Prologue

CZ.1.07/2.2.00/28.0041
Centrum interaktivních a multimediálních studijních opor pro inovaci výuky a efektivní učení

INVESTICE DO ROZVOJE VZDĚLÁVÁN

You should spent most of your time thinking about
what you should think about most of your time.

RANDOMIZED ALGORITHMS AND PROTOCOLS - 2020

Prof. Jozef Gruska, DrSc
Wednesday, 10.00-11.40, B410
http://www.fi.muni.cz/usr/gruska/random20

FINAL EXAM: You need to answer four questions out of five given to you. CREDIT (ZAPOČET): You need to answer three questions out of five given to you.

EXERCISES/TUTORIALS

EXERCISES/TUTORIALS: Thursdays 14.00-15.40, C525

TEACHER: RNDr. Matej Pivoluška PhD

Language English

NOTE: Exercises/tutorials are not obligatory

CONTENTS - preliminary

11 Basic concepts and examples of randomized algorithms
[2 Types and basic design methods for randomized algorithms
3 Basics of probability theory
4 Simple methods for design of randomized algorithms
[5 Games theory and analysis of randomized algorithms
[6 Basic techniques I: moments and deviations
7 Basic techniques II: tail probabilities inequalities
${ }^{8}$ Probabilistic method I:
(0) Markov chains - random walks
(10) Algebraic techniques - fingerprinting

11 Fooling the adversary - examples
16 Randomized cryptographic protocols
[5] Randomized proofs
14 Probabilistic method II:
15 Quantum algorithms

Part I

Basics of Probability Theory

Chapter 3. PROBABILITY THEORY BASICS
PROBABILITY INTUITIVELY

Intuitively, probability of an event E is the ratio between the number of favorable elementary events involved in E to the number of all possible elementary events involved in E.

$$
\operatorname{Pr}(E)=\frac{\text { number of favorable elementary events involved in } E}{\text { number of all possible elementary events involved in } E}
$$

Example: Probability that when tossing a perfect 6 -sided dice we get a number divided by 3 is

$$
2 / 6=1 / 3
$$

Key fact: Any probabilistic statement must refer to a specific underlying probability space - a space of elements to which a probability is assigned.

PROBABILITY THEORY

Probability theory took almost 300 years to develop
from intuitive ideas of Pascal, Fermat and Huygens, around 1650,
to the currently acceptable axiomatic definition of probability (due to A. N. Kolmogorov in 1933).

AXIOMATIC APPROACH - I.

Axiomatic approach: Probability distribution on a set Ω is every function
$\operatorname{Pr}: 2^{\Omega} \rightarrow[0,1]$, satisfying the following axioms (of Kolmogorov):
${ }_{11} \operatorname{Pr}(\{x\}) \geq 0$ for any element (elementary event) $x \in \Omega$;
[2 $\operatorname{Pr}(\Omega)=1$
(3) $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$ if $A, B \subseteq \Omega, A \cap B=\emptyset$.

Example: Probabilistic experiment - cube tossing; elementary events - outcomes of cube tossing; probability distribution $-\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\}, \sum_{i=1}^{6} p_{i}=1$, where p_{i} is probability that i is the outcome of a particular cube tossing.

In general, a sample space is an arbitrary set. However, often we need (wish) to consider only some (family) of all possible events of 2^{Ω}.

The fact that not all collections of events lead to well-defined probability spaces leads to the concepts presented on the next slide.

AXIOMATIC APPROACH - II.

Definition: A σ-field (Ω, \mathbf{F}) consists of a sample space Ω and a collection \mathbf{F} of subsets of Ω satisfying the following conditions:
\| $\emptyset \in \mathbf{F}$
2 $\varepsilon \in \mathbf{F} \Rightarrow \bar{\varepsilon} \in \mathbf{F}$
3 $\varepsilon_{1}, \varepsilon_{2}, \ldots \in \mathbf{F} \Rightarrow\left(\varepsilon_{1} \cup \varepsilon_{2} \cup \ldots\right) \in \mathbf{F}$

Consequence

A σ-field is closed under countable unions and intersections.
Definition: A probability measure (distribution) $\operatorname{Pr}: \mathbf{F} \rightarrow \mathbf{R}^{\geq 0}$ on a σ-field (Ω, \mathbf{F}) is a function satisfying conditions:
1 If $\varepsilon \in \mathbf{F}$, then $0 \leq \operatorname{Pr}(\varepsilon) \leq 1$.
[$\operatorname{Pr}[\Omega]=1$.
3 For mutually disjoint events $\varepsilon_{1}, \varepsilon_{2}, \ldots$

$$
\operatorname{Pr}\left[U_{i} \varepsilon_{i}\right]=\sum_{i} \operatorname{Pr}\left(\varepsilon_{i}\right)
$$

Definition: A probability space $(\Omega, \mathbf{F}, \operatorname{Pr})$ consists of a σ-field (Ω, \mathbf{F}) with a probability measure Pr defined on (Ω, \mathbf{F}).

