
IA158 Real Time Systems

Tomáš Brázdil

1

Organization of This Course

Sources:
I Lectures (slides, notes)
I based on several sources (hard to obtain)
I slides are prepared for lectures, lots of stuff on whiteboard

(⇒ attend the lectures)

Homework:
I a larger project, probably with LEGO mindstorms

Evaluation:
I Homework project

(have to do to be allowed to the exam)

I Oral exam

2

Real-Time Systems

Definition 1 (Time)
Mirriam-Webster: Time is the measured or measurable period during
which an action, process, or condition exists or continues.

Definition 2 (Real-time)
Real-time is a quantitative notion of time measured using
a physical clock.
Example: After an event occurs (eg. temperature exceeds 500 degrees) the
corresponding action (cooling) must take place within 100ms.

Compare with qualitative notion of time (before, after, eventually, etc.)

Definition 3 (Real-time system)
A real-time system must deliver services in a timely manner.
Not necessarily fast, must satisfy some quantitative timing constraints

3

Real-time Embedded Systems

Definition 4 (Embedded system)
An embedded system is a computer system designed for
specific control functions within a larger system, usually
consisting of electronic as well as mechanical parts.

Most (not all) real-time
systems are embedded

Most (not all) embedded
systems are real-time

4

(Few) Examples of Real-time Embedded Systems

I Industrial
I chemical plant control
I automated assembly line (e.g. robotic assembly, inspection)

I Medical
I pacemaker,
I medical monitoring devices

I Transportation systems
I computers in cars (ABS, MPFI, cruise control, airbag ...)
I aircraft (FMS, fly-by-wire ...)

I Military applications
I controllers in weapons, missiles, ...
I radar and sonar tracking

I Multimedia – video telephony, multimedia center,
videoconferencing

I ...

5

(Non-)Real-time (non-)embedded systems

There are real time systems that are not embedded:
I trading systems
I ticket reservation
I multimedia (on PC)
I ...

There are embedded systems that are (possibly) not real-time

e.g. a weather station sends data once a day without any deadline –
not really real-time system

Caveat: Aren’t all systems real-time in a sense?

6

Characteristics of Real-Time Embedded Systems

Real-time systems often are

I safety critical
I Serious consequences may result if services are not

delivered on timely basis
I Bugs in embedded real-time systems are often difficult to fix

... need to validate their correctness

I concurrent
I Real-world devices operate in parallel – better to model this

parallelism by concurrent tasks in the program

... validation may be difficult, formal methods often needed

I reactive
I Interact continuously with their environment (as opposed to

information processing systems)

... “traditional” validation methods do not apply
7

Validating Time Requirements and Predictability

I Given real-time requirements and an implementation on
HW and SW, how to show that the requirements are met?

... testing might not suffice:
Maiden flight of space shuttle, 12 April 1981: 1/67 probability that a
transient overload occurs during initialization; and it actually did!

I We need a formal model and validation ...

I ... we need predictable behavior!
It is difficult to obtain
I caches, DMA, unmaskable interrupts
I memory management
I scheduling anomalies
I difficult to compute worst-case execution time
I ...

8

Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines

9

Examples of Real-Time Systems

I Digital process control
I anti-lock braking system

I Higher-level command and control
I helicopter flight control

I Real-time databases
I Stock trading systems

10

Digital Process Control

Computer controls the flow in the pipe in real-time
11

Digital Process Control

The controller (computer) controls the plant using the actuator
(valve) based on sampled data from the sensor (flow meter)
I y(t) – the measured state of the plant
I r(t) – the desired state of the plant
I Calculate control output u(t) as a function of y(t), r(t)

e.g. uk = uk−2 + α(rk − yk) + β(rk−1 − yk−1) + γ(rk−2 − yk−2)
where α, β, γ are suitable constants

12

Digital Process Control

I Pseudo-code for the controller:

set timer to interrupt periodically with period T
foreach timer interrupt do
analogue-to-digital conversion of y(t) to get yk
compute control output uk based on rk and yk
digital-to-analogue conversion of uk to get u(t)

end

I Effective control of the plant depends on:
I The correct reference input and control law computation
I The accuracy of the sensor measurements

I Resolution of the sampled data (i.e. bits per sample)
I Frequency of interrupts (i.e. 1/T)

I T is the sampling period
I Small T better approximates the analogue behavior
I Large T means less processor-time demand

... but may result in unstable control

13

Example

r(t) = 1 for t ≥ 0

14

Anti-Lock Braking System

I The controller monitors the speed sensors in wheels
Right before a wheel locks up, it experiences a rapid deceleration

I If a rapid deceleration of a wheel is observed, the controller
alternately
I reduces pressure on the corresponding brake until

acceleration is observed
I then applies brake until deceleration is observed

15

Multi-Rate DPC – Helicopter Flight Control

There are also three velocity components

Two control loops: pilot’s control (30Hz) and stabilization (90Hz)
16

Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:
I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17

Higher-Level Command and Control

Controllers organized into a hierarchy
I At the lowest level we place the digital control systems that

operate on the physical environment
I Higher level controllers monitor the behavior of lower levels
I Time-scale and complexity of decision making increases as one

goes up the hierarchy (from control to planning)
18

Real-Time Database System

I Databases that contain perishable data, i.e. relevance of
data deteriorates with time
Air traffic control, stock price quotation systems, tracking systems, etc.

I The temporal quality of data is quantified by age of an
image object, i.e. the length of time since last update

I temporal consistency
I absolute = max. age is bounded by a fixed threshold
I relative = max. difference in ages is bounded by a threshold

e.g. planning system correlating traffic density and flow of vehicles

I Users of database compete for access – various models
for trading consistency with time demands exist.

19

Stock-Trading System

I A system for selling/buying stock at public prices
I Prices are volatile in their movement
I Stop orders:
I set upper limit on prices for buying – buy for the best

available price once the limit is reached
e.g. stock currently trading at $30 should be bought when the
price rises above $35

I set lower limit on prices for selling – sell for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be sold when the price
sinks below $25

I Depending on the delay, the available price may be
different from the limit
successful stop orders depend on the timely delivery of stock trade data
and the ability to trade on the changing prices in a timely manner

20

Structure of Real-Time (Embedded) Applications

21

Types of Real-Time Systems

I Purely cyclic

I every task executes periodically; I/O operations are polled;
demands in resources do not vary

e.g. digital controllers

I Mostly cyclic

I most tasks execute periodically; system also responds to
external events (fault recovery and external commands)
asynchronously

e.g. avionics

I Asynchronous and somewhat predictable

I durations between consecutive executions of a task as well
as demands in resources may vary considerably. These
variations have either bounded range, or known statistics.

e.g. radar signal processing, tracking

22

Types of Real-Time Systems

I The type of application affects how we schedule tasks and
prove correctness

I It is easier to reason about applications that are more
cyclic, synchronous and predictable
I Many real-time systems are designed in this manner
I Safe, conservative, design approach, if it works

23

Real-Time Systems Failures

I AT&T long distance calls

I Therac-25 medical accelerator disaster

I Patriot missile mistiming

24

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

Therac-25 medical accelerator disaster

Therac-25 = a machine for radiotheratpy
I between 1985 and 1987 (at least) six accidents involving

enormous radiation overdoses to patients
I Half of these patients died due to the overdoses

26

Therac-25 – the modes

1. electron mode
I electron beam (low current)
I various levels of energy (5 to 25-MeV)
I scanning magnets used to spread the beam to a safe

concentration
2. photon mode

I only one level of energy (25-MeV), much larger
electron-beam current

I electron beam strikes a metal foil to produce X-rays
(photons)

I the X-ray beam is "flattened" by a device below the foil

3. light mode – just light beam used to illuminate the field on
the surface of the patient’s body that will be treated

All devices placed on a turntable, supposed to be rotated to the
correct position before the beam is started up

27

Therac-25 – turntable

28

The Software

The software responsible for
I Operator
I Monitoring input and editing changes from an operator
I Updating the screen to show current status of machine
I Printing in response to an operator commands

I Machine
I monitoring the machine status
I placement of turntable
I strength and shape of beam
I operation of bending and scanning magnets
I setting the machine up for the specified treatment
I turning the beam on
I turning the beam off (after treatment, on operator

command, or if a malfunction is detected)

Software running several safety critical tasks in parallel!
Insufficient hardware protection (as opposed to previous models)!!

