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Part I

Basic concepts and Examples of Randomized Algorithms



Chapter 1. INTRODUCTION

The main aim of the first chapter of the lecture is:

1 To present several views of randomized algorithms

2 to present several interesting examples of simple randomized algorithms;

3 to demonstrate advantages of randomized algorithms and methods of their analysis.

The second aim of this chapter is to introduce main complexity classes for
randomized algorithms.

Third aim is to show relations between randomized and deterministic complexity
classes.

Fourth aim is to discuss in some details puzzling concept of randomness, at least in
some details.
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Revolution in designing algorithms

The idea that randomized algorithm can be VERY
useful can be seen as the main revolutionary idea
in the design of algorithms in the last 2200 years.
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Deterministic versus randomized algorithms

Usual (deterministic) algorithm is a set of rules how to solve some problem, step by step,
in which each next step is uniquely determined. As a consequence, each time a
deterministic algorithm A is applied on the same input it produces the same output.

Randomized (probabilistic) algorithm is a set of rules how to solve some problem, step by
step, in which each next step is chosen, with a determined probability, from a finite set of
possible steps. As a consequence, a randomized algorithm A may produce different
outputs when applied more than one times to the same input.
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WHY to use RANDOMIZED ALGORITHMS?

Randomized algorithms are such algorithms that may make random choices (such as
ones obtained using coin-tossing) concerning the ways they have to continue, during their
executions. As a consequence, their outcomes do not depend only on their (external)
problem inputs.

Advantages: There are several important reasons why randomized algorithms are of
increasing importance:

1 Randomized algorithms are often faster than deterministic ones for the same
problem either from the worst-case asymptotic point of view or/and from the
numerical implementations point of view;

2 Randomized algorithms are often (much) simpler than deterministic ones for the
same problem;

3 Randomized algorithms are often easier to analyze and/or reason about than
deterministic ones especially when applied in counter-intuitive settings;

4 Randomized algorithms have often more easily interpretable outputs, which is of
interests in applications where analyst’s time rather than just computation time is
also of interest;

5 Randomized numerical algorithms are often better organized better to exploit
parallelism of modern computer architectures.
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WHY CAN RANDOMIZED ALGORITHMS BE MORE EFFICIENT?

Two simplified explanations:

(1) A systematic search for a solution must often go through a time-consuming
computation paths corresponding to some (few) very unlikely pathological cases. A
randomized search for a solution can often avoid, with a sufficiently large
probability, such time-consuming paths.

(2) For some algorithmic problems P, for each deterministic algorithm for P there are
also bad inputs that force the algorithm to do very long computations. However, for P
there may be also sets of deterministic algorithms such that for any input most of these
algorithms are fast and a random choice of one of the algorithms from such a set
provides very likely fast a proper output.

Moreover, quantum algorithms are, in principle, randomized.

Randomized complexity classes offer also a plausible way to extend the very important
feasibility concept.
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VIEWS of RANDOMIZED ALGORITHMS:

A randomized algorithm A is an algorithm that at each new run receives, in addition to
its input i , a new stream/string r of random bits which are then used to specify
outcomes of the subsequent random choices (or coin tossing) during the execution of the
algorithm.

Streams r of random bits are assumed to be independent of the input i for the algorithm
A.

input

random bits

randomized

algorithm

i −

r −

output i,r

Important comment: Repeated runs of a randomized algorithm with the same input
data (but not same random input strings) may not, in general, produce the same results.
Outcomes, of A(i , r), will depend not only on i , but also on r .
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A BIT of HISTORY

The concept of algorithm is very old. It goes back to Euclid and Al Khwarizmi in around
300 BC and 800 AC.

One of the key points of this concept was that each time a (deterministic) algorithm
takes the same input it provides the same output.

The concept of randomized algorithm is from 20th century and got larger attention
practically only after 1977.

One of the key points of this concept is that each time a (randomized) algorithm takes
the same input it may provide different outcomes.
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MODELS of RANDOMIZED ALGORITHMS I.

A randomized algorithm can be seen also in other ways:

As an algorithm that may, from time to time, toss a coin, or read a (next) random
bit from its special input stream of random bits, and then proceeds depending on
the outcome of the coin tossing (or of a chosen random bit).

