FOCUS ON QUALITY ATTRIBUTES

AND CONFLICTS BETWEEN THEM

Barbora BUuhnova
buhnova@fi.muni.cz

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS -..
MASARYK UNIVERSITY, BRNO 1 :
’ dSdalr'ls

Where do we stand?

We already know many techniques for code-level quality:

* Clean code principles

« SOLID (Single responsibility, Open/closed, Liskov substitution, etc.)
* GRASP (High cohesion, Low coupling, Polymorphism, etc.)

* Bad code smells
* Abstraction levels, dependencies, cohesion, naming conventions, etc.

* Refactoring
* When, where and how

s this enough to ensure code-level quality?

ally
lasaris

© B. BUhnova, PV260 Software Quality

...and your customer?
What "quality" means to you?

...and your manager?

Stakeholders view Quality goals

- Usability
.. . - Accuracy
visible User Experience . Rejiability
' (customer) - Performance
it works — =7 - Security
- Modularity N
. - Complexity . .
it !o;ks d/ = Code Quality - Resilience Engineering
ood nside developer - Understandability
9 (P) - Testability
invisible - Adaptability
- Portability
ft{ will wt?rk Long-term View - If{zlea?r?taa?#ggility Adjustability
also nex -
PR (manager) - Scalability ,,

slly .
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

 Bad code smells for
 Performance
* Scalability
* Reliability
* Testability
* Maintainability

Our big five

 Tactics for
» Discussed quality attributes
e Conflicts between them

ally
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

» Bad code smells for
 Performance
* Scalability
* Reliability
* Testability
* Maintainability

 Tactics for
» Discussed quality attributes
e Conflicts between them

ally
lasaris

© B. BUhnova, PV260 Software Quality

Bad code smells for Performance

* Let’s assume our code is perfectly CLEAN

* What about performance?
Are there any performance code smells we could check for?

Let’s discuss four performance smells:
e Smell #1: Redundant Work

* Smell #2: One by One Processing

* Smell #3: Long Critical Section

* Smell #4: Busy Waiting

ally
lasaris

© B. BUhnova, PV260 Software Quality

Motivating example #1: Fibonacci Sequence

°*1,1,2, 3,5 81 13, 21, ...

* Fib(o) = Fib(2) =1
Fib(n+2) = Fib(n+1) + Fib(n) where n>o0

In Java:

public int fibonacci(int n) {
if(n <= 1) return 1;
return fibonacci(n-1) + fibonacci(n-2);

}

ally
lasaris

© Patrycja Wegrzynowicz [2]

e
Smell #1: Redundant Work

* Description

* A time-consuming method computes the same many times in a single
execution path

* Consequences

* A slower execution time since the time-consuming operation is
performed multiple times

* Solution
* Call the heavy method only once and store the result for further reuse

Note: Applies also in more complex scenarios, such as caching of database
results in distributed systems.

ally
lasaris

© Patrycja Wegrzynowicz [2]

Example #1: Fibonacci refactored

Map<Integer,Integer> cachel = new HashMap<Integer,Integer>();

long fibonacci(int n) {

if (cachel.containsKey(n))
return cachel.get(n);

if (n==0 || n==1) {
int varl = 1;
cachel.put(n, varl);
return varl;

}

int var2 = fibonacci(n-1) + fibonacci(n-2);

cachel.put(n, var2);

return var2;

} l.l .
lasaris

© Patrycja Wegrzynowicz [2]

Motivating example #2: Search

private ArraylList<Item> list = new ArraylList<Item>();

List<Item> findGreaterThan(int value) {
List<Item> ret = new ArraylList<Item>();

for (Item item : list) {
if (item.isGreaterThan(value)) {
ret.add(item);

}

return ret;

ally
lasaris

© Patrycja Wegrzynowicz [2]

-
Smell #2: One by One Processing

* Description
* Overused linear search/processing

* Consequences
* Slower performance

e Solution

 Use smarter algorithms and/or data structures (binary search, sorted
collections, map with precomputed search predicates)

Note: Become familiar with the performance of operations you execute on
different types of data structures. And think about the complexity of your
algorithms.

ally
lasaris

© Patrycja Wegrzynowicz [2]

Example #2: Search refactored

private List<Item> list = new ArraylList<Item>();
private List<Item> varl = new SortedList<Item>(...);