29

Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler, a
set of tasks, and interrupt services (e.g. the computer clock and
handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)

30

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

Patriot missile mistiming

vs

32

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot Missile Mistiming

34

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)

I the system was already running for 100 hours, i.e. the counter
value was 360000, i.e. 360000 · 0.099999905 = 35999.6568

I the error was 0.3432 seconds, which means 687 m off MACH 5
scud missile

I the problem was not only in wrong conversion but in the fact that
at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area
35

Patriot Missile Mistiming

36

(Rough) Course Outline

I Real-time scheduling
I Time and priority driven
I Resource control
I Multi-processor (a bit)

I A little bit on programming real-time systems
I Real-time operating systems

37

Outline – Scheduling

The Scheduling problem:
Input:
I available processors, resources
I set of tasks/jobs

with their requirements, deadlines, etc.

Question: How to assign processors and resources to
tasks/jobs so that all requirements are met?

Example:
I 1 processor, one critical section shared by job 1 and job 3

I job 1: release time 1, computation time 4, deadline 8

I job 2: release time 1, computation time 2, deadline 5

I job 3: release time 0, computation time 3, deadline 4

I ...

38

Outline – Scheduling

I We consider a formal model of systems with parallel jobs
that possibly contend for shared resources
consider periodic as well as aperiodic jobs

I Consider various algorithms that schedule jobs to meet
their timing constraints
offline and online algorithms, RM, EDF, etc.

39

Outline – Programming

Basic information about RTOS and RT programming languages

I RTOS – overview
I real-time in non-real-time operating systems
I implementation of theoretical concepts in freeRTOS

I RT in programming languages – short overview

40

Real-Time Scheduling

Formal Model

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]

41

Real-Time Scheduling – Formal Model

I Introduce an abstract model of real-time systems
I abstracts away unessential details
I sets up consistent terminology

I Three components of the model
I A workload model that describes applications supported by

the system
i.e. jobs, tasks, ...

I A resource model that describes the system resources
available to applications
i.e. processors, passive resources, ...

I Algorithms that define how the application uses the
resources at all times
i.e. scheduling and resource access protocols

42

Basic Notions

I A job is a unit of work that is scheduled and executed by
a system
compute a control law, transform sensor data, etc.

I A task is a set of related jobs which jointly provide some
system function
check temperature periodically, keep a steady flow of water

I A job executes on a processor
CPU, transmission link in a network, database server, etc.

I A job may use some (shared) passive resources
file, database lock, shared variable etc.

43

Life Cycle of a Job

READY RUN

WAITING

COMPL.

scheduling

preemption
wait for a busy
resource

signal free
resource

release

completed

44

Jobs – Parameters

We consider finite, or countably infinte number of jobs J1, J2, . . .

Each job has several parameters.

There are four types of job parameters:
I temporal
I release time, execution time, deadlines

I functional
I Laxity type: hard and soft real-time
I preemptability, (criticality)

I interconnection
I precedence constraints

I resource
I usage of processors and passive resources

45

Job Parameters – Execution Time

Execution time ei of a job Ji – the amount of time required to
complete the execution of Ji when it executes alone and has all
necessary resources

I Value of ei depends upon complexity of the job and speed of the
processor on which it executes; may change for various reasons:

I Conditional branches
I Caches, pipelines, etc.
I ...

I Execution times fall into an interval [e−i ,e
+
i]; we assume that

we know this interval (WCET analysis) but not necessarily ei

We usually validate the system using only e+
i for each job

i.e. assume ei = e+
i

46

Job Parameters – Release and Response Time

Release time ri – the instant in time when a job Ji becomes
available for execution
I Release time may jitter, only an interval [r−i , r

+
i] is known

I A job can be executed at any time at, or after, its release time,
provided its processor and resource demands are met

Completion time Ci – the instant in time when a job completes
its execution

Response time – the difference Ci − ri between the completion
time and the release time

Time
Ji Ji

r−i r+i

Release time ri Completion time Ci

Response time

47

Job Parameters – Deadlines

Absolute deadline di – the instant in time by which a job must
be completed

Relative deadline Di – the maximum allowable response time
i.e. Di = di − ri

Feasible interval is the interval (ri ,di]

Time
Ji Ji

r−i r+i

Release time ri

Completion time Ci

Response time

Absolute deadline di

Rel. deadline Di

A timing constraint of a job is specified using release time
together with relative and absolute deadlines. 48

Laxity Type – Hard Real-Time

A hard real-time constraint specifies that a job should never
miss its deadline.

Examples: Flight control, railway signaling, anti-lock brakes, etc.

Several more precise definitions occur in literature:

I A timing constraint is hard if the failure to meet it is considered
a fatal error
e.g. a bomb is dropped too late and hits civilians

I A timing constraint is hard if the usefulness of the results falls off
abruptly (may even become negative) at the deadline
Here the nature of abruptness allows to soften the constraint

Definition 5
A timing constraint is hard if the user requires formal validation
that the job meets its timing constraint.

49

Laxity Type – Soft Real-Time

A soft real-time constraint specifies that a job could
occasionally miss its deadline

Examples: stock trading, multimedia, etc.

Several more precise definitions occur in literature:
I A timing constraint is soft if the failure to meet it is undesirable

but acceptable if the probability is low

I A timing constraint is soft if the usefulness of the results
decreases at a slower rate with tardiness of the job
e.g. the probability that a response time exceeds 50 ms is less than 0.2

Definition 6
A timing constraint is soft if either validation is not required, or
only a demonstration that a statistical constraint is met suffices.

50

Jobs – Preemptability

Jobs may be interrupted by higher priority jobs
I A job is preemptable if its execution can be interrupted
I A job is non-preemptable if it must run to completion once

started
(Some preemptable jobs have periods during which they cannot be
preempted)

I The context switch time is the time to switch between jobs
(Most of the time we assume that this time is negligible)

Reasons for preemptability:
I Jobs may have different levels of criticality

e.g. brakes vs radio tunning

I Priorities may make part of scheduling algorithm
e.g. resource access control algorithms

51

Jobs – Precedence Constraints

Jobs may be constrained to execute in a particular order
I This is known as a precedence constraint
I A job Ji is a predecessor of another job Jk and Jk a

successor of Ji (denoted by Ji < Jk) if Jk cannot begin
execution until the execution of Ji completes

I Ji is an immediate predecessor of Jk if Ji < Jk and there is
no other job Jj such that Ji < Jj < Jk

I Ji and Jk are independent when neither Ji < Jk nor Jk < Ji

A job with a precedence constraint becomes ready for
execution when its release time has passed and when all
predecessors have completed.

Example: authentication before retrieving an information, a signal
processing task in radar surveillance system precedes a tracker task

52

Tasks – Modeling Reactive Systems

Reactive systems – run for unlimited amount of time

A system parameter: number of tasks
I may be known in advance (flight control)
I may change during computation (air traffic control)

We consider three types of tasks
I Periodic – jobs executed at regular intervals, hard deadlines

I Aperiodic – jobs executed in random intervals, soft deadlines

I Sporadic – jobs executed in random intervals, hard deadlines

... precise definitions later.