IV054 1. Basics of Probability Theory
14/62

EXAMPLE:

Let us consider tossing of two perfect dices with sides labelled by $1,2,3,4,5,6$. Let
ε_{1} be the event that the reminder at the division of the sum of the outcomes of both dices when divided by 4 is 3 , and
ε_{2} be the event that the outcome of the first cube is 4 .
In such a case

$$
\operatorname{Pr}\left[\varepsilon_{1} \mid \varepsilon_{2}\right]=\frac{\operatorname{Pr}\left[\varepsilon_{1} \cap \varepsilon_{2}\right]}{\operatorname{Pr}\left[\varepsilon_{2}\right]}=\frac{\frac{1}{36}}{\frac{1}{6}}=\frac{1}{6}
$$

if $\operatorname{Pr}\left[\varepsilon_{2}\right]>0$.
Theorem: Law of the total probability Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}$ be a partition of a sample space Ω. Then for any event ε

$$
\operatorname{Pr}[\varepsilon]=\sum_{i=1}^{k} \operatorname{Pr}\left[\varepsilon \mid \varepsilon_{i}\right] \cdot \operatorname{Pr}\left[\varepsilon_{i}\right]
$$

PROBABILITIES and their PROPERTIES - I.

Properties (for arbitrary events ε_{i}):

$$
\begin{aligned}
\operatorname{Pr}(\bar{\varepsilon}) & =1-\operatorname{Pr}(\varepsilon) ; \\
\operatorname{Pr}\left(\varepsilon_{1} \cup \varepsilon_{2}\right) & =\operatorname{Pr}\left(\varepsilon_{1}\right)+\operatorname{Pr}\left(\varepsilon_{2}\right)-\operatorname{Pr}\left(\varepsilon_{1} \cap \varepsilon_{2}\right) ; \\
\operatorname{Pr}\left(\bigcup_{i \geq 1} \varepsilon_{i}\right) & \leq \sum_{i \geq 1} \operatorname{Pr}\left(\varepsilon_{i}\right)
\end{aligned}
$$

Definition: Conditional probability of an event ε_{1} given an event ε_{2} is defined by

$$
\operatorname{Pr}\left[\varepsilon_{1} \mid \varepsilon_{2}\right]=\frac{\operatorname{Pr}\left[\varepsilon_{1} \cap \varepsilon_{2}\right]}{\operatorname{Pr}\left[\varepsilon_{2}\right]}
$$

Theorem: (Bayes' Rule/Law)
(a) $\operatorname{Pr}\left(\varepsilon_{1}\right) \cdot \operatorname{Pr}\left(\varepsilon_{2} \mid \varepsilon_{1}\right)=\operatorname{Pr}\left(\varepsilon_{2}\right) \cdot \operatorname{Pr}\left(\varepsilon_{1} \mid \varepsilon_{2}\right) \quad$ basic equality
(b) $\operatorname{Pr}\left(\varepsilon_{2} \mid \varepsilon_{1}\right)=\frac{\operatorname{Pr}\left(\varepsilon_{2}\right) \operatorname{Pr}\left(\varepsilon_{1} \mid \varepsilon_{2}\right)}{\operatorname{Pr}\left(\varepsilon_{1}\right)} \quad$ simple version
(c) $\operatorname{Pr}\left[\varepsilon_{0} \mid \varepsilon\right]=\frac{\operatorname{Pr}\left[\varepsilon_{0} \cap \varepsilon\right]}{\operatorname{Pr}[\varepsilon]}=\frac{\operatorname{Pr}\left[\varepsilon \mid \varepsilon_{0}\right] \cdot \operatorname{Pr}\left[\varepsilon_{0}\right]}{\sum_{i=1}^{k} \operatorname{Pr}\left[\varepsilon \mid \varepsilon_{i}\right] \cdot \operatorname{Pr}\left[\varepsilon_{i}\right]}$. extended version

Definition: Independence
11 Two events $\varepsilon_{1}, \varepsilon_{2}$ are called independent if

$$
\operatorname{Pr}\left(\varepsilon_{1} \cap \varepsilon_{2}\right)=\operatorname{Pr}\left(\varepsilon_{1}\right) \cdot \operatorname{Pr}\left(\varepsilon_{2}\right)
$$

2. A collection of events $\left\{\varepsilon_{i} \mid i \in I\right\}$ is independent if for all subsets $S \subseteq I$

$$
\operatorname{Pr}\left[\bigcap_{i \in S} \varepsilon_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[\varepsilon_{i}\right] .
$$

for the entire process of learning from evidence has the form

$$
\operatorname{Pr}\left[\varepsilon_{1} \mid \varepsilon\right]=\frac{\operatorname{Pr}\left[\varepsilon_{1} \cap \varepsilon\right]}{\operatorname{Pr}[\varepsilon]}=\frac{\operatorname{Pr}\left[\varepsilon \mid \varepsilon_{1}\right] \cdot \operatorname{Pr}\left[\varepsilon_{1}\right]}{\sum_{i=1}^{k} \operatorname{Pr}\left[\varepsilon \mid \varepsilon_{i}\right] \cdot \operatorname{Pr}\left[\varepsilon_{i}\right]}
$$

