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Where do we stand?

We already know many techniques for code-level quality:

* Clean code principles

« SOLID (Single responsibility, Open/closed, Liskov substitution, etc.)
* GRASP (High cohesion, Low coupling, Polymorphism, etc.)

* Bad code smells
* Abstraction levels, dependencies, cohesion, naming conventions, etc.

* Refactoring
* When, where and how

s this enough to ensure code-level quality?
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...and your customer?
What "quality" means to you?

...and your manager?

Stakeholders view Quality goals

- Usability
.. . - Accuracy
visible User Experience . Rejiability
' (customer) - Performance
it works — =7 - Security
- Modularity N
. - Complexity . .
it !o;ks d/ = Code Quality - Resilience Engineering
ood nside developer - Understandability
9 ( P ) - Testability
invisible - Adaptability
- Portability
ft{ will wt?rk Long-term View - If{zlea?r?taa?#ggility Adjustability
also nex -
PR (manager) - Scalability ,,

slly .
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Outline of the lecture

 Bad code smells for
 Performance
* Scalability
* Reliability
* Testability
* Maintainability

Our big five

 Tactics for
» Discussed quality attributes
e Conflicts between them
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Bad code smells for Performance

* Let’s assume our code is perfectly CLEAN

* What about performance?
Are there any performance code smells we could check for?

Let’s discuss four performance smells:
e Smell #1: Redundant Work

* Smell #2: One by One Processing

* Smell #3: Long Critical Section

* Smell #4: Busy Waiting
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Motivating example #1: Fibonacci Sequence

°*1,1,2, 3,5 81 13, 21, ...

* Fib(o) = Fib(2) =1
Fib(n+2) = Fib(n+1) + Fib(n) where n>o0

In Java:

public int fibonacci(int n) {
if(n <= 1) return 1;
return fibonacci(n-1) + fibonacci(n-2);

}
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lasaris

© Patrycja Wegrzynowicz [2]



e
Smell #1: Redundant Work

* Description

* A time-consuming method computes the same many times in a single
execution path

* Consequences

* A slower execution time since the time-consuming operation is
performed multiple times

* Solution
* Call the heavy method only once and store the result for further reuse

Note: Applies also in more complex scenarios, such as caching of database
results in distributed systems.
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Example #1: Fibonacci refactored

Map<Integer,Integer> cachel = new HashMap<Integer,Integer>();

long fibonacci(int n) {

if (cachel.containsKey(n))
return cachel.get(n);

if (n==0 || n==1) {
int varl = 1;
cachel.put(n, varl);
return varl;

}

int var2 = fibonacci(n-1) + fibonacci(n-2);

cachel.put(n, var2);

return var2;

} l.l .
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Motivating example #2: Search

private ArraylList<Item> list = new ArraylList<Item>();

List<Item> findGreaterThan(int value) {
List<Item> ret = new ArraylList<Item>();

for (Item item : list) {
if (item.isGreaterThan(value)) {
ret.add(item);

}

return ret;
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Smell #2: One by One Processing

* Description
* Overused linear search/processing

* Consequences
* Slower performance

e Solution

 Use smarter algorithms and/or data structures (binary search, sorted
collections, map with precomputed search predicates)

Note: Become familiar with the performance of operations you execute on
different types of data structures. And think about the complexity of your
algorithms.
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Example #2: Search refactored

private List<Item> list = new ArraylList<Item>();
private List<Item> varl = new SortedList<Item>( ... );

List<Item> findGreaterThan(int value) {
return sublList(varl, value);
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Motivating example #3: Password Cracking

static List<String> passwordsToCheck;

// launch 100 threads and FOR each thread
void run() {
while (!passwordsToCheck.isEmpty()) {
synchronized(passwordsToCheck) {
if (!passwordsToCheck.isEmpty()) {
String pwd = passwordsToCheck.remove(9);

checkPassword(pwd) ;

¥

void checkPassword() { ... } -.l .
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Smell #3: Long Critical Section

