Prologue

CZ.1.07/2.2.00/28.0041
Centrum interaktivních a multimediálních studijních opor pro inovaci výuky a efektivní učení

INVESTICE DO ROZVOJE VZDĚLÁVÁN

You should spent most of your time thinking about
what you should think about most of your time.

RANDOMIZED ALGORITHMS AND PROTOCOLS - 2020

Prof. Jozef Gruska, DrSc
Wednesday, 10.00-11.40, B410
http://www.fi.muni.cz/usr/gruska/random20

FINAL EXAM: You need to answer four questions out of five given to you. CREDIT (ZAPOČET): You need to answer three questions out of five given to you.

EXERCISES/TUTORIALS

EXERCISES/TUTORIALS: Thursdays 14.00-15.40, C525

TEACHER: RNDr. Matej Pivoluška PhD

Language English

NOTE: Exercises/tutorials are not obligatory

CONTENTS - preliminary

11 Basic concepts and examples of randomized algorithms
[2 Types and basic design methods for randomized algorithms
3 Basics of probability theory
4 Simple methods for design of randomized algorithms
[5 Games theory and analysis of randomized algorithms
[6 Basic techniques I: moments and deviations
7 Basic techniques II: tail probabilities inequalities
8 Probabilistic method I:
(0) Markov chains - random walks
(10) Algebraic techniques - fingerprinting

11 Fooling the adversary - examples
16 Randomized cryptographic protocols
[5] Randomized proofs
(14) Probabilistic method II:

15 Quantum algorithms

Part I

- R. Motwami, P. Raghavan: Randomized algorithms, Cambridge University Press, UK, 1995
- J. Gruska: Foundations of computing, International Thompson Computer Press, USA. 715 pages, 1997
- J. Hromkovič: Design and analysis of randomized algorithms, Springer, 275 pages, 2005
- N. Alon, J. H. Spencer: The probabilistic method, Willey-Interscience, 2008

For any random variable X, any real $\lambda>0$ and any integer $k \geq 1$ it holds:

$$
\operatorname{Pr}[|X|>\lambda] \leq \frac{\mathbf{E}\left(|X|^{k}\right)}{\lambda^{k}}
$$

Case $1 \quad k \rightarrow 1 \quad \lambda \rightarrow \lambda \mathbf{E}(|X|)$

$$
\operatorname{Pr}[|X| \geq \lambda \mathbf{E}(|X|)] \leq \frac{1}{\lambda} \quad \text { Markov's inequality }
$$

Case $2 k \rightarrow 2 \quad X \rightarrow X-\mathbf{E}(X), \lambda \rightarrow \lambda \sqrt{V(X)}$

$$
\begin{gathered}
\operatorname{Pr}[|X-\mathbf{E}(X)| \geq \lambda \sqrt{V(X)}] \leq \frac{\mathbf{E}\left((X-\mathbf{E}(X))^{2}\right)}{\lambda^{2} V(X)}= \\
\quad=\frac{V(X)}{\lambda^{2} V(X)}=\frac{1}{\lambda^{2}} \quad \text { Chebyshev's inequality }
\end{gathered}
$$

Another variant of Chebyshev's inequality:

$$
\operatorname{Pr}[|X-\mathbf{E}(X)| \geq \lambda] \leq \frac{V(X)}{\lambda^{2}}
$$

and this is one of the main reasons why variance is used.

Many so called probability concentration bounds have been already developed and broadly applied. In this chapter we derive and apply some of them - so called tail probability bounds - bounds on the probability that values of some random variables differ much - by some bound - from their means.

At first we determine bounds on probabilities that the random variables

$$
X=\sum_{i=1}^{n} X_{i}
$$

differ by a fixed margin from the average, where all X_{i} are binary random variables with Bernoulli distribution. That is, X_{i} can be seen as a coin tossing with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ and $\operatorname{Pr}\left[X_{i}=0\right]=1-p_{i}$.
(Observe that as a special case $p_{1}=p_{2}=\ldots=p_{n}=p$ we have a random variable X with the binomial distribution.)

At the end of the chapter we will deal with special sequences of dependent random variables, so called martingales, and also with tail bounds for martingales. That will then be applied also to the occupancy problem.

Basic problem of the analysis of randomized algorithms

What is the probability of the deviation of $X=\sum_{i=1}^{n} X_{i}$ from its mean

$$
\mathbf{E} X=\mu=\sum_{i=1}^{n} p_{i}
$$

by a fixed factor?
Namely, let $\delta>0$. (1) What is the probability that X is larger than $(1+\delta) \mu$?
(2) What is the probability that X is smaller than $(1-\delta) \mu$?

Notation: For a random variable X, let $\mathbf{E}\left[e^{t X}\right], t>0$ fixed, be called the moment generating function of X. It holds:

$$
\mathbf{E}\left[e^{t X}\right]=\mathbf{E}\left[\sum_{k \geq 0} \frac{t^{k} X^{k}}{k!}\right]=\sum_{k \geq 0} t^{k} \frac{\mathbf{E}\left[X^{k}\right]}{k!}
$$

Very important Chernoff bounds on the sum of independent Poisson trials are obtained when the moment generating functions of X are considered.