As a nondeterministic-like algorithm which has a probability assigned to each
possible transition.

As a probability distribution on a set of deterministic algorithms - {Ai , pi}ni=1.
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RANDOMIZED ALGORITHMS as PROBABILISTIC
DISTRIBUTIONS on DETERMINISTIC ALGORITHMS

randomized algorithm

1/2
1/2

1/2 1/2

as a probabilistic distribution on three deterministic algorithms

A

(B, 1/4) (C, 1/4) (D, 1/2)

B, C, D
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MODELS of RANDOMIZED ALGORITHMS II
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MODELS of RANDOMIZED ALGORITHMS II
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STORY of RANDOMNESS

STORY of RANDOMNESS
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DOES RANDOMNESS EXIST? - I

One of the fundamental questions (of science) has been, and actually still is, whether
randomness really exists or whether term randomness is used only to deal with events
the laws of which we do not fully understand. Two early views are:

The randomness is the unknown and Nature is determined in its fundamentals.

Democritos (470-404 BC)

By Democritos, the order conquered the world and this order is governed by
unambiguous laws. By Leucippus, the teacher of Democritos.
Nothing occurs at random, but everything for a reason and necessity.

By Democritus and Leucippus, the word random is used when we have an incomplete
knowledge of some phenomena. On the other side:

The randomness is objective, it is the proper nature of some events.

Epikurus (341-270 BC)

By Epikurus, there exists a true randomness that is independent of our knowledge.

Einstein also accepted the notion of randomness only in the relation to incomplete
knowledge.
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VIEWS on RANDOMNESS in 19th CENTURY

Main arguments, before 20th century, why randomness does not exist:

God-argument: There is no place for randomness in a world created by God.

Science-argument: Success of natural sciences and mechanical engineering in 19th
century led to a belief that everything could be discovered and explained
by deterministic causalities of a cause and the resulting effect.

Emotional-argument: Randomness used to be identified with uncertainty or
unpredictability or even chaos.

There are only two possibilities, either a big chaos conquers the world, or order and law.

Marcus Aurelius
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EINSTEIN versus BOHR

God does not roll dice.

Albert Einstein, 1935, a strong opponent of randomness.

The true God does not allow anybody to prescribe what he has to do.

Famous reply by Niels Bohr - one of the fathers of quantum mechanics.
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DOES GOD PLAY DICE? - NEW VIEWS

God does play even non-local dice.

An observation, due to N. Gisin, on the basis that measurement of entangled states
produces shared randomness.

God is not malicious and made Nature to produce, so useful, (shared) random-
ness.

This is what the outcomes of the theoretical informatics imply.
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RANDOMNESS in NATURE

Two big scientific discoveries of 20th century changed the view on usefulness of
randomness.

1 It has turned out that random mutations of DNA have
to be considered as a crucial instrument of evolution.

2 Quantum measurement yields, in principle, random
outcomes.
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RANDOMNESS

Randomness as a mathematical topic has been studied since 17th century.

Attempts to formalize chance by mathematical laws is somehow paradoxical
because, a priory, chance (randomness) is the subject of no law.

There is no proof that perfect randomness exists in the real world.

More exactly, there is no proof that quantum mechanical phenomena of the
microworld can be exploited to provide a perfect source of randomness for the
macroworld.
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KOLMOGOROV COMPLEXITY

Kolmogorov complexity KC (x) of a binary string x with respect to a universal
computer C is the length of the shortest program for C that produces x .

The above definition is basically independent of the choice of C . Namely, it holds
that for any other universal computer C ′ there is a constant aC ,C ′ such that for any
string x , KC ′(x) ≤ KC (x) + aC ,C ′ .

A string x is considered as random if KC (x) ≈ |x |, that is if x is incompressible.

Kolmogorov complexity is not computable.

It is undecidable whether a given string is random.