List<Item> findGreaterThan(int value) {
return sublList(varl, value);

ally
lasaris

© Patrycja Wegrzynowicz [2]

Motivating example #3: Password Cracking

static List<String> passwordsToCheck;

// launch 100 threads and FOR each thread
void run() {
while (!passwordsToCheck.isEmpty()) {
synchronized(passwordsToCheck) {
if (!passwordsToCheck.isEmpty()) {
String pwd = passwordsToCheck.remove(9);

checkPassword(pwd) ;

¥

void checkPassword() { ... } -.l .
lasaris

© Patrycja Wegrzynowicz [2]

-
Smell #3: Long Critical Section

* Description
» Unnecessary code performed in a critical section

* Consequences
* More like single-threaded model

e Solution
 Move the code outside the critical section

Note: Sometimes it is favorable to use multiple locks within a class to enable
partial locking of an object. See an example below.

ally
lasaris

© Patrycja Wegrzynowicz [2]

Example #3: Password Cracking refactored

static List<String> passwordsToCheck;

// launch 100 threads and FOR each thread
void run() {
while (!passwordsToCheck.isEmpty()) {
synchronized(passwordsToCheck) {
if (!passwordsToCheck.isEmpty()) {
String pwd = passwordsToCheck.remove(9);

}

checkPassword(pwd) ;

¥

void checkPassword() { ... } -.l .
lasaris

© Patrycja Wegrzynowicz [2]

-
Example #3.b: Multiple locks within a class

public class MyUpdater { //////
private long varl = 0; private Object lockl
0;

new Object();

private long var2 = private Object lock2 = new Object();
public void updateVarl() { public void updateVarl() {
synchronized(this) { synchronized(lockl) {
// update varl // update varl
} }
} }
public void updateVar2() { public void updatevVar2() {
synchronized(this) { synchronized(lock2) {
// update var2 // update var2
} }
} ~{

) ™~

© B. BUhnova, PV260 Software Quality

ally
lasaris

Smell #4: Busy Waiting

* Description
 Repeatedly checking if something interesting happened
(e.g. value changed, user input arrived).

* Consequences

* A lot of work with mostly
no value, slowing down
the system

* Solution
* Hollywood principle: ‘Dbsewerl |-7
"Don't call us, we'll call you.”

» Observer pattern
(Gang of Four book)

50

JLalslele

‘ Observer 2 |

ally
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

» Bad code smells for
 Performance
* Scalability
* Reliability
* Testability
* Maintainability

 Tactics for
» Discussed quality attributes
e Conflicts between them

ally
lasaris

© B. BUhnova, PV260 Software Quality

-
Bad smells (beliefs) for Scalability

* Smell #1: Distribution improves performance

* Not always. Distributed systems must use network /O, more CPU to
maintain coherence, partitioning and replication.

* Smell #2: Just performance

* If you want to get distributed, there are many lessons to learn in reliability,
maintainability, security, testability, and many other domains.

« Smell #3: My framework takes care of it

* Distributed applications must address many new concerns:

* State sharing * Load balancing
 Data consistency * Failure management
» Caching

Fowler’s First Law of Distributed Object Design: Don't distribute your objects.
Advice: Better clean up your application and stay local, if you can-..]
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

» Bad code smells for
 Performance
* Scalability
* Reliability
* Testability
* Maintainability

 Tactics for
» Discussed quality attributes
e Conflicts between them

ally
lasaris

© B. BUhnova, PV260 Software Quality

Bad code smells for Reliability

* Smell #1: Input Kludge
 Check all inputs for validity! On all user interfaces and service
interfaces.

* Smell #2: Blind Faith

Do not trust others (limit access to your code, check bug fixes),
nor yourself (check the correctness of your results).

* Smell #3: Poorly Handled Exceptions
* Smell #4: Unguarded Sequential Coupling

» Assumptions on the right ordering of method calls without control.

* Smell #5: Fashionable Coding

* Usage of all the new cool technologies and constructs

ou do not really understand.
Y y iy
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

» Bad code smells for
 Performance
* Scalability
* Reliability
* Testability
* Maintainability

 Tactics for
» Discussed quality attributes
e Conflicts between them

ally
lasaris

© B. BUhnova, PV260 Software Quality

-
Bad code smells for Testability

* Smell #1: Global State
Do not allow your objects to communicate secretly.

« Smell #2: Lack of Dependency Injection
» Make your dependencies explicit.