CHERNOFF BOUNDS - I

Theorem: Let $X_{1}, X_{2}, . ., X_{n}$ be independent Poisson trials such that, for $1 \leq i \leq n$,
$\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, where $0<p_{i}<1$. Then for $X=\sum_{i=1}^{n} X_{i}, \mu=E[X]=\sum_{i=1}^{n} p_{i}$, and any $\delta>0$

$$
\begin{equation*}
\operatorname{Pr}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu} \tag{1}
\end{equation*}
$$

Proof: For any $t \in R^{>0}$

$$
\operatorname{Pr}[X>(1+\delta) \mu]=\operatorname{Pr}\left[e^{t X}>e^{t(1+\delta) \mu}\right]
$$

By applying Markov inequality to the right-hand side we get

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\frac{\mathbf{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mu}} \quad \text { (inequality is strict). }
$$

Observe that:

$$
\begin{gathered}
\mathbf{E}\left[e^{t X}\right]=\mathbf{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]=\mathbf{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} \mathbf{E}\left[e^{t X_{i}}\right] \\
\operatorname{Pr}[X>(1+\delta) \mu]<\frac{\prod_{i=1}^{n} \mathbf{E}\left[e^{t X_{i}}\right]}{e^{t(1+\delta) \mu}}
\end{gathered}
$$

COROLLARIES

From the above Chernoff bound the following corollaries can be derived
Corollary: Let $X_{1}, X_{2}, . ., X_{n}$ be independent Poisson trials such that, for $1 \leq i \leq n$, $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, where $0<p_{i}<1$. Then for

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=E[X]=\sum_{i=1}^{n} p_{i},
$$

it holds
11 For $0<\delta<1.81$

$$
\operatorname{Pr}(X>(1+\delta) \mu) \leq e^{-\mu \delta^{2} / 3}
$$

(2) For $0 \leq \delta \leq 4.11$

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\mu \delta^{2} / 4}
$$

(3) For $R \geq 6 \mu$

$$
\begin{equation*}
\operatorname{Pr}(X \geq R) \leq 2^{-R} \tag{3}
\end{equation*}
$$

EXAMPLE I - SOCCER GAMES OUTCOMES

Notation: $F^{+}(\mu, \delta)=\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$ - the right-hand side of inequality (1) from the previous slide.

Example: A soccer team STARS wins each game with probability $\frac{1}{3}$. Assuming that outcomes of different games are independent we derive an upper bound on the probability that STARS win more than half out of n games.

Let $X_{i}= \begin{cases}1, & \text { if STARS win } i-\text { th game } \\ 0, & \text { otherwise }\end{cases}$
Let $Y_{n}=\sum_{i=1}^{n} X_{i}$
By applying the last theorem $(\operatorname{Pr}(X>(1+\delta) \mu)>F(\mu, \delta))$, we get for $\mu=\frac{n}{3}$ and $\delta=\frac{1}{2}$,

$$
\operatorname{Pr}\left[Y_{n}>\frac{n}{2}\right]<F^{+}\left(\frac{n}{3}, \frac{1}{2}\right)<(0.915)^{n} \quad \text {-exponentially small in } n
$$

SECOND TYPE of CHERNOFF BOUNDS

Previous theorem puts an upper bound on deviations of $X=\sum X_{i}$ above its expectations μ, i.e. for

$$
\operatorname{Pr}[X>(1+\delta) \mu]
$$

Next theorem puts a lower bound on deviations of $X=\sum X_{i}$ below its expectations μ, i.e. for

$$
\operatorname{Pr}[X<(1-\delta) \mu]
$$

Theorem: Let $X_{1}, X_{2}, . ., X_{n}$ be independent Poisson trials such that, for $1<i<n$, $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, where $0<p_{i}<1$. Then for $X=\sum_{i=1}^{n} X_{i}, \mu=\mathbf{E}[X]=\sum_{i=1}^{n} p_{i}$, and for $0<\delta<1$

$$
\operatorname{Pr}[X<(1-\delta) \mu]<e^{-\mu \frac{\delta^{2}}{2}}
$$

Proof: $\operatorname{Pr}[X<(1-\delta) \mu]=\operatorname{Pr}[-X>-(1-\delta) \mu]=\operatorname{Pr}\left[e^{-t X}>e^{-t(1-\delta) \mu}\right]$ for any positive real t.
By applying Markov inequality

$$
\begin{aligned}
\operatorname{Pr}[X<(1-\delta) \mu] & <\frac{\mathbf{E}\left[e^{-t X}\right]}{e^{-t(1-\delta) \mu}}=\frac{\prod_{i=1}^{n} \mathbf{E}\left[e^{-t X_{i}}\right]}{e^{-t(1-\delta) \mu}} \\
& <\frac{\prod_{i=1}^{n}\left[p_{i} e^{-t}+1-p_{i}\right]}{e^{-t(1-\delta) \mu}}=\frac{\prod_{i=1}^{n}\left[1+p_{i}\left(e^{-t}-1\right)\right]}{e^{-t(1-\delta) \mu}}
\end{aligned}
$$

EXAMPLE - COIN TOSSING

By applying the inequality $1+x<e^{x}$ we get

$$
\operatorname{Pr}[X<(1-\delta) \mu]<\frac{e^{\sum_{i=1}^{n} p_{i}\left(e^{-t}-1\right)}}{e^{-t(1-\delta) \mu}}=\frac{e^{\left(e^{-t}-1\right) \mu}}{e^{-t(1-\delta) \mu}}
$$

and if we take $t=\ln \frac{1}{1-\delta}$, then

$$
\begin{equation*}
\operatorname{Pr}[X<(1-\delta) \mu]<\left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu} \tag{4}
\end{equation*}
$$

and then we have

$$
\operatorname{Pr}[X<(1-\delta) \mu]<e^{-\mu \frac{\delta^{2}}{2}}
$$

From 3 and 4 it follows
Corollary: For $0<\delta<1$

$$
\begin{equation*}
\operatorname{Pr}(|X-\mu| \geq \delta \mu) \leq 2 e^{-\mu \delta^{2} / 3} \tag{5}
\end{equation*}
$$

Let X be a number of heads in a sequence of n independent fair coin flips. An application of the bound (5) gives, for $\mu=n / 2$ and $\delta=\sqrt{\frac{6 \ln n}{n}}$

$$
\operatorname{Pr}\left(\left|X-\frac{n}{2}\right| \geq \frac{1}{2} \sqrt{6 n \ln n}\right) \leq 2 e^{-\frac{1}{3} \frac{n}{2} \frac{6 \ln n}{n}}=\frac{2}{n}
$$

This implies that concentration of the number of heads around the mean $\frac{n}{2}$ is very tight.