Until Kolmogorov complexity was introduced we had no meaningful way to talk
about a given object being random.
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PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost random)
strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the design
of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum (almost
perfect) generators of randomness are already commercially available.
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von NEUMANN EXAMPLE

The concept of pseudorandom generators is quite old. An interesting example is due to
John von Neumann:

Take an arbitrary integer x as the ”seed”
and repeat the following process:

compute x2 and take a sequence of the middle
digits of x2 as a new ”seed” x .

whenever you end such an iterative process, the final seed is a pseudorandom string of
digits.
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Von NEUMANN PSEUDORANDOM GENERATION

23562 = 5550736
550732 = 3033035329

3303532 = 109133104609
13310462 =
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SIMPLE PSEUDORANDOM GENERATORS

Informally, a pseudorandom generator is a deterministic polynomial time algorithm
which expands short random sequences (called seeds) into longer bit sequences such that
the resulting probability distribution is in polynomial time indistinguishable from the
uniform probability distribution.

Example. Linear congruential generator

One chooses n-bit numbers m, a, b, X0 and generates an n2 element sequence

X1X2 . . .Xn2

of n-bit numbers by the iterative process

Xi+1 = (aXi + b) mod m.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum (almost
perfect) generators of randomness are already commercially available.
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CRYPTOGRAPHICALY STRONG PSEUDORANDOM
GENERATORS

In cryptography random sequences can usually be replaced by pseudorandom sequences
generated by (cryptographically perfect/strong) pseudorandom generators.

Definition. Let l(n) : N → N be such that l(n) > n for all n. A (cryptographically
strong) pseudorandom generator with a stretch function l , is an efficient deterministic
algorithm which on the input of a random n-bit seed outputs a l(n)-bit sequence which is
computationally indistinguishable from any random l(n)-bit sequence.

Candidate for a cryptographically strong pseudorandom generator:

A very fundamental concept: A predicate b is a hard core predicate of the function f if
b is easy to evaluate, but b(x) is hard to predict from f(x). (That is, it is unfeasible,
given f(x) where x is uniformly chosen, to predict b(x) substantially better than with the
probability 1/2.)

Conjecture: The least significant bit of x2 mod n is a hard-core predicate.
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Theorem Let f be a one-way function which is length preserving and efficiently
computable, and b be a hard core predicate of f, then

G(s) = b(s) · b(f (s)) · · · b
(
f l(|s|)−1(s)

)

is a (cryptographically strong) pseudorandom generator with stretch function l(n).
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EXAMPLES of RANDOMIZED ALGORITHMS

EXAMPLES
of

RANDOMIZED ALGORITHMS
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EXAMPLE 1. MONOPOLIST GAME

Game Given are n active players each having w one dollar coins. They play, in rounds,
the following game until all, but one player, become bankrupt:

1 In each round every active player puts $1 on the table and the roulette wheel is
spined to determine the winner, who then takes all money on the table.

2 A player who looses all his money declares bankruptcy and becomes inactive.

Will the game end? If not, why? If yes, when?
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EXAMPLE 1. MONOPOLIST GAME - again

Game Given are n active players each having w one dollar coins. They play, in rounds,
the following game until all but one player become bankrupt:

1 In each round every active player puts $1 on the table and the roulette wheel is
spined to determine the winner who then takes all money on the table.

2 A player who looses all his money declares bankruptcy and becomes inactive.

Will the game end? It can be shown that it ends almost always in approximately at
most (nw)2 steps.
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EXAMPLE 2 - ELECTION of a LEADER

In some cases randomization is the only way to solve the problem.

Example Let n identical processors, connected into a ring, have to choose one of them to
be a “leader”, under the assumption that each of the processors knows n.

eeeeeee e e e
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EXAMPLE 2 - ELECTION of a LEADER - I.

Algorithm (Election of a leader - a symmetry breaking protocol)

1 Each processor sets its local variable V to n and starts to be active.

2 Each active processor chooses, randomly and independently, an integer between 1
and V and put it into V .

3 Those processors that choose 1 (if any), send one-bit message around the ring –
clockwise - with the speed of one processor per time unit.

4 After n − 1 steps each processor knows the number l of processors that chosen 1. If
l = 1, the election ends and the leader introduces himself; if l = 0, election continues
by repeating Step 2. If l > 1, the only processors remaining active will be those that
have chosen 1 in Step 2. They set V ← l and election continues with Step 2.
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CLASSICAL versus QUANTUM RANDOMIZATION

Exact solvability of the leader election problem for regular graphs with identical
node-processors is a celebrated unsolvable problem of classical distributed computing.

