOW?

Processing with MWs: overview

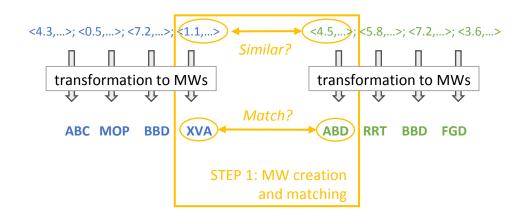


Slide 25/16

Our objectives

- Demonstrate the viability of the MW approach
 - Propose solutions for all phases
 - Show that together they work in a real-world scenario
 - With reasonable quality
 - With high efficiency and scalability (at least in theory)
- Identify problems, provide insight into individual steps using real data
 - There are multiple phases where we can lose information
 - Segmentation, feature extraction, quantization, matching
 - We want to understand the influence of individual techniques, therefore we would like to evaluate each step independently

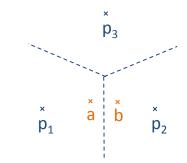
Step 1: MW creation and matching



- Input: segment features and distance function
- Output: motion words and MW matching function
- What do we want?
 - segments similar in the original feature space will be matched in the MW representation
 - dissimilar segments will not be matched

Towards formalization of MWs

- Motion word (basic version)
 - One-dimensional representation of MoCap data segment
 - Obtained by disjoint quantization of the original MoCap data (features and distance measure)
 - Each motion segment is associated with one MW
 - Coarse approximation of the original MoCap similarity function by trivial MW matching function:
 - segments that are mapped on the same MW have similarity 1
 - segments that are mapped different MWs have similarity 0
- Motion word vocabulary
 - Set of available MWs defined by a particular quantization technique
 - Can be seen as a set of equivalence classes over the original feature space
- Problems:
 - Assumes one optimal
 - Border problems are very likely to occur



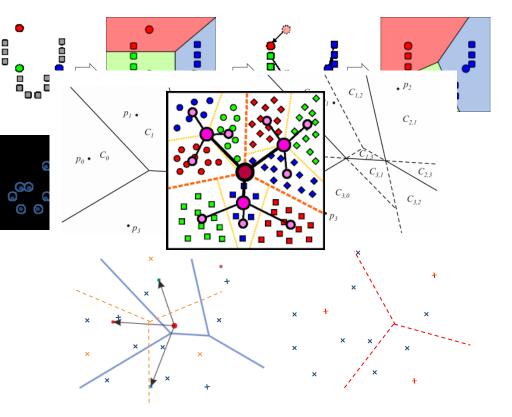
Towards formalization of MWs (cont.)

- Motion word (generalized version)
 - One-dimensional representation of MoCap data segment
 - Obtained by soft (fuzzy, overlapping) quantization of the original MoCap data (features and distance measure)
 - Each motion segment is associated with one or several motion words, potentially with confidences
 - Segment s1 -> motion words {A,B,C}
 - Segment s2 -> motion words {B,C,X}
 - Segment s3 -> motion words {C,X,Y}
 - Non-trivial MW matching function
 - Motion segments are considered similar if all/some/at least k of their MWs match
 - Not transitive, does not define equivalence classes
 - Should provide better approximation of the original similarity between motion segments
- Motion word vocabulary
 - Set of available MWs defined by a particular quantization technique
 - Motion words may not be equivalence classes over the original feature space
 - Motion word A: {s1}
 - Motion word B: {s1,s2}
 - Motion word C: {s1,s2,s3}



Quantizing features into MWs

- Hard clustering
 - Flat partitional clustering
 - k-means clustering
 - Hierarchical clustering
 - Divisive
 - Hierarchical k-means
 - M-index
 - Agglomerative
- Soft clustering
 - Fuzzy assignment to clusters
 - k nearest clusters
 - All clusters with close borders
 - Consensus clustering
- Things to consider:
 - Vocabulary size = number of clusters
 - Text retrieval: hundreds of thousands for full language dictionary
 - Visual retrieval: hundreds of thousands or millions
 - Motion retrieval: ???
 - In Deep Motifs and Motion Signatures they use 100 motifs



MW matching

- Trivial MW matching function: $MW \times MW \rightarrow \{0,1\}$
 - only equal MWs match
- Non-trivial MW matching function:
 - If we do not assume MW confidences: $2^{(MW)} \times 2^{(MW)} \rightarrow \{0,1\}$
 - Two sets of MWs match if the cardinality of their intersection is at least n
 - With MW confidences (fuzzy clustering):

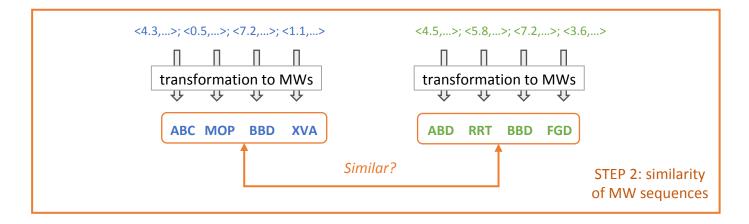
 $2^{(MW \times confidence)} \times 2^{(MW \times confidence)} \rightarrow \{0,1\}$