53

Processors

A processor, P, is an active component on which jobs are scheduled

The general case considered in literature:

m processors P1, . . . ,Pm, each Pi has its type and speed.

We mostly concentrate on single processor scheduling

I Efficient scheduling algorithms

I In a sense subsumes multiprocessor scheduling where tasks are
assigned statically to individual processors
i.e. all jobs of every task are assigned to a single processor

Multi-processor scheduling is a rich area of current research, we
touch it only lightly (later).

54

Resources
A resource, R, is a passive entity upon which jobs may depend

In general, we consider n resources R1, . . . ,Rn of distinct types

Each Ri is used in a mutually exclusive manner

I A job that acquires a free resource locks the resource

I Jobs that need a busy resource have to wait until the resource is
released

I Once released, the resource may be used by another job
(i.e. it is not consumed)

(More generally, each resource may be used by k jobs concurrently, i.e., there are k
units of the resource)

Resource requirements of a job specify

I which resources are used by the job

I the time interval(s) during which each resource is required
(precise definitions later)

55

Scheduling

Schedule assigns, in every time instant, processors and
resources to jobs.

More formally, a schedule is a function

σ : {J1, . . .} ×R
+
0 → P({P1, . . . ,Pm,R1, . . . ,Rn})

so that for every t ∈ R+
0 there are rational 0 ≤ t1 ≤ t < t2 such

that σ(Ji , ·) is constant on [t1, t2).

(We also assume that there is the least time quantum in which scheduler
does not change its decisions, i.e. each of the intervals [t1, t2) is larger than a
fixed ε > 0.)

56

Valid and Feasible Schedule

A schedule is valid if it satisfies the following conditions:
I Every processor is assigned to at most one job at any time

I Every job is assigned to at most one processor at any time

I No job is scheduled before its release time

I The total amount of processor time assigned to a given job is
equal to its actual execution time

I All the precedence and resource usage constraints are satisfied

A schedule is feasible if all jobs with hard real-time constraints
complete before their deadlines

A set of jobs is schedulable if there is a feasible schedule for
the set.

57

Scheduling – Algorithms

Scheduling algorithm computes a schedule for a set of jobs
A set of jobs is schedulable according to a scheduling algorithm
if the algorithm produces a feasible schedule

Definition 7
A scheduling algorithm is optimal if it always produces
a feasible schedule whenever such a schedule exists.

58

Real-Time Scheduling

Individual Jobs

59

Scheduling of Individual Jobs

We start with scheduling of finite sets of jobs {J1, . . . , Jm} for
execution on single processor systems.
Each Ji has a release time ri , an execution time ei and
a relative deadline Di .
We assume hard real-time constraints.

The question: Is there an optimal scheduling algorithm?

We proceed in the direction of growing generality:

1. No resources, independent, synchronized (i.e. ri = 0 for all i)

2. No resources, independent but not synchronized

3. No resources but possibly dependent

4. The general case

60

No resources, Independent, Synchronized

J1 J2 J3 J4 J5
ei 1 1 1 3 2
di 3 10 7 8 5

Is there a feasible schedule?
Note: Preemption does not help in synchronized case.

Theorem 8
If there are no resource contentions, then executing
independent jobs in the order of non-decreasing deadline
(EDD) produces a feasible schedule (if it exists).
Proof.
Let σ be a schedule. Inversion is a pair (Ja , Jb) such that Ja
precedes Jb in σ but db < da .
Note that σ is EDD iff it does not contain any inversion.

61

Proof cont.
Assume k > 0 inversions in σ.
Let (Ja , Jb) be an inversion such that Ja is scheduled right before Jb .
There is always at least one such inversion (homework).

Let ta < tb be the time instants when Ja , Jb start to be executed in σ.
Recall: Ca ,Cb are completion times of Ja , Jb , and ea ,eb are execution times.

Note that Ca ≤ da and that Cb ≤ db < da .
Define a new schedule σ′ in which:

I All jobs except Ja , Jb are scheduled as in σ,

I Jb starts at ta ,

I Ja starts at ta + eb .

Observe that σ′ is still feasible:

I Jb is completed at ta + eb < ta + eb + ea = tb + eb = Cb ≤ db

I Ja is completed at ta + eb + ea = Cb ≤ db < da

Note that σ′ has k − 1 inversions. By repeating the above procedure k
times, we obtain an EDD schedule. �

62

No resources, Independent, Synchronized

Is there any simple schedulability test?

{J1, . . . , Jn} where d1 ≤ · · · ≤ dn is schedulable iff
∀i ∈ {1, . . . ,n} :

∑i
k=1 ek ≤ di

63

No resources, Independent (No Synchro)

J1 J2 J3
ri 0 0 2
ei 1 2 2
di 2 5 4

I find a (feasible) schedule (with and without preemption)
I determine response time of each job in your schedule

Preemption makes a difference.

64

No resources, Independent (No Synchro)

Earliest Deadline First (EDF) scheduling:
At any time instant, a job with the earliest absolute deadline is
executed

Here EDF works in the preemptive case but not in
the non-preemptive one.

J1 J2
ri 0 1
ei 4 2
di 7 5

65

No Resources, Independent (No Synchro)

Theorem 9
If there are no resource contentions, jobs are independent and
preemption is allowed, the EDF algorithm finds a feasible
schedule (if it exists).
Proof.
We show that any feasible schedule σ can be transformed in finitely
many steps to EDF schedule which is feasible.
Let σ be a feasible schedule but not EDF. Assume, w.l.o.g., that for
every k ∈N at most one job is executed in the interval [k , k + 1) and
that all release times and deadlines are inN.
(Otherwise rescale by the least common multiple.)

66

No Resources, Independent (No Synchro)
Proof cont.
We say that σ violates EDF at k if there are two jobs Ja and Jb that
satisfy:
I Ja and Jb are ready for execution at k
I Ja is executed in [k , k + 1)

I db < da

Let k ∈N be the least time instant such that σ violates EDF at k as
witnessed by jobs Ja and Jb .
Assume, w.l.o.g. that Jb has the minimum deadline among all jobs
ready for execution at k .

There is k < ` < db such that Jb is executed in [`, ` + 1).
Let us define a new schedule σ′ which is the same as σ except:
I executes Jb in [k , k + 1)

I executes Ja in [`, ` + 1)

Then σ′ is feasible and does not violate EDF at any k ′ ≤ k .

Finitely many steps transform any feasible schedule to EDF. �
67

No resources, Independent (No Synchro)

The non-preemptive case is NP-hard.

Heuristics are needed, such as the Spring algorithm, that
usually work in much more general setting (with resources etc.)

Use the notion of partial schedule where only a subset of tasks
has been scheduled.

Exhaustive search through partial schedules
I start with an empty schedule
I in every step either
I add a job which maximizes a heuristic function H among

jobs that have not yet been tried in this partial schedule
I or backtrack if there is no such a job

I After failure, backtrack to previous partial schedule
Heuristic function identifies plausible jobs to be scheduled
(earliest release, earliest deadline, etc.)

68

No Resources, Dependent (No Synchro)

Example:

J1 J2 J3 J4 J5 J6

ei 1 1 1 1 1 1
di 2 5 4 3 5 6

Dependencies:

J1

J2 J3

J4 J5 J6

Does EDF work?

69

No resources, Dependent (No Synchro)

Theorem 10
Assume that there are no resource contentions and jobs are
preemptable. There is a polynomial time algorithm which decides
whether a feasible schedule exists and if yes, then computes one.

Idea: Reduce to independent jobs by changing release times
and deadlines. Then use EDF.