It can be shown that this problem cannot be solved exactly and in bounded time on
classical computers even in the case processors know number of nodes (n) and
topology of the network.

However, there is quantum algorithm that runs in O(n3) time, its communication
complexity is O(n4), and it can solve this problem exactly for any network topology,
provided parties are connected by quantum communication links.
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THE DINING CRYPTOGRAPHERS PROBLEM

Three cryptographers have dinner at a round table of a 5-star restaurant.

Their waiter tells them that an arrangement has been made that bill will be paid
anonymously - either by one of them, or by NSA.

They respect each others right to make an anonymous payment, but they wonder if
NSA has payed the dinner.

How should they proceed to learn whether one of them paid the bill without learning
which on e - for other two?
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DINNING CRYPTOGRAPHERS - SOLUTION

Protocol
Each cryptographer flips a perfect coin between him and the cryptographer on his
right, so that only two of them can see the outcome.
Each cryptographer who did not pay dinner states aloud whether the two coins he see -
the one he flipped and the one his right-hand neighbour flipped - fell on the same side
or not.
The cryptographer who paid the dinner states aloud the opposite what he sees.

Correctness:
Odd number of differences uttered at the table implies that that a cryptographer paid
the dinner.
Even number of differences uttered at the table implies that NSA paid the dinner.
In a case a cryptographer paid the dinner the other two cryptographers would have no
idea he did that.
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TABLE

*****
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TECHNICAL SOLUTION

Let three coin tossing made by cryptographers be represented by bits

b1, b2, b3

In case none of them payed dinner, then what they say loudly are values

b1 ⊕ b2, b2 ⊕ b3, b3 ⊕ b1

and their parity is
(b1 ⊕ b2)⊕ (b2 ⊕ b3)⊕ (b3 ⊕ b1) = 0

In case one of them payed dinner, say Cryptographer 2, they say loudly:

b1 ⊕ b2, b2 ⊕ b3, b3 ⊕ b1

and
(b1 ⊕ b2) ⊕ (b2 ⊕ b3) ⊕ (b3 ⊕ b1) = 1
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EXAMPLE: RANDOM COUNTING

Problem: Determine the number, say n, of elements of a bag X , provided you can do,
repeatedly, only the following operation: to pick up, randomly, an element of the bag X ,
to look at it, and to return it back to the bag.

Algorithm:
k ← 0;
do choose randomly an element from X , mark it and return it back; set k ← k + 1
until the just chosen element has already been chosen;

n←
⌊

2k2

π

⌋
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EXAMPLE: ZERO POLYNOMIAL TESTING

Problem: Decide whether a given polynomial p(x1, . . . , xn), (given implicitly) with
integer coefficients, and with each product of variables being of the degree at most k, is
identically 0.

Algorithm:
Compute p(x1, . . . , xn) N times, for sufficiently large N; each time with randomly chosen
integer values for x1, . . . , xn from the interval [0, 2kn].

If, at the above process at least once a value different from 0 is obtained, then p is not
identically 0.

If all N values obtained are 0, then we can consider p to be identically 0. The probability
of error is at most 2−N .
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DESIGN of the SMALLEST ENCLOSING DISK

Task: Given is a set S of n points in the plane. Find the smallest disk (circle) D(S)
containing S .

Note D(S) is determined by any three points on its edge.

Naive solution For any three points design a disk/circle passing through them -
complexity of such an algorithm is O(n3)
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Random O(n) algorithm - Welzl

For the start let us consider all points as having the weight 1

Algorithm

1 Choose randomly (taking into considerations weights of points) a set of about 20
points S ′ and determine, somehow, D(S ′).

2 In case there are points of S that are out of D(S ′), then double their weights and go
to Step 1. Otherwise you are done

The above disc problm was formulated in 1857 by Silvester.

IV054 1. Basic concepts and Examples of Randomized Algorithms 47/74

RANDOMIZED QUICKSORT

Problem: To sort a set S of n elements we can use the following algorithm.