Future work

Evaluation of MW matching

- Standard cluster evaluation
 - External compares given clustering C to GT clustering C_{GT}
 - Rand index: probability that C and C_{GT} will agree on a random pair of objects
 - Internal no GT, uses intra- and inter-cluster distances
 - Silhouette coefficient: measure of how similar an object is to its own cluster (cohesion) compared to the neighbor cluster (separation)
- Unfortunately, there is no external GT for segment matching
 - However, we can use the distribution of distances in the original feature space to define a partial approximate GT clustering C_{GT-approx}
 - If $dist(o_1, o_2) \le dist_{SIMILAR}$, then o_1 and o_2 belong to the same cluster in $C_{GT-approx}$
 - If $dist(o_1, o_2) > dist_{DISSIMILAR}$, then o_1 and o_2 belong to different clusters in $C_{GT-approx}$
 - Using C_{GT-approx}, we can define "semi-external" evaluation measures
 - E.g. Unsupervised Rand index

Step 2: similarity of MW sequences



- Input: MW sequence and MW matching function
- Output: MW sequence distance function
- What do we want?
 - Depends on application
 - Find very similar motions different only in speed
 - Find similar motions with gaps
 - Detect longer sequences with similar subsequences
 - **-** ...
 - Common requirement: reasonable distribution of distances in the dataset

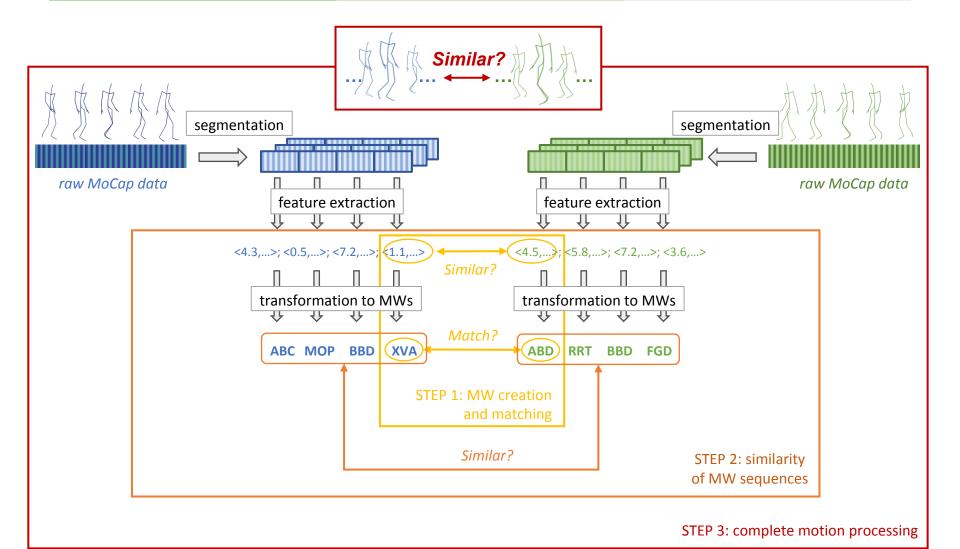
Sequence similarity

- Possible approaches:
 - Set of words
 - Jaccard similarity
 - Bag of words (histograms, vectors)
 - Euclidean distance
 - Cosine distance
 - Earth movers distance
 - Sequence matching
 - Edit distance
 - DTW
 - Sequence alignment
 - Longest common subsequence
 - Shingles + Jaccard similarity

Sequence similarity (cont.)

- Things to consider:
 - Word weighting
 - Stop words
 - Efficient indexing!
- Evaluation
 - Look at distance distribution of MW sequences

Step 3: complete motion processing with MWs

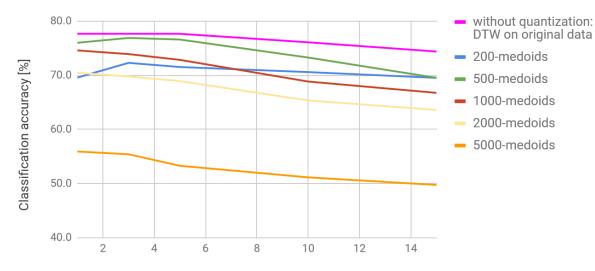


Complete motion processing with MWs

- With respect to a given application, choose suitable segmentation, features, quantization, matching, sequence similarity
- Segmentation
 - Static or semantic?
 - Now: static
 - Future work: try semantic segmentation
 - What is reasonable segment length?
 - Disjoint or overlapping segments?
- Segment features
 - Now: original 3D data + DTW
 - Future work: better segment features
 - Train NN?

Preliminary results

- Application: action recognition
 - 130 classes, 2345 actions
 - kNN classifier
- Settings:
 - Static segmentation, segment length 80 frames, shift 16 frames
 - Segment features: original 3D data + DTW
 - Feature quantization: flat k-medoids
 - Similarity evaluation: trivial MW matching, DTW for MW sequence similarity



The final slide (recap)

- To make the MW idea work, we need to solve:
 - Step 1: MW creation and matching
 - Step 2: similarity of MW sequences
 - Step 3: complete motion processing with MWs
- What we have:
 - First simple solution that provides not-so-bad results
 - A lot of avenues to explore:
 - Soft clustering methods
 - MW sequence similarity measures
 - Different segmentation strategies