Observe that if Ji < Jk then replacing
I rk with max{rk , ri + ei}

(Jk cannot be scheduled for execution before ri + ei because Ji cannot
be finished before ri + ei)

I di with min{di ,dk − ek }

(Ji must be finished before dk − ek so that Jk can be finished before dk)

does not change feasibility.

Replace systematically according to the precedence relation.
70

No Resources, Dependent (No Synchro)
Define r ∗k ,d

∗

k systematically as follows:
I Pick Jk whose all predecessors have been processed and

compute r ∗k := max{rk ,maxJi<Jk r ∗i + ei}. Repeat for all jobs.
I Pick Jk whose all successors have been processed and

compute d∗k := min{dk ,minJk<Ji d∗i − ei}. Repeat for all jobs.

Example:

J1 J2 J3 J4 J5 J6

ei 1 1 1 1 1 1
di 2 5 4 3 5 6

Dependencies:

J1

J2 J3

J4 J5 J6

Do you need the precedence constraints? 71

No Resources, Dependent (No Synchro)

Define r ∗k ,d
∗

k systematically as follows:

I Pick Jk whose all predecessors have been processed and
compute r ∗k := max{rk ,maxJi<Jk r ∗i + ei}. Repeat for all jobs.

I Pick Jk whose all successors have been processed and
compute d∗k := min{dk ,minJk<Ji d∗i − ei}. Repeat for all jobs.

This gives a new set of jobs J∗1, . . . , J
∗
m where each J∗k has the

release time r ∗k and the absolute deadline d∗k .
We impose no precedence constraints on J∗1, . . . , J

∗
m.

Lemma 11
{J1, . . . , Jm} is feasible iff {J∗1, . . . , J

∗
m} is feasible. If EDF schedule

is feasible on {J∗1, . . . , J
∗
m}, then the same schedule is feasible

on {J1, . . . , Jm}.
The same schedule means that whenever J∗i is scheduled at time t, then Ji is
scheduled at time t.

72

No Resources, Dependent (No Synchro)

Recall: r ∗k := max{rk ,maxJi<Jk r ∗i + ei} and
d∗k := min{dk ,minJk<Ji d∗i − ei}

Proof of Lemma 11.
⇒: It is easy to show that in no feasible schedule on {J1, . . . , Jm} any
job Jk can be executed before r ∗k and completed after d∗k (otherwise,
precedence constraints would be violated).
⇐: Assume that EDF σ is feasible on {J∗1, . . . , J

∗
m}. Let us use σ

on {J1, . . . , Jm}.
I.e. Ji is executed iff J∗i is executed.

Timing constraints of {J1, . . . , Jm} are satisfied since rk ≤ r ∗k and
dk ≥ d∗k for all k .
Precedence constraints: Assume that Js < Jt . Then J∗s
executes completely before J∗t since r ∗s < r ∗s + es ≤ r ∗t and
d∗s ≤ d∗t − et < d∗t and σ is EDF on {J∗1 . . . , J

∗
m}.

73

Resources, Dependent, Not Synchronized

Even the preemptive case is NP-hard
I reduce the non-preemptive case without resources to the

preemptive with resources
I Use a common resource R.
I Whenever a job starts its execution it locks the resource R.
I Whenever a job finishes its execution it releases the

resourse R.

Could be solved using heuristics, e.g. the Spring algorithm.

74

Real-Time Scheduling

Scheduling of Reactive Systems

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]

75

Reminder of Basic Notions

I Jobs are executed on processors and need resources

I Parameters of jobs
I temporal:

I release time – ri
I execution time – ei
I absolute deadline – di
I derived params: relative deadline (Di), completion time,

response time, ...
I functional:

I laxity type: hard vs soft
I preemptability

I interconnection
I precedence constraints (independence)

I resource
I what resources and when are used by the job

I Tasks = sets of jobs

76

Reminder of Basic Notions

I Schedule assigns, in every time instant, processors and
resources to jobs

I valid schedule = correct (common sense)

I Feasible schedule = valid and all hard real-time tasks meet
deadlines

I Set of jobs is schedulable if there is a feasible schedule for it

I Scheduling algorithm computes a schedule for a set of jobs

I Scheduling algorithm is optimal if it always produces a feasible
schedule whenever such a schedule exists, and if a cost function
is given, minimizes the cost

77

Scheduling Reactive Systems

We have considered scheduling of individual jobs
From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

I We consider various types of tasks
I Periodic
I Aperiodic
I Sporadic

I Differ in execution time patterns for jobs in the tasks

I Must be modeled differently
I Differing scheduling algorithms
I Differing impact on system performance
I Differing constraints on scheduling

78

Periodic Tasks

I A set of jobs that are executed repeatedly at regular time
intervals can be modeled as a periodic task

Time
Ji,1

ri,1

Ji,2

ri,2

Ji,3

ri,3

Ji,4

ri,4

· · ·
ϕi

I Each periodic task Ti is a sequence of jobs
Ji,1, Ji,2, . . . Ji,n, . . .
I The phase ϕi of a task Ti is the release time ri,1 of the first

job Ji,1 in the task Ti ;
tasks are in phase if their phases are equal

I The period pi of a task Ti is the minimum length of all time
intervals between release times of consecutive jobs in Ti

I The execution time ei of a task Ti is the maximum execution
time of all jobs in Ti

I The relative deadline Di is relative deadline of all jobs in Ti

(The period and execution time of every periodic task in the system are
known with reasonable accuracy at all times)

79

Periodic Tasks – Notation

The 4-tuple Ti = (ϕi ,pi ,ei ,Di) refers to a periodic task Ti with phase
ϕi , period pi , execution time ei , and relative deadline Di

For example: jobs of T1 = (1,10,3,6) are
I released at times 1, 11, 21, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 7, the second by 17, ...)

Default phase of Ti is ϕi = 0 and default relative deadline is di = pi

T2 = (10,3,6) satisfies ϕ = 0, pi = 10, ei = 3, Di = 6, i.e. jobs of T2 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 6, the second by 16, ...)

T3 = (10,3) satisfies ϕ = 0, pi = 10, ei = 3, Di = 10, i.e. jobs of T3 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 10 time units (the first by 10, the second by 20, ...)

80

Periodic Tasks – Hyperperiod

The hyper-period H of a set of periodic tasks is the least
common multiple of their periods
If tasks are in phase, then H is the time instant after which the pattern of job
release/execution times starts to repeat

0 5 10 15 20 25 30

H H

81

Aperiodic and Sporadic Tasks

I Many real-time systems are required to respond to
external events

I The tasks resulting from such events are sporadic and
aperiodic tasks
I Sporadic tasks – hard deadlines of jobs

e.g. autopilot on/off in aircraft
I Aperiodic tasks – soft deadlines of jobs

e.g. sensitivity adjustment of radar surveilance system
I Inter-arrival times between consecutive jobs are identically

and independently distributed according to a probability
distribution A(x)

I Execution times of jobs are identically and independently
distributed according to a probability distribution B(x)

I In the case of sporadic tasks, the usual goal is to decide,
whether a newly released job can be feasibly scheduled with
the remaining jobs in the system

I In the case of aperiodic tasks, the usual goal is to minimize the
average response time 82

Scheduling – Classification of Algorithms

I Off-line vs Online
I Off-line – sched. algorithm is executed on the whole task

set before activation
I Online – schedule is updated at runtime every time a new

task enters the system
I Optimal vs Heuristic
I Optimal – algorithm computes a feasible schedule and

minimizes cost of soft real-time jobs
I Heuristic – algorithm is guided by heuristic function; tends

towards optimal schedule, may not give one

The main division is on
I Clock-Driven
I Priority-Driven

83

Scheduling – Clock-Driven

I Decisions about what jobs execute when are made at specific
time instants
I these instants are chosen before the system begins

execution
I Usually regularly spaced, implemented using a periodic

timer interrupt
I Scheduler awakes after each interrupt, schedules jobs to

execute for the next period, then blocks itself until the next
interrupt
E.g. the helicopter example with the interrupt every 1/180 th of a
second

I Typically in clock-driven systems:
I All parameters of the real-time jobs are fixed and known
I A schedule of the jobs is computed off-line and is stored for

use at runtime; thus scheduling overhead at run-time can
be minimized

I Simple and straight-forward, not flexible

84

Scheduling – Priority-Driven

I Assign priorities to jobs, based on some algorithm
I Make scheduling decisions based on the priorities, when events

such as releases and job completions occur
I Priority scheduling algorithms are event-driven
I Jobs are placed in one or more queues; at each event, the

ready job with the highest priority is executed
(The assignment of jobs to priority queues, along with rules such as
whether preemption is allowed, completely defines a priority-driven alg.)