1 Choose a median y of S .

2 Compare all elements of S with y and divide S into the set S1 of elements smaller
than y and into the set S2 of the remaining elements.

3 Sort recursively sets S1 and S2.

Analysis of the number of comparisons: T (n)
T (n) ≤ 2T ( n

2
) + (c + 1)n

in case we can find y in cn steps for some constant c

Solution of the above inequality:
T (n) ≤ c ′n lg n

Asymptotically, the same solution is obtained if we require only that none of the sets S1,
S2 has more than 3

4
n elements. Since there are at least n

2
elements y with the last

property there is a good chance that if y is always chosen randomly, then we get a good
performance.

This way we obtain random QUICKSORT or RQUICKSORT.
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ANALYSIS of RQUICKSORT (RQS)

Let the set S to be sorted be given and let
si – be the i-th smallest element of S ;
sij – be a random variable having value 1 if si and sj are being compared (during an

execution of the RQS).

Expected number of comparisons of RQS

E

[
n∑

i=1

n∑

j=1

sij

]
=

n∑

i=1

n∑

j=1

E [sij ]

If pij is the probability that si and sj are being compared during an execution of the
algorithm, then E [sij ] = pij .
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In order to estimate pij it is enough to realize that if si and sj are compared during
an execution of the RQS, then one of these two elements has to be in the subtree
headed by the other element in the comparison tree being created at that
execution. Moreover, in such a case all elements between si and sj are still to be inserted
into the tree being created. Therefore, at the moment other element (not the one in the
root of the subtree), is chosen, it is chosen randomly from at least |j − i |+ 1 elements.
Hence pij ≤ 1

|i−j|+1
. Therefore we have (for Hn =

∑n
i=1

1
i
):

n∑

i=1

n∑

j=1

pij ≤
n∑

i=1

n∑

j=i

2

j − i + 1
≤

n∑

i=1

n−i+1∑

k=1

2

k
≤

2
n∑

i=1

n−i+1∑

k=1

1

k
≤ 2nHn = Θ(n log n)
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SATISIFIABILITY of BOOLEAN FORMULAS

The following algorithm finds, given a satisfiable Boolean formula F in 3-CNF, with very
high probability, a satisfying assignment for F .

Algorithm:
Choose randomly a truth assignment T for F ;
while there is a truth assignment T ′ that differs from T in

exactly one variable and satisfies more clauses of F than T
do choose such of these T ′ that satisfy the most clauses and set T ← T ′ od;

return T

A natural question: How good is this simple algorithm?

Theorem If 0 < ε < 1
2
, then there is a constant c such that for all but a fraction of at

most n2ne−
εn2

2 of satisfiable 3-CNF Boolean formulas with n variables, the probability
that the above algorithm succeeds in discovering a truth assignment in each independent

trial from a random start is at least 1− e−ε
2n.
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EXAMPLE: CUTS in MULTIGRAPHS - PROBLEM

Given is an undirected and loop-free multigraph G .The task is to find one of the smallest
sets C of edges (called a cut) of G such that the removal of edges from C disconnects
the multigraph G .

Basic operation is an edge contraction If e is an edge of a loop-free multigraph G , then
the multigraph G/e is obtained from G by contracting the edge e = {x , y}, that is, we
identify the vertices x and y and remove all resulting loops.
Example:

q
q

q
q qc
��
@@

pp p pa p p pa p p
pp p pa p p pa p p
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CUTS in MULTIGRAPHS - ALGORITHM

Basic idea of the algorithm given below: An edge contraction of a multigraph does not
reduce the size of the minimal cut.
Contract algorithm:
while there are more than 2 vertices in the multigraph

do edge-contraction of a randomly chosen edge od
Output the size of the minimal cut of the resulting 2 vertices multigraph.

Example:

q
q

q
q qc
��
@@

pp p pa p p pa p p
pp p pa p p pa p p

In the above example, where two options are explored in the second step, we got once
the optimal result, and once a non-optimal result.
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HOW GOOD is the ABOVE ALGORITHM?

How probable is that our algorithm produces an incorrect result?

Let G be a multigraph with n vertices and k be the size of its minimal cut;
C - be a particular minimal cut of size k.

Observation: G has to have at least kn
2

edges. (Why?)