In modern terms the last equation says that $\operatorname{Pr}\left[\varepsilon_{1} \mid \varepsilon\right]$, the probability of a hypothesis ε_{1} (given information ε), equals $\operatorname{Pr}\left(\varepsilon_{1}\right)$, our initial estimate of its probability, times $\operatorname{Pr}\left[\varepsilon \mid \varepsilon_{1}\right]$, the probability of each new piece of information (under the hypothesis ε_{1}), divided by the sum of the probabilities of data in all possible hypothesis $\left(\varepsilon_{i}\right)$

TWO BASIC INTERPRETATIONS of PROBABILITY

In Frequentist interpretation, probability is defined with respect to a large number of trials, each producing one outcome from a set of possible outcomes - the probability of an event $A, \operatorname{Pr}(\mathrm{~A})$, is a proportion of trials producing an outcome in A.
In Bayesian interpretation, probability measures a degree of belief. Bayes' theorem then links the degree of belief in a proposition before and after receiving an additional evidence that the proposition holds.

EXAMPLE 1

Let us toss a two regular cubes, one after another and let
ε_{1} be the event that the sum of both tosses is ≥ 10
ε_{2} be the event that the first toss provides 5

How much are: $\operatorname{Pr}\left(\varepsilon_{1}\right), \operatorname{Pr}\left(\varepsilon_{2}\right), \operatorname{Pr}\left(\varepsilon_{1} \mid \varepsilon_{2}\right), \operatorname{Pr}\left(\varepsilon_{1} \cap \varepsilon_{2}\right)$?

$$
\begin{gathered}
\operatorname{Pr}\left(\varepsilon_{1}\right)=\frac{6}{36} \\
\operatorname{Pr}\left(\varepsilon_{2}\right)=\frac{1}{6} \\
\operatorname{Pr}\left(\varepsilon_{1} \mid \varepsilon_{2}\right)=\frac{2}{6} \\
\operatorname{Pr}\left(\varepsilon_{1} \cap \varepsilon_{2}\right)=\frac{2}{36}
\end{gathered}
$$

Three coins are given - two fair ones and in the third one heads land with probability $2 / 3$, but we do not know which one is not fair one.

When making an experiment and flipping all coins let the first two come up heads and the third one comes up tails. What is probability that the first coin is the biased one?

Let ε_{i} be the event that the i th coin is biased and B be the event that three coins flips came up heads, heads, tails

Before flipping coins we have $\operatorname{Pr}\left(\varepsilon_{i}\right)=\frac{1}{3}$ for all i. After flipping coins we have

$$
\operatorname{Pr}\left(B \mid \varepsilon_{1}\right)=\operatorname{Pr}\left(B \mid \varepsilon_{2}\right)=\frac{2}{3} \frac{1}{2} \frac{1}{2}=\frac{1}{6} \quad \operatorname{Pr}\left(B \mid \varepsilon_{3}\right)=\frac{1}{2} \frac{1}{2} \frac{1}{3}=\frac{1}{12}
$$

and using Bayes' law we have

$$
\operatorname{Pr}\left(\varepsilon_{1} \mid B\right)=\frac{\operatorname{Pr}\left(B \mid \varepsilon_{1}\right) \operatorname{Pr}\left(\varepsilon_{1}\right)}{\sum_{i=1}^{3} \operatorname{Pr}\left(B \mid \varepsilon_{i}\right) \operatorname{Pr}\left(\varepsilon_{i}\right)}=\frac{\frac{1}{6} \cdot \frac{1}{3}}{\frac{1}{6} \cdot \frac{1}{3}+\frac{1}{6} \cdot \frac{1}{3}+\frac{1}{12} \cdot \frac{1}{3}}=\frac{2}{5}
$$

Therefore, the above outcome of the three coin flips increased the likelihood that the first coin is biased from $1 / 3$ to $2 / 5$

Let A and B be two events and let $\operatorname{Pr}(B) \neq 0$. Events A and B are independent if and only if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

Proof

- Assume that A and B are independent and $\operatorname{Pr}(B) \neq 0$. By definition we have

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

and therefore

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)}{\operatorname{Pr}(B)}=\operatorname{Pr}(A) .
$$

- Assume that $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$ and $\operatorname{Pr}(B) \neq 0$. Then

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

and multiplying by $\operatorname{Pr}(B)$ we get

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

and so A and B are independent.

MONTY HALL PARADOX

Let us assume that you see three doors D1, D2 and D3 and you know that behind one door is a car and behind other two are goats.

Let us assume that you get a chance to choose one door and if you choose the door with car behind the car will be yours, and if you choose the door with a goat behind you will have to milk that goat for years.

Which door you will choose to open?

Let us now assume that you have chosen the door D1.
and let afterwords a moderator comes who knows where car is and opens one of the doors D_{2} or D_{3}, say $D 2$, and you see that the goat is in.

Let us assume that at that point you get a chance to change your choice of the door.

Should you do that?

Let C_{1} denote the event that the car is behind the door D1.
Let C_{3} denote the event that the car is behind the door D3.
Let M_{2} denote the event that moderator opens the door D2.