I Priority-driven algs. make locally optimal scheduling decisions
I Locally optimal scheduling is often not globally optimal
I Priority-driven algorithms never intentionally leave idle

processors
I Typically in priority-driven systems:
I Some parameters do not have to be fixed or known
I A schedule is computed online; usually results in larger

scheduling overhead as opposed to clock-driven scheduling
I Flexible – easy to add/remove tasks or modify parameters

85

Clock-Driven & Priority-Driven Example

T1 T2 T3
pi 3 5 10
ei 1 2 1

Clock-Driven:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

· · ·

· · ·

· · ·

Priority-driven: T1 � T2 � T3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

86

Real-Time Scheduling

Scheduling of Reactive Systems

Clock-Driven Scheduling

87

Current Assumptions

I Fixed number, n, of periodic tasks T1, . . . ,Tn
I Parameters of periodic tasks are known a priori
I Execution time ei,k of each job Ji,k in a task Ti is fixed
I For a job Ji,k in a task Ti we have

I ri,1 = ϕi = 0 (i.e., synchronized)
I ri,k = ri,k−1 + pi

I We allow aperiodic tasks
I assume that the system maintains a single queue for jobs

of aperiodic tasks
I Whenever the processor is available for aperiodic tasks, the

job at the head of this queue is executed
I We treat sporadic tasks later

Abuse of notation: Periodic, aperiodic, sporadic jobs are jobs
of periodic, aperiodic, sporadic tasks, respectively.

88

Static, Clock-Driven Scheduler

I Construct a static schedule offline
I The schedule specifies exactly when each job executes
I The amount of time allocated to every job is equal to its

execution time
I The schedule repeats each hyperperiod

i.e. it suffices to compute the schedule up to hyperperiod
I Can use complex algorithms offline
I Runtime of the scheduling algorithm is not relevant
I Can compute a schedule that optimizes some

characteristics of the system
e.g. a schedule where the idle periods are nearly periodic (useful
to accommodate aperiodic jobs)

89

Example

T1 = (4,1), T2 = (5,1.8), T3 = (20,1), T4 = (20,2)

Hyperperiod H = 20

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

90

Implementation of Static Scheduler

I Store pre-computed schedule as a table
I Each entry (tk ,T(tk)) gives

I a decision time tk
I scheduling decision T(tk) which is either a

task to be executed, or idle (denoted by I)
I The system creates all tasks that are to be

executed:
I Allocates memory for the code and data
I Brings the code into memory

I Scheduler sets the hardware timer to interrupt
at the first decision time t0 = 0

I On receipt of an interrupt at tk :
I Scheduler sets the timer interrupt to tk+1
I If previous task overrunning, handle failure
I If T(tk) = I and aperiodic job waiting, start

executing it
I Otherwise, start executing the next job in T(tk)

91

Example

T1 = (4,1), T2 = (5,1.8), T3 = (20,1), T4 = (20,2)

Hyperperiod H = 20

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

tk 0.0 1.0 2.0 3.8 4.0 5.0 6.0 · · ·

T(tk) T1 T3 T2 I T1 I T4 · · ·

92

Frame Based Scheduling

I Arbitrary table-driven cyclic schedules flexible, but
inefficient
I Relies on accurate timer interrupts, based on execution

times of tasks
I High scheduling overhead

I Easier to implement if a structure is imposed
I Make scheduling decisions at periodic intervals (frames) of

length f
I Execute a fixed list of jobs within each frame;

no preemption within frames
I Gives two benefits:
I Scheduler can easily check for overruns and missed

deadlines at the end of each frame.
I Can use a periodic clock interrupt, rather than

programmable timer.

93

Frame Based Scheduling – Cyclic Executive

I Modify previous table-driven scheduler to be frame based
I Table that drives the scheduler has F entries, where

F = H/f
I The k -th entry L(k) lists the names of the jobs that are to

be scheduled in frame k (L(k) is called scheduling block)
I Each job is implemented by a procedure

I Cyclic executive executed by the clock interrupt that
signals the start of a frame:
I If an aperiodic job is executing, preempts it; if a periodic

overruns, handles the overrun
I Determines the appropriate scheduling block for this frame
I Executes the jobs in the scheduling block
I Executes jobs from the head of the aperiodic job queue for

the remainder of the frame
I Less overhead than pure table driven cyclic scheduler,

since only interrupted on frame boundaries, rather than on
each job

94

Frame Based Scheduling – Frame Size
How to choose the frame length?
(Assume that periods are inN and choose frame sizes inN.)

1. Necessary condition for avoiding preemption of jobs is

f ≥ max
i

ei

(i.e. we want each job to have a chance to finish within a frame)

2. To minimize the number of entries in the cyclic schedule, the
hyper-period should be an integer multiple of the frame size, i.e.

∃i : pi mod f = 0

3. To allow scheduler to check that jobs complete by their deadline,
at least one frame should lie between release time of a job and
its deadline, which is equivalent to

∀i : 2 ∗ f − gcd(pi , f) ≤ Di

All three constraints should be satisfied.
95

Frame Based Scheduling – Frame Size – Example

1. f ≥ maxi ei

2. ∃i : pi mod f = 0
3. ∀i : 2 ∗ f − gcd(pi , f) ≤ Di

Example 12
T1 = (4,1.0), T2 = (5,1.8), T3 = (20,1.0), T4 = (20,2.0)
Then f ∈N satisfies 1.–3. iff f = 2.

With f = 2 is schedulable:

96

Frame Based Scheduling – Job Slices

I Sometimes a system cannot meet all three frame size
constraints simultaneously (and even if it meets the
constraints, no non-preemptive schedule is feasible)

I Can be solved by partitioning a job with large execution
time into slices with shorter execution times
This, in effect, allows preemption of the large job

I Consider T1 = (4,1), T2 = (5,2,7), T3 = (20,5)
I Cannot satisfy constraints: 1. ⇒ f ≥ 5 but 3. ⇒ f ≤ 4
I Solve by splitting T3 into T3,1 = (20,1), T3,2 = (20,3), and

T3,3 = (20,1)
(Other splits exist)

I Result can be scheduled with f = 4

97

Building a Structured Cyclic Schedule

To construct a schedule, we have to make three kinds of design
decisions (that cannot be taken independently):
I Choose a frame size based on constraints
I Partition jobs into slices
I Place slices into frames

There are efficient algorithms for solving these problems based
e.g. on a reduction to the network flow problem.

98

Scheduling Aperiodic Jobs

So far, aperiodic jobs scheduled in the background after all jobs
with hard deadlines
This may unnecessarily delay aperiodic jobs

Note: There is no advantage in completing periodic jobs early
Ideally, finish periodic jobs by their respective deadlines.