Indeed, the deviations from the mean are on the order of $\mathcal{O}(\sqrt{n \ln n})$.

CHEBYSHEV versus CHERNOFF

Let X be again the number of heads in a sequence of n independent fair coin flips.
Let us consider probability of having either more than $3 n / 4$ or fewer than $n / 4$ heads in a sequence of n independent fair coin-flips.

Chebyshev's inequality gives us

$$
\operatorname{Pr}\left(\left|X-\frac{n}{2}\right| \geq \frac{n}{4}\right) \leq \frac{4}{n}
$$

On the other side, using Chernoff bound we have

$$
\operatorname{Pr}\left(\left|X-\frac{n}{2}\right| \geq \frac{n}{4}\right) \leq 2 e^{-\frac{1}{3} \frac{n}{2} \frac{1}{4}} \leq 2 e^{-n / 24}
$$

Chernoff's method therefore gives an exponentially smaller upper bound than the upper bound obtained using Chebyshev's inequality.

SOCCER GAMES REVISITED

Notation: [For the lower tail bound function]

$$
F^{-}(\mu, \delta)=e^{\frac{-\mu \delta^{2}}{2}}
$$

Example: Assume that the probability that STAR team wins the game is $\frac{3}{4}$. What is the probability that in n games STAR lose more than $\frac{n}{2}$ games? In such a case $\mu=0.75 n, \delta=\frac{1}{3}$ and for $Y_{n}=\sum_{i=1}^{n} X_{i}$ we have

$$
\operatorname{Pr}\left[Y_{n}<\frac{n}{2}\right]<F^{-}\left(0.75 n, \frac{1}{3}\right)<(0.9592)^{n}
$$

and therefore the probability decreases exponentially fast in n.

Proof

If $\varepsilon=2 e^{-\mu \delta^{2} / 3}$, then

$$
\begin{aligned}
\sqrt{3 \mu \ln (2 / \varepsilon)} & =\sqrt{3 \mu \ln \left(e^{\left.\mu \delta^{2} / 3\right)}\right.} \\
& =\sqrt{3 \mu \cdot \mu \delta^{2} / 3} \\
& =\sqrt{\mu^{2} \delta^{2}} \\
& =\mu \delta
\end{aligned}
$$

provided $\varepsilon \geq 2 e^{-\mu \delta^{2} / 3}$.

New question: Given ε, how large has δ be in order

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\varepsilon ?
$$

In order to deal with such and related questions, the following definitions/notations are introduced.

Df.: $\Delta^{+}(\mu, \varepsilon)$ is a number such that $F^{+}\left(\mu, \Delta^{+}(\mu, \varepsilon)\right)=\varepsilon$. $\Delta^{-}(\mu, \varepsilon)$ is a number such that $F^{-}\left(\mu, \Delta^{-}(\mu, \varepsilon)\right)=\varepsilon$.

In other words, a deviation of $\delta=\Delta^{+}(\mu, \varepsilon)$ suffices to keep $\operatorname{Pr}[X>(1+\delta) \mu]$ bellow ε (irrespective of the values of n and p_{i} 's).

EXAMPLE 2 - MONTE CARLO METHOD - I

In this example we illustrate how Chernoff bound help us to show that a simple Monte Carlo algorithm can be used to approximate number π through sampling.

The term Monte Carlo method refers to a broad collection of tools for estimating various values through sampling and simulation.

Monte Carlo methods are used extensively in all areas of physical sciences and technologies.

A CASE STUDY - routing on hypercubes

Networks are modeled by graphs. Processors are models by nodes and Communication links are models by edges.

Principles of synchronous communication. :links (edges) carry synchronously packets
(i,X,d(i)) where i is a source node, X are data and $d(i)$ is destination node.
Permutation routing problem on an n-processor network
with nodes $1,2, \ldots, n$
Each node i starts by sending, in parallel, a packet to a node $d(i)$
where $d(1), d(2), \ldots, d(n)$ is a permutation of $1,2, \ldots, n$.
Problem: How many steps (from a node to a node) are necessary and sufficient to route an arbitrary permutation?
A route for a packet is a sequence of edges the packet has to follow from its source to its destination.
A routing algorithm for the permutation routing problem has to specify a route (in parallel) for each packet.

A packet may occasionally have to wait at a node because the next edge on its route is "busy", transmitting another packet at that moment.
We assume each node contains one queue for each edge. A routing algorithm must therefore specify also a queueing discipline.

OBLIVIOUS ROUTING ALGORITHMS

are such routing algorithms that the route followed by a packet from a source node i to a destination $d(i)$ depends on i and $d(i)$ only (and not on other $d(j)$, for $j \neq i)$.
The following theorem gives a limit on the performance of oblivious algorithms.
Theorem: For any deterministic oblivious permutation routing algorithm on a network of n nodes each of the out-degree d, there is an instance of the permutation routing requiring $\Omega\left(\sqrt{\frac{\pi}{d}}\right)$ steps.