* Description
» Unnecessary code performed in a critical section

* Consequences
* More like single-threaded model

e Solution
 Move the code outside the critical section

Note: Sometimes it is favorable to use multiple locks within a class to enable
partial locking of an object. See an example below.
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Example #3: Password Cracking refactored

static List<String> passwordsToCheck;

// launch 100 threads and FOR each thread
void run() {
while (!passwordsToCheck.isEmpty()) {
synchronized(passwordsToCheck) {
if (!passwordsToCheck.isEmpty()) {
String pwd = passwordsToCheck.remove(9);

}

checkPassword(pwd) ;

¥

void checkPassword() { ... } -.l .
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Example #3.b: Multiple locks within a class

public class MyUpdater { //////
private long varl = 0; private Object lockl
0;

new Object();

private long var2 = private Object lock2 = new Object();
public void updateVarl() { public void updateVarl() {
synchronized(this) { synchronized(lockl) {
// update varl // update varl
} }
} }
public void updateVar2() { public void updatevVar2() {
synchronized(this) { synchronized(lock2) {
// update var2 // update var2
} }
} ~{

) ™~
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Smell #4: Busy Waiting

* Description
 Repeatedly checking if something interesting happened
(e.g. value changed, user input arrived).

* Consequences

* A lot of work with mostly
no value, slowing down
the system

* Solution
* Hollywood principle: ‘Dbsewerl |-7
"Don't call us, we'll call you.”

» Observer pattern
(Gang of Four book)

50

JLalslele

‘ Observer 2 |
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* Reliability
* Testability
* Maintainability

 Tactics for
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e Conflicts between them
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Bad smells (beliefs) for Scalability

* Smell #1: Distribution improves performance

* Not always. Distributed systems must use network /O, more CPU to
maintain coherence, partitioning and replication.

* Smell #2: Just performance

* If you want to get distributed, there are many lessons to learn in reliability,
maintainability, security, testability, and many other domains.

« Smell #3: My framework takes care of it

* Distributed applications must address many new concerns:

* State sharing * Load balancing
 Data consistency * Failure management
» Caching

Fowler’s First Law of Distributed Object Design: Don't distribute your objects.
Advice: Better clean up your application and stay local, if you can-.. ]
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Bad code smells for Reliability

* Smell #1: Input Kludge
 Check all inputs for validity! On all user interfaces and service
interfaces.

* Smell #2: Blind Faith

Do not trust others (limit access to your code, check bug fixes),
nor yourself (check the correctness of your results).

* Smell #3: Poorly Handled Exceptions
* Smell #4: Unguarded Sequential Coupling

» Assumptions on the right ordering of method calls without control.

* Smell #5: Fashionable Coding

* Usage of all the new cool technologies and constructs

ou do not really understand.
Y y iy
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Bad code smells for Testability

* Smell #1: Global State
Do not allow your objects to communicate secretly.

« Smell #2: Lack of Dependency Injection
» Make your dependencies explicit.

* Smell #3: Law of Demeter violation
 Only talk to your immediate friends.

* Smell #4: Misplaced and Hard Coded new Operator

» Do not mix factory and service code.
Note: In over 9o% of cases, Global State is the problem.

General advice: If your code is difficult to test, do not ask how to

hack it, but what is wrong with that code! ally .
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Motivating example #1: Secret Communication

class X {

X() { ...}

public int doSomething() { ... }
}

int a = new X().doSomething();
int b = new X().doSomething();

Does a==b ??
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Motivating example #1: Secret Communication

a = new X() =2

b = new X() =

slly .
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Motivating example #1: Secret Communication

a = new X() =2
a.doSomething()

:::JD '\f’

b = new X() =
b.doSomething()

slly .
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Motivating example #1: Secret Communication

a = new X() =2
a.doSomething()

-=b X

b = new X() =
b.doSomething()
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e
Smell #1: Global State

 Multiple executions can produce different results
* Test flakiness
* Order of tests matters

. What about Singletons?
 Cannot run tests in parallel &

« Unbounded location of state
* Transitive dependencies

 Hidden global states
* System.currentTime()
 Database
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Motivating example #2: Deceptive API

testCharge() {
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

}
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Motivating example #2: Deceptive API

testCharge() {
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

java.lang.NullPointerException
at talk3.CreditCard.charge(CredicCard.java:48)

ally
lasaris

© Misko Hevery [4]