Slack Stealing:
I Slack time in a frame = the time left in the frame after all

(remaining) slices execute
I Schedule aperiodic jobs ahead of periodic in the slack time of

periodic jobs
I The cyclic executive keeps track of the slack time left in

each frame as the aperiodic jobs execute, preempts them
with periodic jobs when there is no more slack

I As long as there is slack remaining in a frame and the
aperiodic jobs queue is non-empty, the executive executes
aperiodic jobs, otherwise executes periodic

I Reduces resp. time for aper. jobs, but requires accurate timers
99

Example

Assume that the aperiodic queue is never empty.

Aperiodic at the ends of frames:

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

Slack stealing:

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

100

Frame Based Scheduling – Sporadic Jobs
Let us allow sporadic jobs
i.e. hard real-time jobs whose release and exec. times are not known a priori

The scheduler determines whether to accept a sporadic job when it
arrives (and its parameters become known)

I Perform acceptance test to check whether the new sporadic job
can be feasibly scheduled with all the jobs (periodic and
sporadic) in the system at that time
Acceptance check done at the beginning of the next frame; has to keep
execution times of the parts of sporadic jobs that have already executed

I If there is sufficient slack time in the frames before the new job’s
deadline, the new sporadic job is accepted; otherwise, rejected

I Among themselves, sporadic jobs scheduled according to EDF
This is optimal for sporadic jobs

Note: rejection is often better than missing deadline
e.g. a robotic arm taking defective parts off a conveyor belt: if the arm cannot
meet deadline, the belt may be slowed down or stopped

101

I S1(17,4.5) released at 3 with abs. deadline 17 and execution time 4.5;
acceptance test at 4; must be scheduled in frames 2,3,4; total slack in
these frames is 4, i.e. rejected

I S2(29,4) released at 5 with abs. deadline 29 and exec. time 4; acc. test
at 8; total slack in frames 3-7 is 5.5, i.e. accepted

I S3(22,1.5) released at 11 with abs. deadline 22 and exec. time 1.5;
acc. test at 12;
2 units of slack in frames 4,5 as S3 will be executed ahead of the
remaining parts of S2 by EDF – check whether there will be enough
slack for the remaining parts of S2, accepted

I S4(44,5.0) is rejected (only 4.5 slack left)
102

Handling Overruns

Overruns may happen due to failures
e.g. unexpectedly large data over which the system operates, hardware
failures, etc.

Ways to handle overruns:
I Abort the overrun job at the beginning of the next frame;

log the failure; recover later
e.g. control law computation of a robust digital controller

I Preempt the overrun job and finish it as an aperiodic job
use this when aborting job would cause “costly” inconsistencies

I Let the overrun job finish – start of the next frame and the
execution jobs scheduled for this frame are delayed

This may cause other jobs to be delayed
depends on application

103

Clock-drive Scheduling: Conclusions

Advantages:
I Conceptual simplicity
I Complex dependencies, communication delays, and

resource contention among jobs can be considered when
constructing the static schedule

I Entire schedule in a static table
I No concurrency control or synchronization needed

I Easy to validate, test and certify
Disadvantages:
I Inflexible
I If any parameter changes, the schedule must be usually

recomputed
Best suited for systems which are rarely modified (e.g. controllers)

I Parameters of the jobs must be fixed
As opposed to most priority-driven schedulers

104

Real-Time Scheduling

Scheduling of Reactive Systems

Priority-Driven Scheduling

105

Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks

i.e. there is no dependency relation among jobs
I Jobs can be preempted at any time and never suspend

themselves
I No aperiodic and sporadic jobs
I No resource contentions

Moreover, unless otherwise stated, we assume that
I Scheduling decisions take place precisely at
I release of a job
I completion of a job

(and nowhere else)

I Context switch overhead is negligibly small
i.e. assumed to be zero

I There is an unlimited number of priority levels
106

Fixed-Priority vs Dynamic-Priority Algorithms
A priority-driven scheduler is on-line
i.e. it does not precompute a schedule of the tasks

I It assigns priorities to jobs after they are released and places the
jobs in a ready job queue in the priority order
with the highest priority jobs at the head of the queue

I At each scheduling decision time, the scheduler updates the
ready job queue and then schedules and executes the job at the
head of the queue
i.e. one of the jobs with the highest priority

Fixed-priority = all jobs in a task are assigned the same priority

Dynamic-priority = jobs in a task may be assigned different priorities

Note: In our case, a priority assigned to a job does not change. There are
job-level dynamic priority algorithms that vary priorities of individual jobs – we
won’t consider such algorithms.

107

Fixed-priority Algorithms – Rate Monotonic
Best known fixed-priority algorithm is rate monotonic (RM) scheduling
that assigns priorities to tasks based on their periods
I The shorter the period, the higher the priority
I The rate is the inverse of the period, so jobs with higher rate

have higher priority

RM is very widely studied and used

Example 13
T1 = (4,1), T2 = (5,2), T3 = (20,5)
with rates 1/4, 1/5, 1/20, respectively

The priorities: T1 � T2 � T3

0 4 8 12 16 20

T3

T2

T1

108

Fixed-priority Algorithms – Deadline Monotonic

The deadline monotonic (DM) algorithm assigns priorities to
tasks based on their relative deadlines
I the shorter the deadline, the higher the priority

Observation: When relative deadline of every task matches its
period, then RM and DM give the same results

Proposition 1
When the relative deadlines are arbitrary DM can sometimes
produce a feasible schedule in cases where RM cannot.

Proof.
Consider e.g. T1 = (3,1,1) and T2 = (2,1). �

109

Dynamic-priority Algorithms

Best known is earliest deadline first (EDF) that assigns
priorities based on current (absolute) deadlines
I At the time of a scheduling decision, the job queue is

ordered by earliest deadline

Another one is the least slack time (LST)
I The job queue is ordered by least slack time

Recall that the slack time of a job Ji at time t is equal to di − t − x where x is
the remaining computation time of Ji at time t

We focus on EDF here.

110

EDF – Example

T1 = (2,1) and T2 = (5,2.5)

0 1 2 3 4 5 6 7 8 9 10

T2

T1

Note that the processor is 100% “utilized”, not surprising :-)

111

Summary of Priority-Driven Algorithms
We consider:
Dynamic-priority:
I EDF = at the time of a scheduling decision, the job queue is

ordered by the earliest deadline

Fixed-priority:

I RM = assigns priorities to tasks based on their periods

I DM = assigns priorities to tasks based on their relative deadlines

(In all cases, ties are broken arbitrarily.)

We consider the following questions:

I Are the algorithms optimal?

I How to efficiently (or even online) test for schedulability?

To measure abilities of scheduling algorithms and to get fast online
tests of schedulability we use a notion of utilization

112

Utilization

I Utilization ui of a periodic task Ti with period pi and
execution time ei is defined by ui := ei/pi
ui is the fraction of time a periodic task with period pi and execution time
ei keeps a processor busy

I Total utilization UT of a set of tasks T = {T1, . . . ,Tn} is
defined as the sum of utilizations of all tasks of T , i.e. by

UT :=

n∑
i=1

ui

I U is a schedulable utilization of an algorithm ALG if all sets
of tasks T satisfying UT ≤ U are schedulable by ALG.
Maximum schedulable utilization UALG of an algorithm ALG
is the supremum of schedulable utilizations of ALG.

I If UT < UALG , then T is schedulable by ALG.
I If U > UALG , then there is T with UT ≤ U that is not

schedulable by ALG.
113

Utilization – Example

I T1 = (2,1) then u1 = 1
2

I T1 = (11,5,2,4) then u1 = 2
5

(i.e., the phase and deadline do not play any role)

I T = {T1,T2,T3} where T1 = (2,1),T2 = (6,1),T3 = (8,3)
then

UT =
1
2

+
1
6

+
3
8

=
25
24

114

Real-Time Scheduling

Priority-Driven Scheduling

Dynamic-Priority

115

Optimality of EDF

Theorem 14
Let T = {T1, . . . ,Tn} be a set of independent, preemptable
periodic tasks with Di ≥ pi for i = 1, . . . ,n. The following
statements are equivalent:

1. T can be feasibly scheduled on one processor
2. UT ≤ 1
3. T is schedulable using EDF

(i.e., in particular, UEDF = 1)

Proof.