* Smell #3: Law of Demeter violation
 Only talk to your immediate friends.

* Smell #4: Misplaced and Hard Coded new Operator

» Do not mix factory and service code.
Note: In over 9o% of cases, Global State is the problem.

General advice: If your code is difficult to test, do not ask how to

hack it, but what is wrong with that code! ally .
lasaris

© B. BUhnova, PV260 Software Quality

Motivating example #1: Secret Communication

class X {

X() { ...}

public int doSomething() { ... }
}

int a = new X().doSomething();
int b = new X().doSomething();

Does a==b ??

ally
lasaris

© Misko Hevery [4]

Motivating example #1: Secret Communication

a = new X() =2

b = new X() =

slly .
lasaris

© Misko Hevery [4]

Motivating example #1: Secret Communication

a = new X() =2
a.doSomething()

:::JD '\f’

b = new X() =
b.doSomething()

slly .
lasaris

© Misko Hevery [4]

Motivating example #1: Secret Communication

a = new X() =2
a.doSomething()

-=b X

b = new X() =
b.doSomething()

ally
lasaris

© Misko Hevery [4]

e
Smell #1: Global State

 Multiple executions can produce different results
* Test flakiness
* Order of tests matters

. What about Singletons?
 Cannot run tests in parallel &

« Unbounded location of state
* Transitive dependencies

 Hidden global states
* System.currentTime()
 Database

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Deceptive API

testCharge() {
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

}

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Deceptive API

testCharge() {
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

java.lang.NullPointerException
at talk3.CreditCard.charge(CredicCard.java:48)

ally
lasaris

© Misko Hevery [4]

Motivating example #2: Deceptive API

testCharge() {
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

ally
lasaris

© Misko Hevery [4]

Motivating example #2: Deceptive API

testCharge() {
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

java.lang.NullPointerException
at talk3.CreditCardProcessor.init(CredicCardProcessor.java:146)

ally
lasaris

© Misko Hevery [4]

Motivating example #2: Deceptive API

testCharge() {
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;

cc = new CreditCard(“1234567890121234”);
cc.charge(100);

ally
lasaris

© Misko Hevery [4]

Motivating example #2: Deceptive API

testCharge() {
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;

cc = new CreditCard(“1234567890121234”);
cc.charge(100);

java.lang.NullPointerException
at talk3.0fflineQueue.start(OfflineQueue.java:16)

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Deceptive API

testCharge() {
Database.connect(...);
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Deceptive API

testCharge() {
Database.connect(...);
OfflineQueue.start();
CreditCardProcessor.init();
CreditCard cc;
cc = new CreditCard(“1234567890121234”);
cc.charge(100);

}
* CreditCard APl lies

* It pretends to not need the CreditCardProcessor
even though in reality it does.

ally
lasaris

© Misko Hevery [4]

Motivating example #2: Better API

testCharge() {
??
CreditCard cc;
cc = new CreditCard(“1234567890121234”, ccProc);

cc.charge(100);

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Better API

testCharge() {
PP
ccProc = new CreditCardProcessor(queue);

CreditCard cc;
cc = new CreditCard(“1234567890121234”, ccProc);

cc.charge(100);

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Better API

testCharge() {
??
queue = new OfflineQueue(db);
ccProc = new CreditCardProcessor(queue);
CreditCard cc;
cc = new CreditCard(“1234567890121234, ccProc);
cc.charge(100);

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Better API

testCharge() {
db = new Database(...);
queue = new OfflineQueue(db);
ccProc = new CreditCardProcessor(queue);
CreditCard cc;
cc = new CreditCard(“1234567890121234, ccProc);
cc.charge(100);

ally
lasaris

© Misko Hevery [4]

-
Motivating example #2: Better API

testCharge() {
db = new Database(...);
queue = new OfflineQueue(db);
ccProc = new CreditCardProcessor(queue);
CreditCard cc;
cc = new CreditCard(“1234567890121234, ccProc);
cc.charge(100);

/\ Dependency Injection

ally
lasaris

© Misko Hevery [4]

Smell #2: Lack of Dependency Injection

« Dependency injection makes your dependencies explicit
* It does not make the dependencies in your code better or worse
* It only makes them visible

* If there are too many dependencies, do not blame DI!
* The dependencies have always been there, DI only showed them to you