Let us assume that the moderator chosen a door at random if goats were behind both doors he could open. In such a case we have

$$
\operatorname{Pr}\left[C_{1}\right]=\frac{1}{3}=\operatorname{Pr}\left[C_{3}\right], \quad \operatorname{Pr}\left[M_{2} \mid C 1\right]=\frac{1}{2}, \quad \operatorname{Pr}\left[M_{2} \mid C_{3}\right]=1
$$

Then it holds
$\operatorname{Pr}\left[C_{1} \mid M_{2}\right]=\frac{\operatorname{Pr}\left[M_{2} \mid C_{1}\right] \operatorname{Pr}\left[C_{1}\right]}{\operatorname{Pr}\left[M_{2}\right]}=\frac{\operatorname{Pr}\left[M_{2} \mid C_{1}\right] \operatorname{Pr}\left[C_{1}\right]}{\operatorname{Pr}\left[M_{2} \mid C_{1}\right] \operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[M_{2} \mid C_{3}\right] \operatorname{Pr}\left[C_{3}\right]}=\frac{1 / 6}{1 / 6+1 / 3}=\frac{1}{3}$
Similarly
$\operatorname{Pr}\left[C_{3} \mid M_{2}\right]=\frac{\operatorname{Pr}\left[M_{2} \mid C_{3}\right] \operatorname{Pr}\left[C_{3}\right]}{\operatorname{Pr}\left[M_{2}\right]}=\frac{\operatorname{Pr}\left[M_{2} \mid C_{3}\right] \operatorname{Pr}\left[C_{3}\right]}{\operatorname{Pr}\left[M_{2} \mid C_{1}\right] \operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[M_{2} \mid C_{3}\right] \operatorname{Pr}\left[C_{3}\right]}=\frac{1 / 3}{1 / 6+1 / 3}=\frac{2}{3}$

INDEPENDENCE of RANDOM VARIABLES

Definition Two random variables X, Y are called independent random variables if

$$
x, y \in \mathbf{R} \Rightarrow \operatorname{Pr} r_{x, Y}(x, y)=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y]
$$

EXPECTATION - MEAN of RANDOM VARIABLES

Definition: The expectation (mean or expected value) $\mathbf{E}[X]$ of a random variable X is defined as

$$
\mathbf{E}[X]=\sum_{\omega \in \Omega} X(\omega) \operatorname{Pr} X(\omega) .
$$

Properties of he mean for random variabkes X and Y and a constant c :

$$
\begin{aligned}
\mathbf{E}[X+Y] & =\mathbf{E}[X]+\mathbf{E}[Y] . \\
\mathbf{E}[c \cdot X] & =c \cdot \mathbf{E}[X] . \\
\mathbf{E}[X \cdot Y] & =\mathbf{E}[X] \cdot \mathbf{E}[Y], \quad \text { if } X, Y \text { are independent }
\end{aligned}
$$

The first of the above equalities is known as linearity of expectations. It can be extended to a finite number of random variables X_{1}, \ldots, X_{n} to hold

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]
$$

and also to any countable set of random variables X_{1}, X_{2}, \ldots to hold: If $\sum_{i=1}^{\infty} \mathrm{E}\left[\left|X_{i}\right|\right]<\infty$, then $\sum_{i=1}^{\infty}\left|X_{i}\right|<\infty$ and

$$
\mathbf{E}\left[\sum_{i=1}^{\infty} X_{i}\right]=\sum_{i=1}^{\infty} \mathbf{E}\left[X_{i}\right] .
$$

INDICATOR VARIABLES

A random variable X is said to be an indicator variable if X takes on only values 1 and 0 .

For any set $A \subset S$, one can define an indicator variable X_{A} that takes value 1 on A and 0 on $S-A$, if (S, Pr) is the underlying probability space.

It holds:

$$
\begin{aligned}
\mathbf{E P r}_{\operatorname{Pr}}\left[X_{A}\right] & =\sum_{s \in S} X_{A}(s) \cdot \operatorname{Pr}(\{s\}) \\
& =\sum_{s \in A} X_{A}(s) \cdot \operatorname{Pr}(\{s\})+\sum_{s \in S-A} X_{A}(s) \cdot \operatorname{Pr}(\{s\}) \\
& =\sum_{s \in A} 1 \cdot \operatorname{Pr}(\{s\})+\sum_{s \in S-A} 0 \cdot \operatorname{Pr}(\{s\}) \\
& =\sum_{s \in A} \operatorname{Pr}(\{s\}) \\
& =\operatorname{Pr}(A)
\end{aligned}
$$

EXPECTATION VALUES

For any random variable X let \mathbf{R}_{X} be the set of values of X. Using \mathbf{R}_{X} one can show that

$$
E[X]=\sum_{x \in \mathbf{R}_{X}} x \cdot \operatorname{Pr}(X=x)
$$

Using that one can show that for any real a, b it holds

$$
\begin{aligned}
\mathbf{E}[a X+b] & =\sum_{x \in \mathbf{R}_{X}}(a x+b) \operatorname{Pr}(X=x) \\
& =a \sum_{x \in \mathbf{R}_{X}} x \cdot \operatorname{Pr}(X=x)+b \sum_{x \in \mathbf{R}_{X}} \operatorname{Pr}(X=x) \\
& =a \cdot \mathbf{E}[X]+b
\end{aligned}
$$

The above relation is called weak linearity of expectation.