1.⇒2. We prove that UT > 1 implies that T is not schedulable

2.⇒3. Next slides and whiteboard ...

3.⇒1. Trivial

�
116

Proof of 1.⇒2.
Assume that UT =

∑N
i=1

ei
pi
> 1.

Consider a time instant t > maxi ϕi
(i.e. a time when all tasks are already "running")

Observe that the number of jobs of Ti that are released in the time
interval [0, t] is

⌈ t−ϕi

pi

⌉
. Thus a single processor needs

∑n
i=1

⌈ t−ϕi

pi

⌉
· ei

time units to finish all jobs released before or at t .

However,
n∑

i=1

⌈
t − ϕi

pi

⌉
·ei ≥

n∑
i=1

(t−ϕi)·
ei

pi
=

n∑
i=1

tui−ϕiui =

n∑
i=1

tui−

n∑
i=1

ϕiui = t ·UT−
n∑

i=1

ϕiui

Here
∑n

i=1 ϕiui does not depend on t .

Note that limt→∞

(
t · UT −

∑n
i=1 ϕiui

)
− t = ∞. So there exists t such

that t · UT −
∑n

i=1 ϕiui > t + maxi Di .

So in order to complete all jobs released before time t we need more
time than t + maxi Di . However, the latest deadline of a job released
before t is t + maxi Di . So at least one job misses its deadline.

117

Proof of 2.⇒3. – Simplified
Let us start with a proof of a special case (see the assumptions A1 and A2
below). Then a complete proof will be presented.

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n.
(Note that the general case immediately follows.)

Assume that T is not schedulable according to EDF.
(Our goal is to show that UT > 1.)

This means that there must be at least one job that misses its
deadline when EDF is used.

Simplifying assumptions:

A1 Suppose that all tasks are in phase, i.e. the phase ϕ` = 0 for
every task T`.

A2 Suppose that the first job Ji,1 of a task Ti misses its deadline.

By A1, Ji,1 is released at 0 and misses its deadline at pi . Assume
w.l.o.g. that this is the first time when a job misses its deadline.
(To simplify even further, you may (privately) assume that no other job has its
deadline at pi .)

118

Proof of 2.⇒3. – Simplified

Let G be the set of all jobs that are released in [0,pi] and have their
deadlines in [0,pi].

Crucial observations:

I G contains Ji,1 and all jobs that preempt Ji,1.
By EDF, if a job preempts Ji,1, then its deadline must be in [0,pi].

I During [0,pi], the processor is never idle and executes only jobs
of G.
The processor is not idle because Ji,1 is ready for computation
throughout [0,pi]. Jobs that do not belong to G are not executed as Ji,1

is not completed in [0,pi] and only jobs of G can preempt Ji,1.

Denote by EG the total execution time of G, that is, the sum of
execution times of all jobs in G.

Corollary of the crucial observation: EG > pi because otherwise
Ji,1 (and all jobs that preempt it) would be completed by pi .

Let us compute EG .

119

Proof of 2.⇒3. – Simplified

Since we assume ϕ` = 0 for every T`, the first job of T` is released
at 0, and thus

⌊
pi
p`

⌋
jobs of T` belong to G.

E.g., if p` = 2 and pi = 5 then three jobs of T` are released in [0,5] (at times
0, 2, 4) but only 2 =

⌊
5
2

⌋
=

⌊
pi
p`

⌋
of them have their deadlines in [0,pi].

Thus the total execution time EG of all jobs in G is

EG =

n∑
`=1

⌊
pi

p`

⌋
e`

But then

pi < EG =

n∑
`=1

⌊
pi

p`

⌋
e` ≤

n∑
`=1

pi

p`
e` ≤ pi

n∑
`=1

u` ≤ pi · UT

which implies that UT > 1.

120

Proof of 2.⇒3. – Complete
Now let us drop the simplifying assumptions A1 and A2 !

Notation: Given a set of tasks L, we denote by
⋃
L the set of all

jobs of the tasks in L.

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n (note that
the general case immediately follows).
Assume that T is not schedulable by EDF. We show that UT > 1.
Suppose that a job Ji,k of Ti misses its deadline at time t = ri,k + pi .
Assume that this is the earliest deadline miss.

Let T ′ be the set of all tasks whose jobs have deadlines (and thus
also release times) in [ri,k , t]
(i.e., a task belongs to T ′ iff at least one job of the task is released in [ri,k , t]).

Let t− be the end of the latest interval before t in which either jobs of⋃
(T r T ′) are executed, or the processor is idle.

Then ri,k ≥ t− since all jobs of
⋃

(T r T ′) waiting for execution during
[ri,k , t] have deadlines later than t (thus have lower priorities than Ji,k).

121

Proof of 2.⇒3. – Complete (cont.)
It follows that

I no job of
⋃

(T r T ′) is executed in [t−, t],
(by definition of t−)

I the processor is fully utilized in [t−, t].
(by definition of t−)

I all jobs (that all must belong to
⋃
T
′) executed in [t−, t] are

released in [t−, t] and have their deadlines in [t−, t] since
I no job of

⋃
T
′ executes just before t−

I all jobs of
⋃
T
′ released in [t−, ri,k] have deadlines in [r−, t],

I jobs of
⋃
T
′ released in [ri,k , t] with deadlines after t are not

executed in [ri,k , t] as they have lower priorities than Ji,k .

Let G be the set of all jobs that are released in [t−, t] and have their
deadlines in [t−, t].
Note that Ji,k ∈ G since ri,k ≥ t−.

Denote by EG the sum of all execution times of all jobs in G (the total
execution time of G).

122

Proof of 2.⇒3. – Complete (cont.)
Now EG > t − t− because otherwise Ji,k would complete in [t−, t].

How to compute EG?

For T` ∈ T ′, denote by R` the earliest release time of a job in T`
during the interval [t−, t].

For every T` ∈ T ′, exactly
⌊

t−R`

p`

⌋
jobs of T` belong to G. (For every

T` ∈ T r T ′, exactly 0 jobs belong to G.)

Thus

EG =
∑

T`∈T ′

⌊
t − R`

p`

⌋
e`

As argued above:

t−t− < EG =
∑

T`∈T ′

⌊
t − R`

p`

⌋
e` ≤

∑
T`∈T ′

t − t−
p`

e` ≤ (t−t−)
∑

T`∈T ′
u` ≤ (t−t−)UT

which implies that UT > 1.
123

Density and EDF

What about tasks with Di < pi ?

Density of a task Ti with period pi , execution time ei and relative
deadline Di is defined by

ei/min(Di ,pi)

Total density ∆T of a set of tasks T is the sum of densities of
tasks in T
Note that if Di < pi for some i, then ∆T > UT

Theorem 15
A set T of independent, preemptable, periodic tasks can be
feasibly scheduled on one processor if ∆T ≤ 1.
Note that this is NOT a necessary condition! (Example whiteb.)

124

Schedulability Test For EDF

The problem: Given a set of independent, preemptable, periodic
tasks T = {T1, . . . ,Tn} where each Ti has a period pi , execution time
ei , and relative deadline Di , decide whether T is schedulable by EDF.

Solution using utilization and density:

If pi ≤ Di for each i, then it suffices to decide whether UT ≤ 1.