Example:

Consider any d-dimensional hypercube H_{d} and the left-to-right routing.
Any packet with the destination node $d(i)$ is sent from any current node n_{i} to the node n_{j} such that binary representation of n_{j} differs from the binary representation of n_{i} in the leftmost bit in which n_{i} and $d(i)$ differ.
Example Consider the permutation routing in H_{10} given by the "reverse" mapping $b_{1} \ldots b_{10} \rightarrow b_{10} \ldots b_{1}$
Observe that if the left-to-right routing strategy is used, then all messages from nodes $b_{1} b_{2} b_{3} b_{4} b_{5} 00000$ have to go through the node 0000000000.
Left-to-right routing on hypercube H_{d} requires sometimes $\Omega\left(\sqrt{\frac{2^{d}}{d}}\right)$ steps.

RANDOMIZED ROUTING

We show now a randomized (oblivious) routing algorithm with expected number of steps smaller, asymptotically, than $\sqrt{\frac{2^{d}}{d}}$. Notation : $N=2^{d}$

Phase 1: Pick a random intermediate destination $\sigma(i)$ from $\{1, \ldots, N\}$. Let the packet v_{i} is to travel first to the node $\sigma(i)$.

Phase 2: Let the packet v_{i} to travel next from $\sigma(i)$ to its final destination $D(i)$.
(In both phases the deterministic left-to-right oblivious routing is used.)
Queueing discipline: FIFO for each edge.
(Actually any queueing discipline is good provided at each step there is a packet ready to travel.)

Question: How many steps are needed before a packet v_{i} reaches its destination? (Let us consider at first only the Phase 1).

Let ρ_{i} denote the route for a packet v_{i}. It clearly holds:
The number of steps taken by v_{i} is equal to the length of ρ_{i}, which is at most d, plus the number of steps for which v_{i} is queued at intermediate nodes of ρ_{i}.

Fact: For any two packets v_{i}, v_{j} there is at most one queue q such that v_{i} and v_{j} are in the queue q at the same time.

PROOF CONTINUATION - I.

Let $H_{i j}$ be the random variable defined as follows

$$
H_{i j}=\left\langle\begin{array}{ll}
1 & \text { if routes } \rho_{i} \text { and } \rho_{j} \text { share an edge } \\
0 & \text { otherwise }
\end{array}\right.
$$

The total delay a packet v_{i} makes is at most $\sum_{j=1}^{N} H_{i j}$.
Since the routes of different packets are chosen independently and randomly, the $H_{i j}$'s are independent Poisson trials for $j \neq i$.

Thus, to bound the delay of the packet v_{i} from above, using the Chernoff bound, it suffices to obtain an upper bound on $\sum_{j=1}^{N} H_{i j}$. At first we find a bound for $\mathbf{E}\left[\sum_{j=1}^{N} H_{i j}\right]$.
For any edge e of the hypercube let the random variable $T(e)$ denote the number of routes that pass through e.

Fix any route $\rho_{i}=\left(e_{i, 1}, e_{i, 2}, \ldots, e_{i, k}\right), k \leq d$. Then

$$
\sum_{j=1}^{N} H_{i j} \leq \sum_{j=1}^{k} T\left(e_{i, j}\right) \Rightarrow \mathbf{E}\left[\sum_{j=1}^{N} H_{i j}\right] \leq \sum_{j=1}^{k} \mathbf{E}\left[T\left(e_{i, j}\right)\right]
$$

PROOF CONTINUATION - II

It can be shown that $\mathbf{E}\left[T\left(e_{i, j}\right)\right]=\mathbf{E}\left[T\left(e_{i, m}\right)\right]$ for any two edges.
The expected length of ρ_{i} is $\frac{d}{2}$. An expectation of the total route length, summed over all packets, is therefore $\frac{N d}{2}$. The number of edges in the hypercube is $N d$ and therefore $\Rightarrow \mathbf{E}\left[T\left(e_{i j}\right)\right] \leq \frac{N d / 2}{N d}=\frac{1}{2}$ for any i, j.) Therefore

$$
\mathbf{E}\left[\sum_{j=1}^{N} H_{i j}\right] \leq \frac{k}{2} \leq \frac{d}{2}
$$

By the Chernoff bound (for $\delta>2 e-1$), see page 7 ,

$$
\operatorname{Pr}[X>(1+\delta) \mu]<2^{-(1+\delta) \mu}
$$

with $X=\sum_{j=1}^{N} H_{i j}, \delta=11, \mu=\frac{d}{2}$, we get that probability that $\sum_{j=1}^{N} H_{i j}$ exceeds $6 d$ is less than $2^{-6 d}$.

The total number of packets is $N=2^{d}$
The probability that any of the N packets experiences a delay exceeding $6 d$ is less than $2^{d} \times 2^{-6 d}=2^{-5 d}$

PROOF CONTINUATION - III.

By adding the length of the route to the delay we get:
Theorem: With probability at least $1-2^{-5 d}$ every packet reaches its intermediate destination in Phase 1 in $7 d$ or fewer steps.

The routing scheme for Phase 2 can be seen as the scheme for Phase 1 , which "runs backwards". Therefore the probability that any packet fails to reach its target in either phase is less than $2 \cdot 2^{-5 d}$. To summarize:

Theorem: With probability at least $1-\frac{1}{2^{5 d}}$ every packet reaches its destination in $14 d$ or fewer steps.

WIRING PROBLEM - I.

Global wiring in gate arrays

Gate-array:is $\sqrt{n} \times \sqrt{n}$ array of n gates.
Net - is a pair of gates to be connected by a wire.
Manhattan wiring - wires can run vertically and horizontally only.