VARIANCE and STANDARD DEVIATION

Definition For a random variable X variance $V X$ and standard deviation σX are defined by

$$
\begin{gathered}
\mathbf{V} X=\mathbf{E}\left((X-\mathbf{E} X)^{2}\right) \\
\sigma X=\sqrt{\mathbf{V} X}
\end{gathered}
$$

Since

$$
\begin{aligned}
\mathbf{E}\left((X-\mathbf{E} X)^{2}\right) & =\mathbf{E}\left(X^{2}-2 X \mathbf{E} X+(\mathbf{E} X)^{2}\right)= \\
& =\mathbf{E}\left(X^{2}\right)-2(\mathbf{E} X)^{2}+(\mathbf{E} X)^{2}= \\
& =\mathbf{E}\left(X^{2}\right)-(\mathbf{E} X)^{2}
\end{aligned}
$$

it holds

$$
\mathbf{V} X=\mathbf{E}\left(X^{2}\right)-(\mathbf{E} X)^{2}
$$

Example: Let $\Omega=\{1,2, \ldots, 10\}, \operatorname{Pr}(i)=\frac{1}{10}, X(i)=i ; Y(i)=i-1$ if $i \leq 5$ and
$Y(i)=i+1$ otherwise.
$\mathbf{E} X=\mathbf{E} Y=5.5, \mathbf{E}\left(X^{2}\right)=\frac{1}{10} \sum_{i=1}^{10} i^{2}=38.5, \mathbf{E}\left(Y^{2}\right)=44.5 ; \mathbf{V} X=8.25, \mathbf{V} Y=14.25$

TWO RULES

MOMENTS

$$
\begin{aligned}
& \text { For independent random variables } X \text { and } Y \text { and a real number } c \text { it holds } \\
& \quad ■ \mathbf{V}(c X)=c^{2} \mathbf{V}(X) ; \\
& \square \mathbf{V}(X+Y)=\mathbf{V}(X)+\mathbf{V}(Y) . \\
& \quad \sigma(X+Y)=c \sigma(X)
\end{aligned}
$$

Definition

For $k \in \mathbf{N}$ the k-th moment m_{X}^{k} and the k-th central moment μ_{X}^{k} of a random variable X are defined as follows

$$
\begin{aligned}
m_{X}^{k} & =\mathbf{E} X^{k} \\
\mu_{X}^{k} & =\mathbf{E}\left((X-\mathbf{E} X)^{k}\right)
\end{aligned}
$$

The mean of a random variable X is sometimes denoted by $\mu_{X}=m_{X}^{1}$ and its variance by μ_{x}^{2}.

Each week there is a lottery that always sells 100 tickets. One of the tickets wins 100 millions, all other tickets win nothing.

What is better: to buy in one week two tickets (Strategy I) or two tickets in two different weeks (Strategy II)?

Or none of these two strategies is better than the second one?

EXAMPLE II

With Strategy I we win (in millions)
0 with probability 0.98

100 with probability 0.02
With Strategy II we win (in millions)

$$
\begin{aligned}
& 0 \text { with probability } 0.9801=0.99 \cdot 0.99 \\
& 100 \text { with probability } 0.0198=2 \cdot 0.01 \cdot 0.99 \\
& 200 \text { with probability } 0.0001=0.01 \cdot 0.01
\end{aligned}
$$

Variance at Strategy I is 196
Variance at Strategy II is 198

PROBABILITY GENERATING FUNCTION

The probability density function of a random variable X whose values are natural numbers can be represented by the following probability generating function (PGF):

$$
G_{X}(z)=\sum_{k \geq 0} \operatorname{Pr}(X=k) \cdot z^{k}
$$

Main properties

$$
G_{X}(1)=1
$$

$$
\mathrm{EX}=\sum_{k \geq 0} k \cdot \operatorname{Pr}(X=k)=\sum_{k \geq 0} \operatorname{Pr}(X=k) \cdot\left(k \cdot 1^{k-1}\right)=\mathbf{G}_{\mathbf{X}}^{\prime}(\mathbf{1})
$$

Since it holds

$$
\begin{aligned}
\mathbf{E}\left(\mathbf{X}^{2}\right) & =\sum_{k \geq 0} k^{2} \cdot \operatorname{Pr}(X=k) \\
& =\sum_{k \geq 0} \operatorname{Pr}(X=k) \cdot\left(k \cdot(k-1) \cdot 1^{k-2}+k \cdot 1^{k-1}\right) \\
& =\mathbf{G}_{\mathbf{x}}^{\prime \prime}(1)+\mathbf{G}_{\mathbf{X}}^{\prime}(1)
\end{aligned}
$$

we have

$$
\mathbf{v} X=G_{X}^{\prime \prime}(1)+G_{X}^{\prime}(1)-\left(G_{X}^{\prime}(1)\right)^{2}
$$

AN INTERPRETATION

- Sometimes one can think of the expectation $\mathbf{E}[Y]$ of a random variable Y as the "best guess" or the "best prediction" of the value of Y.
- It is the "best guess" in the sense that among all constants m the expectation $\mathbf{E}\left[(Y-m)^{2}\right]$ is minimal when $m=\mathbf{E}[\mathbf{Y}]$.

Main reason: For many important probability distributions their PGF are very simple and easy to work with.