Motivating example #2: Deceptive API

testCharge() {
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);
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Motivating example #2: Deceptive API

testCharge() {
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

java.lang.NullPointerException
at talk3.CreditCardProcessor.init(CredicCardProcessor.java:146)
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Motivating example #2: Deceptive API

testCharge() {
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;

cc = new CreditCard(“1234567890121234”);
cc.charge(100);
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Motivating example #2: Deceptive API

testCharge() {
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;

cc = new CreditCard(“1234567890121234”);
cc.charge(100);

java.lang.NullPointerException
at talk3.0fflineQueue.start(OfflineQueue.java:16)
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Motivating example #2: Deceptive API

testCharge() {
Database.connect(...);
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);
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-
Motivating example #2: Deceptive API

testCharge() {
Database.connect(...);
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

}
* CreditCard APl lies

* It pretends to not need the CreditCardProcessor
even though in reality it does.
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Motivating example #2: Better API

testCharge() {
??
CreditCard cc;
cc = new CreditCard(“1234567890121234”, ccProc);

cc.charge(100);
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Motivating example #2: Better API

testCharge() {
PP
ccProc = new CreditCardProcessor(queue);

CreditCard cc;
cc = new CreditCard(“1234567890121234”, ccProc);

cc.charge(100);
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Motivating example #2: Better API

testCharge() {
??
queue = new OfflineQueue(db);
ccProc = new CreditCardProcessor(queue);
CreditCard cc;
cc = new CreditCard(“1234567890121234, ccProc);
cc.charge(100);
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-
Motivating example #2: Better API

testCharge() {
db = new Database(...);
queue = new OfflineQueue(db);
ccProc = new CreditCardProcessor(queue);
CreditCard cc;
cc = new CreditCard(“1234567890121234, ccProc);
cc.charge(100);
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-
Motivating example #2: Better API

testCharge() {
db = new Database(...);
queue = new OfflineQueue(db);
ccProc = new CreditCardProcessor(queue);
CreditCard cc;
cc = new CreditCard(“1234567890121234, ccProc);
cc.charge(100);

/\ Dependency Injection
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Smell #2: Lack of Dependency Injection

« Dependency injection makes your dependencies explicit
* It does not make the dependencies in your code better or worse
* It only makes them visible

* If there are too many dependencies, do not blame DI!
* The dependencies have always been there, DI only showed them to you

- Dependency injection enforces the order of initialization at compile time
* Compiler helps to prevent illegal test setup

/K Won’t my system get

flooded with arguments
passed around?
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Smell #2: Lack of Dependency Injection

« Dependency injection makes your dependencies explicit
* It does not make the dependencies in your code better or worse
* It only makes them visible

* If there are too many dependencies, do not blame DI!
* The dependencies have always been there, DI only showed them to you

- Dependency injection enforces the order of initialization at compile time

* Compiler helps to
prevent illegal test setup | testCharge() {

db = new Database(...);
/K queue = new OfflineQueue(db);
Won't my system get ccProc = new CreditCardProcessor(queue);
flooded with arguments
passed around?
A cc = new CreditCard(“1234567890121234”, ccProc);
NO cc.charge(100); .
} - . ]
lasaris
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Smell #3: Law of Demeter violation

Law of Demeter: "Only talk to your immediate friends”

* If an object needs links to too many objects, there may be something
wrong with the object

* Revealed by Dependency Injection

* "Our code often smells because we have a few objects doing
too much work, which requires them to know about too
many other objects.” [Brandon Keepers]

* Anice rule of thumb is to check if we are able to describe the purpose of
each class and method without using AND and OR.

K Single Responsibility
Principle -.. .
lasaris
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-
Smell #4: Misplaced and Hard Coded new Operator

To avoid misplace, clearly separate:

* “"Code with a whole bunch of new operators and no if statement”
= code responsible for starting and wiring things, i.e. Factories.