Global wiring problem I (GWP ${ }_{W}$): given a set of nets and an integer W we need to specify, if possible, the set of gates each wire should pass through in connecting its end-points, in such a way that no more than W nets pass through any boundary.

Global wiring problem II: For a boundary b between two gates in the array, let $W_{S}(b)$ be the number of wires that pass through b in a solution S to the global wiring problem.

Notation: $W_{S}=\max _{b} W_{S}(b)$

WIRING PROBLEM - II.

We will consider only so called one-bend Manhattan routing at which direction is changed at most once.

Problem; how to decide for each net which of the following connections to use:

ᄂ

(that is vertical first and horizontal (right or left) next or vice verse) in order to get wiring S with minimal W_{s}.

REFORMULATION of the WIRING PROBLEM

Global wiring problem can be reformulated as a 0-1 linear programming problem.
For the net i we use two binary variables $x_{i 0}, x_{i 1}$

$$
\begin{array}{ll}
x_{i 0}=1 \Leftrightarrow i \text {-th route step has the form (horiz.=vert.) } & \urcorner \\
x_{i 1}=1 \Leftrightarrow i \text {-th route step has the form (vert+hori.) } & \llcorner
\end{array}
$$

Notation:

$$
T_{b 0}=\left\{i \mid \text { net } i \text { passes through } b \text { and } x_{i 0}=1\right\}
$$

and

$$
T_{b 1}=\left\{i \mid \text { net } i \text { passes through } b \text { and } x_{i 1}=1\right\}
$$

The corresponding 0-1 linear programming problem

minimize W,

$\begin{array}{ll}\text { where } & x_{i 0}, x_{i 1} \in\{0,1\} \text { for each net } i \\ & x_{i 0}+x_{i 1}=1 \text { for each net } i\end{array}$
$\sum_{i \in T_{b 0}} x_{i 0}+\sum_{i \in T_{b 1}} x_{i 1} \leq W$ for all b.
Last condition requires that at most W wires cross the boundary b

Denote W_{0} the minimum obtained this way.

TRICK - I.

1. Solve the corresponding rational linear programming problem with

$$
x_{i 0}, x_{i 1} \in[0,1]
$$

instead of (3).
This trick is called linear relaxation.
Denote $\widehat{x}_{i 0}, \widehat{x}_{i 1}$ solutions of the above rational linear programming problem, $1 \leq i \leq n$, and let \widehat{W} be the value of the objective function for this solution. Obviously,

$$
W_{0} \geq \widehat{W}
$$

2. Apply the technique called randomized rounding

Independently for each i, set $\bar{x}_{i 0}$ to 1 with probability $\widehat{x}_{i 0}$
and set $\quad \bar{x}_{i 1}$ to $0 \quad$ " $\widehat{x}_{i 0}$

The idea of randomized rounding is to interpret the fractional solutions provided by the linear program as probabilities for the rounding process.

TRICK - III.

Let b be a boundary. The solution of the rational linear program satisfy its constrains, therefore we have

$$
\sum_{i \in T_{b 0}} \widehat{x}_{i 0}+\sum_{i \in T_{b 1}} \widehat{x}_{i 1} \leq \widehat{W} .
$$

The number of wires passing through b in the solution S is

$$
W_{S}(b)=\sum_{i \in T_{b 0}} \bar{x}_{i 0}+\sum_{i \in T_{b 1}} \bar{x}_{i 1} .
$$

$\bar{x}_{i 0}$ and $\bar{x}_{i 1}$ are Poisson trials with probabilities
$\widehat{x}_{i 0}$ and $\widehat{x}_{i 1}$
In addition, $\bar{x}_{i 0}$ and $\bar{x}_{i 1}$ are each independent of $\bar{x}_{j 0}$ and $\bar{x}_{j 1}$ for $i \neq j$.
Therefore $W_{S}(b)$ is the sum of independent Poisson trials.

$$
E\left[W_{S}(b)\right]=\sum_{i \in T_{b o}} E\left[\bar{x}_{i 0}\right]+\sum_{i \in T_{b 1}} E\left[\bar{x}_{i 1}\right]=\sum_{i \in T_{b 0}} \widehat{x}_{i 0}+\sum_{i \in T_{b 1}} \widehat{x}_{i 1} \leq \widehat{W}
$$

Since $\Delta^{+}\left(\widehat{W}, \frac{\varepsilon}{2 n}\right)$ is such that

$$
\operatorname{Pr}\left[W_{S}(b)>\widehat{W}\left(1+\Delta^{+}\left(\widehat{W}, \frac{\varepsilon}{2 n}\right)\right)\right] \leq \frac{\varepsilon}{2 n}
$$

the theorem follows.

The problem with Chernoff bounds is that they work only for 0-1 random variables. Hoeffding inequality is another concentration bound based on the moment generating functions that applies to any sum of independent random variables with mean 0.

Theorem Let $X_{1} \ldots, X_{n}$ be independent random variables with $\mathrm{E}\left[X_{i}\right]=0$ and $\left|X_{i}\right| \leq c_{i}$ for all i and some constants c_{i}. Then for all t,

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geq t\right] \leq e^{-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}}
$$

In the case x_{i} are dependent, but form so called martingale Hoeffding inequality can be generalized and we get so called Azuma-Hoeffding inequality.

MARTINGALES

Martingales are very special sequences of random variables that arise at numerous applications, such as at gambling or at random walks.

These sequences have various interesting properties and for them powerful techniques exist to derive special Chernoff-like tail bounds.

Martingales can be very useful in showing that values of a random variable V are sharply concentrated around its expectation $\mathrm{E}[V]$.

Martingales originally referred to systems of betting in which a player increases his stake (usually by doubling) each time he lost a bet.