For example, for the uniform distribution on the set $\{0,1, \ldots, n-1\}$ the PGF has form

$$
U_{n}(z)=\frac{1}{n}\left(1+z+\ldots+z^{n-1}\right)=\frac{1}{n} \cdot \frac{1-z^{n}}{1-z} .
$$

Problem is with the case $z=1$.

PROPERTIES of GENERATING FUNCTIONS

Property 1 If X_{1}, \ldots, X_{k} are independent random variables with PGFs $G_{1}(z), \ldots, G_{k}(z)$, then the random variable $Y=\sum_{i=1}^{k} X_{i}$ has as its PGF the function

$$
G(z)=\prod_{i=1}^{k} G_{i}(z) .
$$

Property 2 Let X_{1}, \ldots, X_{k} be a sequence of independent random variables with the same PGF $G_{X}(z)$. If Y is a random variable with PGF $G_{Y}(z)$ and Y is independent of all X_{i}, then the random variable $S=X_{1}+\ldots+X_{Y}$ has as PGF the function

$$
G_{S}(z)=G_{Y}\left(G_{X}(z)\right) .
$$

IMPORTANT DISTRIBUTIONS

Two important distributions are connected with experiments, called Bernoulli trials, that have two possible outcomes:

- success with probability p
- failure with probability $q=1-p$

Coin tossing is an example of a Bernoulli trial.

1. Let values of a random variable X be the number of trials needed to obtain a success. Then

$$
\operatorname{Pr}(X=k)=q^{k-1} p
$$

Such a probability distribution is called the geometric distribution and such a variable geometric random variable. It holds

$$
\mathbf{E} X=\frac{1}{p} \quad \mathbf{V} X=\frac{q}{p^{2}} \quad G(z)=\frac{p z}{1-q z}
$$

2. Let values of a random variable Y be the number of successes in n trials. Then

$$
\operatorname{Pr}(Y=k)=\binom{n}{k} p^{k} q^{n-k}
$$

Such a probability distribution is called the binomial distribution and it holds

$$
\mathbf{E} Y=n p \quad \mathbf{V} Y=n p q \quad G(z)=(q+p z)^{n}
$$

and also

$$
\mathbf{E} Y^{2}=n(n-1) p^{2}+n p
$$

BERNOULLI DISTRIBUTION

Let X be a binary random variable (called usually Bernoulli or indicator random variable) that takes value 1 with probability p and 0 with probability $q=1-p$, then it holds

$$
\mathbf{E}[X]=p \quad \mathbf{V} X=p q \quad G[z]=q+p z .
$$

BINOMIAL DISTRIBUTION revisited

Let X_{1}, \ldots, X_{n} be random variables having Bernoulli distribution with the common parameter p.
The random variable

$$
X=X_{1}+X_{2}+\ldots+X_{n}
$$

has so called binomial distribution denoted $B(n, p)$ with the density function denoted

$$
B(k, n, p)=\operatorname{Pr}(X=k)=\binom{n}{k} p^{k} q^{(n-k)}
$$

Poisson distribution

Let $\lambda \in \mathbf{R}^{>0}$. The Poisson distribution with the parameter λ is the probability distribution with the density function

$$
p(x)= \begin{cases}\lambda^{x} \frac{e^{-\lambda}}{x!}, & \text { for } x=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

For large n the Poisson distribution is a good approximation to the Binomial distribution $B\left(n, \frac{\lambda}{n}\right)$

Property of a Poisson random variable X :

$$
\mathbf{E}[X]=\lambda \quad \mathbf{V} X=\lambda \quad G[z]=e^{\lambda(z-1)}
$$

Let

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

where each X_{i} is a random variable which takes on value $1(0)$ with probability p ($1-p=q$).
It clearly holds

$$
\begin{aligned}
\mathbf{E}\left(X_{i}\right) & =p \\
\mathbf{E}\left(X_{i}^{2}\right) & =p \\
\mathbf{E}\left(S_{n}\right) & =\mathbf{E}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \mathbf{E}\left(X_{i}\right)=n p \\
\mathbf{E}\left(S_{n}^{2}\right) & =\mathbf{E}\left(\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)=\mathbf{E}\left(\sum_{i=1}^{n} X_{i}^{2}+\sum_{i \neq j} X_{i} X_{j}\right)= \\
& =\sum_{i=1}^{n} \mathbf{E}\left(X_{i}^{2}\right)+\sum_{i \neq j} \mathbf{E}\left(X_{i} X_{j}\right)
\end{aligned}
$$