We derive a lower bound on the probability that no edge of C is ever contracted during
an execution of the algorithm.

Let Ei be the event of non-choosing an edge of C at the i-th step of the algorithm. The

probability that the edge randomly chosen in the first step is in C is at most k
nk
2

= 2
n

and

therefore Pr(E1) ≥ 1− 2
n

.

If E1 occurs, then at the second contraction step there are at least k(n−1)
2

edges. Hence
Pr(E2|E1) ≥ 1− 2

n−1

Similarly, in the i-th step

Pr

[
Ei |

i−1⋂

j=1

Ej

]
≥ 1− 2

n − i + 1
=

n − i − 1

n − i + 1
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PROOF CONTINUATION

Therefore, the probability that no edge of C is ever contracted during an execution of the
algorithm, that is that algorithm gives correct output, can be lower bounded by

Pr

[
n−2⋂

i=1

Ei

]
≥

n−2∏

i=1

(
1− 2

n − i + 1

)
=

n−2∏

i=1

(
n − i − 1

n − i + 1

)
=

2

n(n − 1)
= Ω(

1

n2
)

Hence, the probability of an incorrect result is ≤ 1− 2
n(n−1)

.

Moreover, if the above algorithm is repeated n2

2
times, making each time random

decisions, then the probability that a minimal cut is not found is at most

(
1− 2

n2 − n

) n2

2

<

(
1− 2

n2

) n2

2

=

(
1− 1

n2

2

) n2

2

<
1

e

Running time of the best deterministic minimum cut algorithm is O(nm + n2 lg n), where
m is number of edges and n is number of vertices.

IV054 1. Basic concepts and Examples of Randomized Algorithms 55/74

REMINDERS

The following facts are well-known from mathematical
analysis:

(1 + x
n)n ≤ ex ;

limn→∞(1 + x
n)n = ex
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PRIMES RECOGNITION

The fastest known sequential deterministic algorithm to decide whether a given integer n
is prime has complexity O

(
(lg n)14

)

A simple randomized Rabin-Miller’s Monte Carlo algorithm for prime recognition is based
on the following result from the number theory.

Lemma Let n ∈ N, n = 2sd + 1, d is odd. Denote, for 1 ≤ x < n, by C(x) the condition:
xd 6≡ 1 (mod n) and x2r d 6≡ −1 (mod n) for all 1 < r < s Key fact: If C(x) holds for
some 1 ≤ x < n, then n is not prime (and x is a witness for compositness of n). If n is
not prime, then C(x) holds for at least half of x between 1 and n.

In other words most of the numbers between 1 and n are witnesses for composability of
n.

Rabin-Miller algorithm

Choose randomly integers x1, . . . , xm such that 1 ≤ xj < n;

For each xj determine whether C(xj) holds;

if C(xj) holds for some xj ;
then n is not prime

else n is prime, with probability of error 2−m
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LARGEST PRIME - I.

On February 3, 2016 C. Cooper from university Missouri
announced a new (Mersenne) prime

274207181 − 1
that has 5 millions more digits as previously known largest
prime.
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LARGEST PRIME - II.

On December 29, 2017 people from the project GIMPS
(Great Internet Mersenne Prime Search a new (Mersenne)
prime

277232917 − 1

announced that has 2 millions more digits as previously
known largest prime. It has 23, 249,425 digits.

Four research groups over the world verified after the announcement for three days that
the number claimed to be a new largest prime is indeed a prime.
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In 2008 a 100.000 $ price was given for first 10 millions
digit primes.

A special price is offered for first 100 millions of digits
prime.

Percentage of 512 bits numbers that are primes is 0.006...
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RANDOMIZED COMPLEXITY CLASSES

RANDOMIZED
COMPLEXITY CLASSES
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COMPLEXITY CLASSES for DETERMINISTIC COMPUTATIONS

P is the class of problems (languages) that can be solved (accepted) by
deterministic algorithms running in polynomial time. (Or P is class of problems
solvable in polynomial time on deterministic Turing machines.)

NP is the class of problems solution of which can be verified in polynomial time.
(Or NP is the class of problems that can be solved in polynomial time on
nondeterministic Turing machines.)

co-NP is the class of languages that are complements of languages in NP.