- Dependency injection enforces the order of initialization at compile time
* Compiler helps to prevent illegal test setup

/K Won’t my system get

flooded with arguments
passed around?

ally
lasaris

© Misko Hevery [4]

Smell #2: Lack of Dependency Injection

« Dependency injection makes your dependencies explicit
* It does not make the dependencies in your code better or worse
* It only makes them visible

* If there are too many dependencies, do not blame DI!
* The dependencies have always been there, DI only showed them to you

- Dependency injection enforces the order of initialization at compile time

* Compiler helps to
prevent illegal test setup | testCharge() {

db = new Database(...);
/K queue = new OfflineQueue(db);
Won't my system get ccProc = new CreditCardProcessor(queue);
flooded with arguments
passed around?
A cc = new CreditCard(“1234567890121234”, ccProc);
NO cc.charge(100); .
} - .]
lasaris

CreditCard cc;

© Misko Hevery [4]

Smell #3: Law of Demeter violation

Law of Demeter: "Only talk to your immediate friends”

* If an object needs links to too many objects, there may be something
wrong with the object

* Revealed by Dependency Injection

* "Our code often smells because we have a few objects doing
too much work, which requires them to know about too
many other objects.” [Brandon Keepers]

* Anice rule of thumb is to check if we are able to describe the purpose of
each class and method without using AND and OR.

K Single Responsibility
Principle -.. .
lasaris

© Misko Hevery [4], Brandon Keepers [3]

-
Smell #4: Misplaced and Hard Coded new Operator

To avoid misplace, clearly separate:

* “"Code with a whole bunch of new operators and no if statement”
= code responsible for starting and wiring things, i.e. Factories.

* “Code with a whole bunch of if statements and no new operator”
= code that is actually doing something, i.e. Services.

To avoid hard coding, make sure that:

» Constructor only constructs the object and its dependencies.
* Doing any other work in the constructor can significantly hinder testing.

* You can end up doing unrelated work (e.g. sending emails) every time

you need the object in your test.
oy

lasaris

© Misko Hevery [4]

Outline of the lecture

* Bad code smells for
* Performance
* Scalability
* Reliability
* Testability
* Maintainability

 Tactics for
» Discussed quality attributes
e Conflicts between them

ally
lasaris

© B. BUhnova, PV260 Software Quality

Bad code smells for Maintainability

* Smell #1: Early Tuning

» Never compromise code clarity for premature code optimization.

* Smell #2: Super-Flexibility
* “Flexibility breeds complexity.”

* Do not shoot for something that is flexible from the early beginning.
Shoot for something that is simple and build flexibility upon that.

* Smell #3: Simple = Stupid, Complex = Smart
» “Too complicated answers are always wrong,
no matter what the question was.”

 Even very smart systems can be based on simple structures.
Look at embedded systems or human brain!

ally
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

 Bad code smells for
 Performance
* Scalability
* Reliability
* Testability
* Maintainability

 Tactics for
« Discussed quality attributes
e Conflicts between them

ally
lasaris

© B. BUhnova, PV260 Software Quality

Tactics for Performance

» Tactic #1: Take a profiler into action

* Do not guess where the performance problemiis.
Start your profiler and find the bottlenecks objectively.

* It helps you to understand what is happening in the background.

* Tactic #2: Examine complexity and frequency of your computations
« Complexity — Maybe you can do the thing more efficiently.
 Frequency — Maybe you can do the thing less often.

* Tactic #3: Concurrency
« Only if you understand all aspects and consequences of parallel execution.

 Tactic #4: Control the use of resources
* Balance the load, control access, cache, replicate, etc.

ally
lasaris

© B. BUhnova, PV260 Software Quality

-
Tactics for Reliability

» Tactic #1: Monitor what is going on

* Acceptance checking for individual methods and code fragments, events collection,
processing and logging.

* Tactic #2: Handle exceptions carefully

 Think twice about exception handling strategy and responsibilities inside the
system.

» Tactic #3: Make your system fault tolerant
» Redundancy and self-healing, e.g. seamless rebinding to a new service provider.

* Tactic #4: Implement restart/recovery capabilities
* Redirection to a filled-in form when the form submission fails.
 System diagnostics and clean-up after major failure.

Note 1: We only care about SW reliability (because this is a Software Quality course), not HW,
although HW fault tolerance is a very interesting topic.