IV054 1. Basics of Probability Theory

MOMENT INEQUALITIES

Hence

$$
\begin{aligned}
\mathbf{E}\left(S_{n}^{2}\right) & =\mathbf{E}\left(\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)=\mathbf{E}\left(\sum_{i=1}^{n} X_{i}^{2}+\sum_{i \neq j} X_{i} X_{j}\right)= \\
& =\sum_{i=1}^{n} \mathbf{E}\left(X_{i}^{2}\right)+\sum_{i \neq j} \mathbf{E}\left(X_{i} X_{j}\right)
\end{aligned}
$$

and therefore, if X_{i}, X_{j} are pairwise independent, as in this case, $\mathbf{E}\left(X_{i} X_{j}\right)=$ $=\mathbf{E}\left(X_{i}\right) \mathbf{E}\left(X_{j}\right)$ Hence

$$
\begin{aligned}
\mathbf{E}\left(S_{n}^{2}\right) & =n p+2\binom{n}{2} p^{2} \\
& =n p+n(n-1) p^{2} \\
& =n p(1-p)+n^{2} p^{2} \\
& =n^{2} p^{2}+n p q \\
\operatorname{VAR}\left[S_{n}\right] & =\mathbf{E}\left(S_{n}^{2}\right)-\left(\mathbf{E}\left(S_{n}\right)\right)^{2}=n^{2} p^{2}+n p q-n^{2} p^{2}=n p q
\end{aligned}
$$

The following inequality, and several of its special cases, play very important role in the analysis of randomized computations:

Let X be a random variable that takes on values x with probability $p(x)$.
Theorem For any $\lambda>0$ the so called $k^{\text {th }}$ moment inequality holds:

$$
\operatorname{Pr}[|X|>\lambda] \leq \frac{\mathbf{E}\left(|X|^{k}\right)}{\lambda^{k}}
$$

Proof of the above inequality;

$$
\begin{aligned}
\mathbf{E}\left(|X|^{k}\right) & =\sum_{x \in X}|x|^{k} p(x) \geq \sum_{|x|>\lambda}|x|^{k} p(x) \geq \\
& \geq \lambda^{k} \sum_{|x|>\lambda} p(x)=\lambda^{k} \operatorname{Pr}[|X|>\lambda]
\end{aligned}
$$

Two important special cases - I. 1
Two important special cases - I. 2
of the moment inequality;

$$
\operatorname{Pr}[|X|>\lambda] \leq \frac{\mathbf{E}\left(|X|^{k}\right)}{\lambda^{k}}
$$

Case $1 \quad k \rightarrow 1 \quad \lambda \rightarrow \lambda \mathbf{E}(|X|)$

$$
\operatorname{Pr}[|X| \geq \lambda \mathbf{E}(|X|)] \leq \frac{1}{\lambda} \quad \text { Markov's inequality }
$$

Case $2 \quad k \rightarrow 2 \quad X \rightarrow X-\mathbf{E}(X), \lambda \rightarrow \lambda \sqrt{V(X)}$

$$
\begin{gathered}
\operatorname{Pr}[|X-\mathbf{E}(X)| \geq \lambda \sqrt{V(X)}] \leq \frac{\mathbf{E}\left((X-\mathbf{E}(X))^{2}\right)}{\lambda^{2} V(X)}= \\
\quad=\frac{V(X)}{\lambda^{2} V(X)}=\frac{1}{\lambda^{2}} \quad \text { Chebyshev's inequality }
\end{gathered}
$$

Another variant of Chebyshev's inequality:

$$
\operatorname{Pr}[|X-\mathbf{E}(X)| \geq \lambda] \leq \frac{V(X)}{\lambda^{2}}
$$

and this is one of the main reasons why variance is used.

FLIPPING COINS EXAMPLES on CHEBYSHEV INEQUALITIES

Let X be a sum of n independent fair coins and let X_{i} be an indicator variable for the event that the i-th coin comes up heads. Then $\mathbf{E}\left(X_{i}\right)=\frac{1}{2}, \mathbf{E}(X)=\frac{n}{2}, \operatorname{Var}\left[X_{i}\right]=\frac{1}{4}$ and
$\operatorname{Var}[X]=\sum \operatorname{Var}\left[X_{i}\right]=\frac{n}{4}$.
Chebyshev's inequality

$$
\operatorname{Pr}[|X-\mathbf{E}(X)| \geq \lambda] \leq \frac{V(X)}{\lambda^{2}}
$$

for $\lambda=\frac{n}{2}$ gives

$$
\operatorname{Pr}[X=n] \leq \operatorname{Pr}[|X-n / 2| \geq n / 2] \leq \frac{n / 4}{(n / 2)^{2}}=\frac{1}{n}
$$

THE INCLUSION-EXCLUSION PRINCIPLE

 principle, that has also a variety of applications, states thatThe following generalization of the moment inequality is also of importance:

Theorem

If $g(x)$ is non-decreasing on $[0, \infty)$, then

$$
\operatorname{Pr}[|X|>\lambda] \leq \frac{\mathbf{E}(g(X))}{g(\lambda)}
$$

As a special case, namely if $g(x)=e^{t x}$, we get:

$$
\operatorname{Pr}[|X|>\lambda] \leq \frac{\mathbf{E}\left(e^{t X}\right)}{e^{t \lambda}} \quad \text { basic Chernoff's inequality }
$$

Chebyshev's inequalities are used to show that values of a random variable lie close to its average with high probability. The bounds they provide are called also concentration bounds. Better bounds can usually be obtained using Chernoff bounds discussed in Chapter 5.