* “Code with a whole bunch of if statements and no new operator”
= code that is actually doing something, i.e. Services.

To avoid hard coding, make sure that:

» Constructor only constructs the object and its dependencies.
* Doing any other work in the constructor can significantly hinder testing.

* You can end up doing unrelated work (e.g. sending emails) every time

you need the object in your test.
oy
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Outline of the lecture
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Bad code smells for Maintainability

* Smell #1: Early Tuning

» Never compromise code clarity for premature code optimization.

* Smell #2: Super-Flexibility
* “Flexibility breeds complexity.”

* Do not shoot for something that is flexible from the early beginning.
Shoot for something that is simple and build flexibility upon that.

* Smell #3: Simple = Stupid, Complex = Smart
» “Too complicated answers are always wrong,
no matter what the question was.”

 Even very smart systems can be based on simple structures.
Look at embedded systems or human brain!
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Tactics for Performance

» Tactic #1: Take a profiler into action

* Do not guess where the performance problemiis.
Start your profiler and find the bottlenecks objectively.

* It helps you to understand what is happening in the background.

* Tactic #2: Examine complexity and frequency of your computations
« Complexity — Maybe you can do the thing more efficiently.
 Frequency — Maybe you can do the thing less often.

* Tactic #3: Concurrency
« Only if you understand all aspects and consequences of parallel execution.

 Tactic #4: Control the use of resources
* Balance the load, control access, cache, replicate, etc.
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Tactics for Reliability

» Tactic #1: Monitor what is going on

* Acceptance checking for individual methods and code fragments, events collection,
processing and logging.

* Tactic #2: Handle exceptions carefully

 Think twice about exception handling strategy and responsibilities inside the
system.

» Tactic #3: Make your system fault tolerant
» Redundancy and self-healing, e.g. seamless rebinding to a new service provider.

* Tactic #4: Implement restart/recovery capabilities
* Redirection to a filled-in form when the form submission fails.
 System diagnostics and clean-up after major failure.

Note 1: We only care about SW reliability (because this is a Software Quality course), not HW,
although HW fault tolerance is a very interesting topic.

Note 2: We assume that we do not deal with an ultra-reliable system. -..
If so, other mechanisms would need to be in place (e.g. n-version programming). lasar\is
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Tactics for Testability

e Tactic #1: Write CLEAN code

* Simplicity matters.

* Tactic #2: Avoid global state
* Including its hidden forms.

* Tactic #3: Separate interfaces from implementation
* Make it possible to exchange implementations during testing.

* Tactic #4: Make your dependencies explicit

* It makes the life of developers/testers easier, and
then even compiler can help to inspect it.

» Tactic #5: Separate factories from business logic

* During testing it isimportant to have access to each of these parts
without mixing it with the other.
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-
Tactics for Maintainability

e Tactic #1: Write CLEAN code

» “Premature optimization is the root of all evil.”

* Clean code is not only easier to change, but also easier to optimize
(e.g. for performance, scalability).

* Tactic #2: Get ready for change
* “"Change is the only constant.”
 Understand — Interfaces, Inheritance, Polymorphism, Design Patterns.

* Tactic #3: Design your SW Architecture carefully
 Proper modularization of your system is one of the keys for maintainability.

* Tactic #4: Watch all dependencies
 Check — Law of Demeter, High Cohesion, Low Coupling.
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Conflicts between quality attributes

bad news .
A no way to optimize all at once

Security /
>~Q Usability Security

Re!r'abﬂftyj/ peﬁom;:cg

Understandability

Performance Reliability

Maintainabilty Portability
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Takeaways

* Bad Code Smells apply also to quality attributes.
» They are just not that easy to Google.

* Tactics in comparison to Bad Code Smells are usually defined
on a higher level of abstraction.

* Each tactic for a specific quality attribute can act as an anti-
pattern for a different quality attribute.
 Thatis where conflicts between quality attributes emerge.

Barbora Bihnova, FI MU Brno thanks for listening

buhnova@fi.muni.cz

www.fi.muni.cz/~buhnova contact me
N —
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