Note 2: We assume that we do not deal with an ultra-reliable system. -..
If so, other mechanisms would need to be in place (e.g. n-version programming). lasar\is

© B. BUhnova, PV260 Software Quality

-
Tactics for Testability

e Tactic #1: Write CLEAN code

* Simplicity matters.

* Tactic #2: Avoid global state
* Including its hidden forms.

* Tactic #3: Separate interfaces from implementation
* Make it possible to exchange implementations during testing.

* Tactic #4: Make your dependencies explicit

* It makes the life of developers/testers easier, and
then even compiler can help to inspect it.

» Tactic #5: Separate factories from business logic

* During testing it isimportant to have access to each of these parts
without mixing it with the other.

ally
lasaris

© B. BUhnova, PV260 Software Quality

-
Tactics for Maintainability

e Tactic #1: Write CLEAN code

» “Premature optimization is the root of all evil.”

* Clean code is not only easier to change, but also easier to optimize
(e.g. for performance, scalability).

* Tactic #2: Get ready for change
* “"Change is the only constant.”
 Understand — Interfaces, Inheritance, Polymorphism, Design Patterns.

* Tactic #3: Design your SW Architecture carefully
 Proper modularization of your system is one of the keys for maintainability.

* Tactic #4: Watch all dependencies
 Check — Law of Demeter, High Cohesion, Low Coupling.

ally
lasaris

© B. BUhnova, PV260 Software Quality

Conflicts between quality attributes

bad news .
A no way to optimize all at once

Security /
>~Q Usability Security

Re!r'abﬂftyj/ peﬁom;:cg

Understandability

Performance Reliability

Maintainabilty Portability

ally
lasaris

© B. BUhnova, PV260 Software Quality

Takeaways

* Bad Code Smells apply also to quality attributes.
» They are just not that easy to Google.

* Tactics in comparison to Bad Code Smells are usually defined
on a higher level of abstraction.

* Each tactic for a specific quality attribute can act as an anti-
pattern for a different quality attribute.
 Thatis where conflicts between quality attributes emerge.

Barbora Bihnova, FI MU Brno thanks for listening

buhnova@fi.muni.cz

www.fi.muni.cz/~buhnova contact me
N —

ally
lasaris

© B. BUhnova, PV260 Software Quality

mailto:buhnova@fi.muni.cz
http://www.fi.muni.cz/~buhnova

References

* [1] Martin Fowler et al. Refactoring: Improving the Design of Existing Code, Addison-Wesley, Mar
2012. ISBN 978-0133065268.

* [2] Patrycja Wegrzynowicz. Automated Refactoring of Performance and Concurrency AntiPatterns.
YouTube, Jan 2013. Available at https://www.youtube.com/watch?v=XLCbb6dcsJQ.

* [3] Brandon Keepers. Why Our Code Smells. YouTube, June 2012. Available at
https://www.youtube.com/watch?v=JxPKIJUKkFQw.

* [4] MiSko Hevery. The Clean Code Talks - Global State and Singletons. YouTube, Nov 2008. Available
at https://www.youtube.com/watch?v=-FRm3VPhsel.

* [5] MiSko Hevery. Guide: Writing Testable Code, Google, Nov 2008. Available in the int. syllabus in IS.

* [6] Slava Imeshev. Architecture for Scaling Java Applications to Multiple Servers. YouTube, Aug 2012.
Available at https://www.youtube.com/watch?v=DhKpgGDXRCk.

* [7] Lars Lundberg et al. (editors). Software quality attributes and trade-offs, Blekinge Institute of
Technology, June 200s.

* [8] Mikael Svahnberg et al. A Method for Understanding Quality Attributes in Software Architecture
Structures. In Proc. of SEKE'02, pages 819-826. ACM New York, 2002. ISBN:1-58113-556-4.

* [9] Michael Feathers. Escaping the Technical Debt Cycle. YouTube, Oct 2014. .
Available at https://www.youtube.com/watch?v=7hL6g1aTGvo. g=g .

lasari

© B. BUhnova, PV260 Software Quality

https://www.youtube.com/watch?v=XLCbb6dcsJQ
https://www.youtube.com/watch?v=JxPKljUkFQw
https://www.youtube.com/watch?v=-FRm3VPhseI
https://www.youtube.com/watch?v=DhKpqGDXRCk
https://www.youtube.com/watch?v=7hL6g1aTGvo