For analysis of randomized algorithms of large importance is that, as a general rule of thumb says, most things that work for sums of independent random variables work also for martingales.

MARTINGALES

MARTINGALES - MAIN DEFINITION

Definition: A sequence of random variables Z_{0}, Z_{1}, \ldots is a martingale with respect to a sequence of rand. variabl., X_{0}, X_{1}, \ldots, if, for all $n \geq 0$, the following conditions hold:
$\square Z_{n}$ is a function of $X_{0}, X_{1}, \ldots, X_{n}$

- $\mathbf{E}\left[\left|Z_{n}\right|\right]<\infty$;
- $\mathbf{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right]=Z_{n}$;

A sequence of random variables Z_{0}, Z_{1}, \ldots is called martingale if it is mrtngl with respect to itself. That is $\mathbf{E}\left[\left|Z_{n}\right|\right]<\infty$ and $\mathrm{E}\left[Z_{n+1} \mid Z_{0}, \ldots, Z_{n}\right]=Z_{n}$

A Doob martingale is a martingale constructed using the following general scheme:

Let $X_{0}, X_{1}, \ldots, X_{n}$ be a sequence of random variables, and let Y be another random variable with $\mathbf{E}[|Y|]<\infty$.
The sequence

$$
Z_{i}=\mathbf{E}\left[Y \mid X_{0}, \ldots, X_{i}\right], i=1, \ldots, n
$$

for $i=0,1,2, \ldots$ is a martingale with respect to $X_{0}, X_{1}, \ldots, X_{n}$.
Indeed,

$$
\begin{aligned}
\mathrm{E}\left[Z_{i+1} \mid X_{0}, \ldots, X_{i}\right] & =\mathrm{E}\left[\mathrm{E}\left[Y \mid X_{0}, \ldots, X_{i+1}\right] \mid X_{0}, \ldots, X_{i}\right] \\
& =\mathrm{E}\left[Y \mid X_{0}, \ldots, X_{i}\right]=Z_{i}
\end{aligned}
$$

Here we have used the fact that $\mathbf{E}[V \mid W]=\mathbf{E}[\mathbf{E}[V \mid U, W] \mid W]$ for any r.v. U, V, W.

A USEFUL FACT

For random variables X, Y it holds

$$
\mathrm{E}[\mathrm{E}[X \mid Y]]=\mathrm{E}[X]
$$

In words: what you will expect after expecting X be after learning Y is the same as what you can expect X directly to be.

Proof:

$$
\mathbf{E}[X, Y=y]=\sum_{x} x \operatorname{Pr}[X=x, Y=y]=\sum_{x} x \frac{\operatorname{Pr}[x, y]}{\operatorname{Pry}[y]}
$$

and therefore

$$
\mathbf{E}[\mathbf{E}[X \mid Y=y]]=\sum_{y} \operatorname{Pr}[y] \sum_{x} x \frac{\operatorname{Pr}[x, y]}{\operatorname{Pr}[y]}=\sum_{x} \sum_{y} x \operatorname{Pr}[x, y]=\mathbf{E}[X]
$$

- Let us have a gambler who plays a sequence of fair games.
- Let X_{i} be the amount the gambler wins in the i th game.
- Let Z_{i} be the gambler's total winnings at the end of the i th game.
- Because each game is fair we have $\mathbf{E}\left[X_{i}\right]=0$
$-\mathrm{E}\left[Z_{i+1} \mid X_{1}, X_{2}, \ldots, X_{i}\right]=Z_{i}+\mathbf{E}\left[X_{i+1}\right]=Z_{i}$
Thus $Z_{1}, Z_{2}, \ldots, Z_{n}$ is martingale with respect to the sequence $X_{1}, X_{2}, \ldots, X_{n}$.

Definition: For two random variables Y and $Z, \mathbf{E}[Y \mid Z]$ is defined to be a random variable $f(Z)$ that takes on the value $\mathbf{E}[Y \mid Z=z]$ when $Z=z$.

Theorem For any random variables Y, Z it holds

$$
\mathbf{E}[Y]=\mathbf{E}[\mathbf{E}[Y \mid Z]] .
$$

DOOB MARTINGALES

REMAINDER - CONDITIONAL EXPECTATION

Definition: It is natural and useful to define conditional expectation of a random variable Y, conditioned on an event E, by

$$
\mathbf{E}[Y \mid E]=\sum y \operatorname{Pr}(Y=y \mid E) .
$$

Example: Let we roll independently two perfect dice and let X_{i} be the number that shows on the i th dice and let X be sum of numbers on both dice.

$$
\begin{gathered}
\mathbf{E}\left[X \mid X_{1}=3\right]=\sum_{x} x \operatorname{Pr}\left(X=x \mid X_{1}=3\right)=\sum_{x=4}^{9} x \frac{1}{6}=\frac{13}{2} \\
\mathbf{E}\left[X_{1} \mid X=5\right]=\sum_{x=1}^{4} x \operatorname{Pr}\left(X_{1}=x \mid X=5\right)=\sum_{x=1}^{4} x \frac{\operatorname{Pr}\left(X_{1}=x \cap X=5\right)}{\operatorname{Pr}(X=5)}=\frac{5}{2}
\end{gathered}
$$

A stopping time corresponds to such a strategy for stopping a sequence of steps (say at a gambling), that is based only on the outcomes seen so far.

Examples of such rules at which the decision to stop gambling is a stopping time:
11 First time the gambler wins 5 games in total;
22 First time the gambler either wins or looses 1000 dolars
(3) First time the gambler wins 4 times in a row.

The rule "Last time the gambler wins 4 times in a row" is not a stopping time.