PSPACE is the class of problems (languages) that can be solved (accepted) by
algorithms using only polynomially large space/memory.

EXP is the class of problems (languages) solvable in exponential time.
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RANDOMIZED COMPLEXITY CLASSES

A way how to model random steps formally, and to study power of randomization, is to
consider probabilistic algorithms as nondeterministic Turing machines (NTM), that have
in each configuration exactly two choices to make and for each input all computations
have the same length. In order to define different complexity classes for randomized
computations, one then just needs to consider different acceptance modes.
RP: A language L is in randomized complexity class RP (Random Polynomial time) if
there is a polynomial NTM such that:

if x ∈ L, then at least half of all computations of M on x terminate in an accepting
state;

if x 6∈ L, then all computations of M terminate in rejecting states. (So called Monte
Carlo acceptance or one-sided Monte Carlo acceptance).

ZPP: A language L is in ZPP (Zero error Probabilistic Polynomial time) (it is also called
Las Vegas acceptance if.) L ∈ ZPP = RP ∧ coRP.

PP: A language L is in PP (Probabilistic Polynomial time) if there is a polynomial NTM
such that: x ∈ L iff more than half of computations of M on x terminate in accepting
states. (So called acceptance by majority.)
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BPP and OTHER VIEW of COMPLEXITY CLASSES

BPP: A language is in BPP (Bounded error away from 1
2

Probabilistic Polynomial time),
if there is a polynomial NTM M such that:

If x ∈ L, then at least 3
4

computations of M on x terminate in accepting states.

If x 6∈ L, then at least 3
4

of computations of M on x terminate in rejecting states.

Less formally, classes RP, PP and BPP can be defined as classes of problems
(languages) for which there is a randomized algorithm A with the following property:

RP:
x ∈ L⇒ PR(A(x) accepts) ≥ 1

2
;

x 6∈ L⇒ PR(A(x) accepts) = 0

PP:
x ∈ L⇒ PR(A(x) accepts) > 1

2
;

x 6∈ L⇒ PR(A(x) accepts) ≤ 1
2

.

BPP:
x ∈ L⇒ PR(A(x) accepts) ≥ 3

4
;

x 6∈ L⇒ PR(A(x) accepts) < 1
4

IV054 1. Basic concepts and Examples of Randomized Algorithms 64/74



PP class - some observations

Definition of the class PP seems to be very natural. However, in reality this class is
not realistic.

An example of a PP problem: Given a Boolean formula φ with n variables, do at
least half of the 2n possible assignments of variables make the formula to evaluate to
TRUE?

Just like the problem to decide whether there exists a satisfying assignment for a
Boolean formula is NP-complete, so this majority-vote variant of the above decision
problem can be shown to be PP-complete; that is, any other PP-complete problem
is efficiently reducible to it.

Problems: a PP-algorithm is free to accept with probability 1/2 + 2−n if the answer
is yes and probability 1/2− 2n if the answer is no. However how can a mortal
distinguish these two cases if, for example, n = 5000?
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INCLUSIONS between MAIN COMPLEXITY CLASSES

Theorem
P ⊆ ZPP ⊆ RP ⊆ NP ⊆ PP ⊆ PSPACE

Proof: Since relations P ⊆ ZPP ⊆ RP are obvious, we show first

RP ⊆ NP

If L ∈ RP then there is a NTM M accepting L with Monte Carlo acceptance. Hence,
L ∈ NP. Now we show:

NP ⊆ PP

Let L ∈ NP and M be a polynomial NTM for L. Design a NTM M ′ that for f an input
w nondeterministically chooses and performs one of two steps:

1 (1) M ′ accepts (2) M ′ simulates M on the input w .