Let $A_{1}, A_{2}, \ldots, A_{n}$ be events - not necessarily disjoint. The Inclusion-Exclusion

$$
\begin{aligned}
\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right]= & \sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} \operatorname{Pr}\left(A_{i} \cap A_{j} \cap A_{k}\right)- \\
& -\ldots+(-1)^{k+1} \sum_{i_{1}<i_{2}<\ldots<i_{k}} \operatorname{Pr}\left[\bigcap_{j=1}^{k} A_{i_{j}}\right] \ldots+ \\
& +(-1)^{n+1} \operatorname{Pr}\left[\bigcap_{i=1}^{n} A_{i}\right]
\end{aligned}
$$

the following Bonferroni's inequalities follow from the Inclusion-exclusion principle: For every odd $k \leq n$

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{j=1}^{k}(-1)^{j+1} \sum_{i_{1}<\ldots<i_{j} \leq n} \operatorname{Pr}\left(\bigcap_{l=1}^{j} A_{i_{l}}\right)
$$

For every even $k \leq n$

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{j=1}^{k}(-1)^{j+1} \sum_{i_{1}<\ldots<i_{j} \leq n} \operatorname{Pr}\left(\bigcap_{l=1}^{j} A_{i_{i}}\right)
$$

"Markov"-type inequality - Boole's inequality or Union bound

$$
\operatorname{Pr}\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} \operatorname{Pr}\left(A_{i}\right)
$$

"Chebyshev"-type inequality

$$
\operatorname{Pr}\left(\bigcup_{i} A_{i}\right) \geq \sum_{i} \operatorname{Pr}\left(A_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(A_{i} \cap A_{j}\right)
$$

Another proof of Boole's inequality:
Let us define $B_{i}=A_{i}-\bigcup_{j=1}^{i-1} A_{j}$. Then $\bigcup A_{i}=\bigcup B_{i}$. Since B_{i} are disjoint and for each i we have $B_{i} \subset A_{i}$ we get

$$
\operatorname{Pr}\left[\bigcup A_{i}\right]=\operatorname{Pr}\left[\bigcup B_{i}\right]=\sum \operatorname{Pr}\left[B_{i}\right] \leq \sum \operatorname{Pr}\left[A_{i}\right]
$$

054 1. Basics of Probability Theory

PUZZLE - HOMEWORK

Puzzle 1 Given a biased coin, how to use it to simulate an unbiased coin?
Puzzle $2 n$ people sit in a circle. Each person wears either red hat or a blue hat, chosen independently and uniformly at random. Each person can see the hats of all the other people, but not his/her hat. Based only upon what they see, each person votes on whether or not the total number of red hats is odd. Is there a scheme by which the outcome of the vote is correct with probability greater than $1 / 2$.

Bayes rule for the process of learning from evidence has the form:

$$
\operatorname{Pr}\left[\varepsilon_{1} \mid \varepsilon\right]=\frac{\operatorname{Pr}\left[\varepsilon_{1} \cap \varepsilon\right]}{\operatorname{Pr}[\varepsilon]}=\frac{\operatorname{Pr}\left[\varepsilon \mid \varepsilon_{1}\right] \cdot \operatorname{Pr}\left[\varepsilon_{1}\right]}{\sum_{i=1}^{k} \operatorname{Pr}\left[\varepsilon \mid \varepsilon_{i}\right] \cdot \operatorname{Pr}\left[\varepsilon_{i}\right]}
$$

In modern terms the last equation says that $\operatorname{Pr}\left[\varepsilon_{1} \mid \varepsilon\right]$, the probability of a hypothesis ε_{1} (given information ε), equals $\operatorname{Pr}\left(\varepsilon_{1}\right)$, our initial estimate of its probability, times $\operatorname{Pr}\left[\varepsilon \mid \varepsilon_{1}\right]$, the probability of each new piece of information (under the hypothesis ε_{1}), divided by the sum of the probabilities of data in all possible hypothesis $\left(\varepsilon_{i}\right)$.

Suppose that a drug test will produce 99% true positive and 99% true negative results.
Suppose that 0.5% of people are drug users.
If the test of a user is positive, what is probability that such a user is a drug user?
BAYES' RULE INFORMALLY

Basically, Bayes' rule concerns of a broad and fundamental issue: how we analyze evidence and change our mind as we get new information, and make rational decision in the face of uncertainty.

Bayes' rule as one line theorem: by updating our initial belief about something with new objective information, we get a new and improved belief

BAYES' RULE STORY

- Reverend Thomas Bayes from England discovered the initial version of the "Bayes's law" around 1974, but soon stopped to believe in it.
- In behind were two philosophical questions
- Can an effect determine its cause?
- Can we determine the existence of God by observing nature?
- Bayes law was not written for long time as formula, only as the statement: By updating our initial belief about something with objective new information, we can get a new and improved belief.
- Bayes used a tricky thought experiment to demonstrate his law.
- Bayes' rule was later invented independently by Pierre Simon Laplace, perhaps the greatest scientist of 18th century, but at the end he also abounded it.
- Till the 20 century theoreticians considered Bayes rule as unscientific. Bayes rule had for centuries several proponents and many opponents in spite that it has turned out to be very useful in practice.
- Bayes rule was used to help to create rules of insurance industries, to develop strategy for artillery during the first and even Second World War (and also a great Russian mathematician Kolmogorov helped to develop it for this purpose).
- It was used much to decrypt ENIGMA codes during 2WW, due to Turing, and also to locate German submarines.