Theorem: If Z_{0}, Z_{1}, \ldots, is a martingale with respect to X_{1}, X_{2}, \ldots and if T is a stopping time for X_{1}, X_{2}, \ldots, then

$$
\mathbf{E}\left[Z_{T}\right]=\mathbf{E}\left[Z_{0}\right]
$$

whenever one of the following conditions holds:

- there is a constant c such that, for all $i,\left|Z_{i}\right| \leq c$ - that is all Z_{i} are bounded;
- T is bounded;
$\square \mathbf{E}[T]<\infty$ and there is a constant c such that

$$
\mathbf{E}\left[\left|Z_{i+1}-Z_{i}\right| \mid X_{1}, \ldots, X_{i}\right]<c
$$

EXAMPLE - GAMBLER's PROBLEM

- Consider a sequence of independent fair games, where in each round each player either wins or looses one euro with probability $\frac{1}{2}$.
- Let $Z_{0}=0$, let X_{i} be the amount won at the i th game and let Z_{i} be the total amount won after i games.
- Let us assume that the player quits the game when he either looses I_{1} euro or wins I_{2} euro (for given I_{1}, I_{2}).
- What is the probability p that the player wins I_{2} euro before losing I_{1} euro?

GAMBLER's PROBLEM - ANSWER

- Let T be the time when the gambler for the first time either won l_{2} or lost l_{1} euro. T is stopping time for the sequence X_{1}, X_{2}, \ldots.
- Sequence Z_{0}, Z_{1}, \ldots is martingale. Since values of Z_{i} are bounded, the martingale stopping theorem can be applied. Therefore, we have:

$$
\mathrm{E}\left[Z_{T}\right]=0
$$

- Let now p be probability that the gambler quits playing after winning l_{2} euro. Then

$$
\mathrm{E}\left[Z_{T}\right]=l_{2} p-I_{1}(1-p)=0
$$

and therefore

$$
p=\frac{l_{1}}{l_{1}+l_{2}}
$$

ELECTION PROBLEM

- Suppose candidates A and B run for elections and at the end A gets v_{A} votes and B gets v_{B} votes and $v_{B}<v_{A}$.
- Let us assume that votes are counted at random. What is the probability that the candidate A will be always ahead during the counting process?
- Let $n=v_{A}+v_{B}$ and let S_{k} be the number of votes by which A is leading after k votes were counted. Clearly $S_{n}=v_{A}-v_{B}$.
- For $0 \leq k \leq n-1$ we define

$$
X_{k}=\frac{S_{n-k}}{n-k}
$$

- It can be shown, after some calculations, that the sequence $X_{0}, X_{1}, \ldots, X_{n}$ forms a martingale.
- Note that the sequence $X_{0}, X_{1}, \ldots, X_{n}$ relates to the counting process in a backward order - X_{0} is a function of S_{n}, \ldots

ELECTION PROBLEM - RESULT

- Let T be the minimum k such that $X_{k}=0$ if such a k exists, and $T=n-1$ otherwise.
- T is a bounded stopping time and therefore the martingale stopping theorem gives

$$
\mathbf{E}\left[X_{T}\right]=\mathbf{E}\left[X_{0}\right]=\frac{\mathbf{E}\left[S_{n}\right]}{n}=\frac{v_{A}-v_{B}}{v_{A}+v_{B}}
$$

■ Case 1: Candidate A leads through the count. In such a case all S_{n-k} and therefore all X_{k} are positive, $T=n-1$ and $X_{T}=X_{n-1}=S_{1}=1$.

- Case 2: Candidate A does not lead through the count. For some $k<n-1 X_{k}=0$. If candidate B ever leads it has to be a k where $S_{k}=X_{k}=0$. In this case $T==k<n-1$ and $X_{T}=0$.
- We have therefore

$$
\mathbf{E}\left[X_{T}\right]=\frac{v_{A}-v_{B}}{v_{A}+v_{B}}=1 \cdot \operatorname{Pr}(\text { Case } 1)+0 \cdot \operatorname{Pr}(\text { Case } 2)
$$

- Therefore the probability of Case 1 , in which candidate A leads through the account, is

$$
\frac{v_{A}-v_{B}}{v_{A}+v_{B}}
$$

V054 1. Basic Techniques II: Concentration Bounds
62/7

EXAMPLE - PATTERN MATCHING - I.

Perhaps the main importance of the martingale concept for the analysis of randomized algorithms is due to various special Chernoff-type inequalities that can be applied even in case random variables are not independent.

Theorem Let $X_{0}, X_{1}, \ldots, X_{n}$ be a martingale such that for any k

$$
\left|X_{k}-X_{k-1}\right| \leq c_{k}
$$

for some c_{k}.
Then, for all $t \geq 0$ and any $\lambda>0$

$$
\operatorname{Pr}\left(\left|X_{t}-X_{0}\right| \geq \lambda\right) \leq 2 e^{-\lambda^{2} /\left(2 \sum_{i=1}^{t} c_{i}^{2}\right)}
$$

- Let $S=\left(s_{1}, \ldots, s_{n}\right)$ be a string of n characters chosen randomly from an s-nary alphabet Σ. Let $P=\left(p_{1}, \ldots, p_{k}\right)$ be a string (pattern) of k characters from Σ.
- Let $F_{P, S}$ be the number of occurrences of P in S. Clearly

$$
\mathrm{E}\left[F_{P, S}\right]=(n-k+1)\left(\frac{1}{s}\right)^{k}
$$

- We use now a Doob martingale and Azuma-Hoeffding inequality to show that, if k is relatively small with respect to n, then the number of occurrences of the pattern P in S is highly concentrated around its mean.
- Let $Z_{0}=\mathbf{E}\left[F_{P, S}\right]$ and, for $1 \leq i \leq n$ let

$$
Z_{i}=\mathbf{E}\left[F_{P, S} \mid s_{1}, \ldots, s_{i}\right] .
$$

- The sequence Z_{0}, \ldots, Z_{n} is a Doob martingale, and $Z_{n}=F_{P, s}$.