M ′ can be transformed into an equivalent NTM M ′′ that always have two choices and all
its computations on w have the same length. M ′′ therefore accepts L by majority what
implies: L ∈ PP. Indeed: If w 6∈ L, then exactly half of computations accept – those
corresponding to step 1.
If w ∈ L, then there is at least one computation of M that accepts w ⇒ more than half
of computations of M ′′ accept. In addition, it holds PP ⊆ PSPACE.
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COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4

used in the definition of the class BPP can be replaced by any
number larger than 1

2
. In other words, for any ε < 1

2
we can say that an

BPP-algorithm accepts (rejects) any word from (not from) the underlying language
with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability of error
as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is a
family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn is
bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its input is x .
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AMPLIFICATION of PROBABILITIES

Let a PTM M have a probability of error at solving a decision problem at most ε < 1
2
.

Let us run M for the same input k times and take as the output the majority one (in
other words apply so called majority voting).
In order to determine how wrong may be such majority voting, observe that for any
subset S ⊆ {1, . . . , k}, |S | ≤ k/2 the probability that majority voting provided by
outcomes at such a set of runs is erroneous is smaller than (1− ε)|S|εk−|S|.
Such a majority voting will therefore be wrong with probability

perr ≤
∑

S⊆{1,...,k},|S|≤k/2

(1− ε)|S|εk−|S| (1)

= ((1− ε)ε)k/2
∑

S⊆{1,...,k},|S|≤k/2

(
ε

1− ε

)k/2−|S|
(2)

< (
√
ε(1− ε))k2k = λk , (3)

where λ = 2
√
ε(1− ε) < 1, because the above sum is ≤ 2k , since ε

1−ε ≤ 1.

In case k is big enough, the effective error probability will be as small as we wish. This
process is called amplification of probability.
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HIERARCHY of COMPLEXITY CLASSES

ZPP

coRPRP

BPPNP coNP

PP

PSPACE

EXP

P
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CLASS MA

The class BPP can be seen as a randomized version of the class P. In a similar way the
class MA (Marlin-Arthur), defined bellow, can be seen as a randomized version of the
class NP.

MA is the class of decision problems solvable by a Merlin-Arthur protocol, which goes as
follows: Merlin, who has unbounded computational resources, sends Arthur a
polynomial-size to-be-proof that the answer to the problem is ”yes”. Arthur must verify
the proof in BPP, so that if the answer to the decision problem is

”yes”, then there exists a proof which Arthur accepts with probability at least 2
3
.

”no”, then Arthur accepts any ”to-be-proof” with probability at most 1
3
.

An alternative definition requires that if the answer is ”yes”, then there exists a proof
that Arthur accepts with certainty.

It can be shown that if P = BPP, then MA=NP.
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HOW IMPORTANT is RANDOMNESS for DESIGN of
ALGORITHMS

The answer depends much on how we define when an algorithm is ”efficient”.

If constant factors are of importance, then randomization is clearly of large
importance.

If we consider O(n),O(n2) and also O(n3) algorithms as still efficient, but already
O(n4) algorithms as not, then randomness is still of importance for some problems.

If ”polynomial-time computability” is used for efficiency criterion, we do not know
answer yet but we maybe able to claim that randomness is not essential. Why

There is a strong evidence that P = BPP.

Such assumption is based on results showing that computational hardness of some
problems can be used to generate pseudorandom sequences that look random to all
polynomial time algorithms.

Using such techniques Widgerson and Impagliazo showed that P=BPP if there is a
problem computable in an exponential time that requires circuits of exponential size.
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WHAT is PROBABILITY- of an EVENT?

Intuitively, probability of an elementary event e in a finite set of events E is the
ratio between the number of e-favorable elementary events in E to the total number of
all possible elementary events involved in E .

Pr(e ∈ E) =
number of favorable e-events in E

number of all possible elementary events in E

Example When tossing a perfect dice with it sides labeled by 1, 2,3, 4, 5 6, then the
probability that the outcome of a perfectly random tossing of such a dice is 3 is

1

6
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PUZZLE

In case the set of elementary events E is infinite
situation is much more complex as the following
example discuss in lecture 3 illustrates.
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BERTRAND’s PROBLEM - PARADOX

The following problem has at least three very different (and correct) solutions, with
different outcomes. This indicates how tricky are concepts of probability and
randomness.

Problem See the next figure. Fix a circle of radius 1. Draw in the circle equilateral
triangle and denote l its length. Choose randomly a chord d (and denote m its length) of
the circle. What is the probability that m ≥ l?

There are at least 3 very different answers
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