WAITING TIMES for PATTERNS PROBLEM

Problem: Let us suppose that we flip coins until we see some pattern to appear. What is the expected number of coin-flips until this happens?

Example: We flip coins until we see HTHH.
Suppose that $x_{1} x_{2} \ldots x_{n}$ is the pattern we want to get.
Let us imagine we have an army of gamblers, and let one new shows up before each new coin flip.

Let each gambler start by borrowing $1 \$$ and betting that the next coin-flip will be x_{1}. If she wins, she takes her $2 \$$ and bets $2 \$$ that next coin-flip will be x_{2}, continuing to play double-or-nothing until either she loses (and is out of her initial $1 \$$) or wins her last bet on x_{k} (and is up $2^{k}-1$ dollars).

Because each gambler's winnings form a martingale, so does their sum, and so the expected total return of all gamblers up to the stopping time τ at which our pattern occurs for the first time is 0 .

EXAMPLE - OCCUPANCY PROBLEM

The above facts will now be used to compute $\mathbf{E}[\tau]$.
When we stop at time τ we have one gambler who has won $2^{k}-1$. Other gamblers may still play.

For each i with $x_{1} \ldots x_{k}=x_{k-i+1} \ldots x_{k}$ there will be a gambler with net winnings $2^{i}-1$. All remaining gamblers will all be at -1 .

Let $\chi_{i}=1$ if $x_{1} \ldots x_{i}=x_{k-i+1} \ldots x_{k}$, and 0 otherwise. Then, using the stopping time theorem,

$$
\mathbf{E}\left[X_{\tau}\right]=\mathbf{E}\left[-\tau+\sum_{i=1}^{k} \chi_{i} 2^{i}\right]=-\mathbf{E}[\tau]+\sum_{i=1}^{k} \chi_{i} 2^{i}=0
$$

and therefore

$$
\mathbf{E}[\tau]=\sum_{i=1}^{k} \chi_{i} 2^{i}
$$

Examples: if pattern is HTHH (HHHH) [THHH], then $\mathbf{E}[\tau]$ equals 18 (30) [16].

Suppose that m balls are thrown randomly into n bins and let Z denote the number of bins that remain empty at the end.

For $0 \leq t \leq m$ let Z_{t} be the expectation at time t of the number of bins that are empty at time m.
The sequence of random variables

$$
Z_{0}, Z_{1}, \ldots, Z_{m}
$$

is a martingale, $Z_{0}=\mathrm{E}[Z]$ and $Z_{m}=Z$.

Kolmogorov-Doob inequality Let X_{0}, X_{1}, \ldots be a martingale. Then for any $\lambda>0$

$$
\operatorname{Pr}\left[\max _{0 \leq i \leq n} X_{i} \geq \lambda\right] \leq \frac{\mathbf{E}\left[\left|X_{n}\right|\right]}{\lambda}
$$

Azuma inequality Let X_{0}, X_{1}, \ldots be a martingale sequence such that for each k

$$
\left|X_{k}-X_{k-1}\right| \leq c_{k}
$$

then for all $t \geq 0$ and any $\lambda>0$

$$
\operatorname{Pr}\left[\left|X_{t}-X_{0}\right| \geq \lambda\right] \leq 2 \exp \left(-\frac{\lambda^{2}}{2 \sum_{k=1}^{t} c_{k}^{2}}\right)
$$

Corollary Let X_{0}, X_{1}, \ldots be a martingale sequence such that for each k

$$
\left|X_{k}-X_{k-1}\right| \leq c
$$

where c is independent of k. Then, for all $t \geq 0$ and any $\lambda>0$

$$
\operatorname{Pr}\left[\left|X_{t}-X_{0}\right| \geq \lambda c \sqrt{t}\right] \leq 2 e^{-\lambda^{2} / 2}
$$

EXERCISES

APPENDIX

Let us have m balls thrown randomly into n bins and let Z denote the number of bins that remain empty.

Azuma inequality allows to show:

$$
\mu=\mathbf{E}[Z]=n\left(1-\frac{1}{n}\right)^{m} \approx n e^{-m / n}
$$

and for $\lambda>0$

$$
\operatorname{Pr}[|Z-\mu| \geq \lambda] \leq 2 e^{-\frac{\lambda^{2}(n-1 / 2)}{n^{2}-\mu^{2}}}
$$

${ }^{\pi}$ What is larger, e^{π} or π^{e}, for the basis e of natural logarithms
${ }_{\square}$ Hint 1: There exists one-line proof of the correct relation.
${ }_{\square}$ What is larger, e^{π} or π^{e}, for the basis e of natural logarithms
${ }_{0}$ Hint 1: There exists one-line proof of correct relation.
${ }_{1}$ Hint 2: Solution: use inequality $e^{x}>1+x$ with $x=\pi / e-1$.
${ }^{4}$ What is larger, e^{π} or π^{e}, for the basis e of natural logarithms
2 Hint 1: There exists one-line proof of correct relation.
(3) Hint 2: Use the inequality $e^{x}>1+x$ with $x=\pi / e-1$.
© Solution:

$$
e^{\pi / e-1}>1+\pi / e-1
$$

implies:

$$
e^{\pi / e-1}>\pi / e==>e^{\pi / e}>\pi==>e^{\pi}>\pi^{e}
$$