Otherwise, decide whether ∆T ≤ 1:
I If yes, then T is schedulable with EDF
I If not, then T does not have to be schedulable

Note that
I Phases of tasks do not have to be specified
I Parameters may vary: increasing periods or deadlines, or

decreasing execution times does not prevent schedulability

125

Schedulability Test for EDF – Example

Consider a digital robot controller
I A control-law computation
I takes no more than 8 ms
I the sampling rate: 100 Hz, i.e. computes every 10 ms

Feasible? Trivially yes
I Add Built-In Self-Test (BIST)
I maximum execution time 50 ms
I want a minimal period that is feasible (max one second)

With 250 ms still feasible
I Add a telemetry task
I maximum execution time 15 ms
I want to minimize the deadline on telemetry

period may be large

Reducing BIST to once a second, deadline on telemetry
may be set to 100 ms

126

Real-Time Scheduling

Priority-Driven Scheduling

Fixed-Priority

127

Fixed-Priority Algorithms

Recall that we consider a set of n tasks T = {T1, . . . ,Tn}

Any fixed-priority algorithm schedules tasks of T according to fixed
(distinct) priorities assigned to tasks.
We write Ti A Tj whenever Ti has a higher priority than Tj .

To simplify our reasoning, assume that

all tasks are in phase, i.e. ϕk = 0 for all Tk .

We will remove this assumption at the end.

128

Fixed-Priority Algorithms – Reminder
Recall that Fixed-Priority Algorithms do not have to be optimal.
Consider T = {T1,T2} where T1 = (2,1) and T2 = (5,2.5)

UT = 1 and thus T is schedulable by EDF

If T1 A T2, then J2,1 misses its deadline
If T2 A T1, then J1,1 misses its deadline

We consider the following algorithms:
I RM = assigns priorities to tasks based on their periods

the priority is inversely proportional to the period pi

I DM = assigns priorities to tasks based on their relative deadlines
the priority is inversely proportional to the relative deadline Di

(In all cases, ties are broken arbitrarily.)

We consider the following questions:
I Are the algorithms optimal?
I How to efficiently (or even online) test for schedulability?

129

Maximum Response Time

Which job of a task Ti has the maximum response time?

As all tasks are in phase, the first job of Ti is released together with
(first) jobs of all tasks that have higher priority than Ti .

This means, that Ji,1 is the most preempted of jobs in Ti .

It follows, that Ji,1 has the maximum response time.
Note that this relies heavily on the assumption that tasks are in phase!

Thus in order to decide whether T is schedulable, it suffices to test
for schedulability of the first jobs of all tasks.

130

Optimality of RM for Simply Periodic Tasks

Definition 16
A set {T1, . . . ,Tn} is simply periodic if for every pair Ti , T` satisfying
pi > p` we have that pi is an integer multiple of p`

Example 17
The helicopter control system from the first lecture.

Theorem 18
A set T of n simply periodic, independent, preemptable tasks with
Di = pi is schedulable on one processor according to RM iff UT ≤ 1.
i.e. on simply periodic tasks RM is as good as EDF
Note: Theorem 18 is true in general, no "in phase" assumption is needed.

131

Proof of Theorem 18

By Theorem 14, every schedulable set T satisfies UT ≤ 1.

We prove that if T is not schedulable according to RM, then UT > 1.

Assume that a job Ji,1 of Ti misses its deadline at Di = pi . W.l.o.g., we
assume that T1 A · · · A Tn according to RM.

Let us compute the total execution time of Ji,1 and all jobs that
preempt it:

E = ei +

i−1∑
`=1

⌈
pi

p`

⌉
e` =

i∑
`=1

pi

p`
e` = pi

i∑
`=1

u` ≤ pi

n∑
`=1

u` = piUT

Now E > pi because otherwise Ji,1 meets its deadline. Thus

pi < E ≤ piUT

and we obtain UT > 1.

132

Optimality of DM (RM) among Fixed-Priority Algs.

Theorem 19
A set of independent, preemptable periodic tasks with Di ≤ pi that are
in phase (i.e., ϕi = 0 for all i = 1, . . . ,n) can be feasibly scheduled on
one processor according to DM if it can be feasibly scheduled by
some fixed-priority algorithm.

Proof.
Assume a fixed-priority feasible schedule with T1 A · · · A Tn.

Consider the least i such that the relative deadline Di of Ti is larger
than the relative deadline Di+1 of Ti+1.

Swap the priorities of Ti and Ti+1.

The resulting schedule is still feasible.

DM is obtained by using finitely many swaps. �

Note: If the assumptions of the above theorem hold and all relative deadlines
are equal to periods, then RM is optimal among all fixed-priority algorithms.

133

Fixed-Priority Algorithms: Schedulability

We consider two schedulability tests:
I Schedulable utilization URM of the RM algorithm.
I Time-demand analysis based on response times.

134

Schedulable Utilization for RM

Theorem 20
Let us fix n ∈N and consider only independent, preemptable
periodic tasks with Di = pi .
I If T is a set of n tasks satisfying UT ≤ n(21/n

− 1), then UT

is schedulable according to the RM algorithm.
I For every U > n(21/n

− 1) there is a set T of n tasks
satisfying UT ≤ U that is not schedulable by RM.

Note: Theorem 20 holds in general, no "in phase" assumption is needed.
135

Schedulable Utilization for RM

It follows that the maximum schedulable utilization URM over
independent, preemptable periodic tasks satisfies

URM = inf
n

n(21/n
− 1) = lim

n→∞
n(21/n

− 1) = ln 2 ≈ 0.693

Note that UT ≤ n(21/n
− 1) is a sufficient but not necessary condition for

schedulability of T using the RM algorithm (an example will be given later)

We say that a set of tasks T is RM-schedulable if it is
schedulable according to RM.
We say that T is RM-infeasible if it is not RM-schedulable.

136

Proof – Special Case
To simplify, we restrict to two tasks and always assume p2 ≤ 2p1.
(the latter condition is w.l.o.g., proof omitted)

Outline: Given p1,p2,e1, denote by max_e2 the maximum execution
time so that T = {(p1,e1), (p2,max_e2)} is RM-schedulable.
We define Up1,p2

e1
to be UT where T = {(p1,e1), (p2,max_e2)}.

We say that T fully utilizes the processor, any increase in an execution time
causes RM-infeasibility.

Now we find the (global) minimum minU of Up1,p2
e1

.
Note that this suffices to obtain the desired result:
I Given a set of tasks T = {(p1,e1), (p2,e2)} satisfying UT ≤ minU

we get UT ≤ minU ≤ Up1,p2
e1

, and thus the execution time e2
cannot be larger than max_e2. Thus, T is RM-schedulable.

I Given U > minU, there must be p1,p2,e1 satisfying
minU ≤ Up1,p2

e1
< U where Up1,p2

e1
= UT for a set of tasks

T = {(p1,e1), (p2,max_e2)}.
However, now increasing e1 by a sufficiently small ε > 0 makes
the set RM-infeasible without making utilization larger than U.

137

Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization

Up1,p2
e1

=
e1

p1
+

max_e2

p2
=

e1

p1
+

p2 − 2e1

p2
=

e1

p1
+

p2

p2
−

2e1

p2
= 1 +

e1

p2

(
p2

p1
− 2

)
As p2

p1
− 2 ≤ 0, the utilization Up1,p2

e1
is minimized by maximizing e1.

2. e1 ≥ p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p1 − e1. Which
gives the utilization

Up1,p2
e1

=
e1

p1
+

max_e2

p2
=

e1

p1
+

p1 − e1

p2
=

e1

p1
+

p1

p2
−

e1

p2
=

p1

p2
+

e1

p2

(
p2

p1
− 1

)
As p2

p1
− 1 ≥ 0, the utilization Up1,p2

e1
is minimized by minimizing e1.

The minimum of Up1,p2
e1

is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)

138

Proof – Special Case (Cont.)
Substitute e1 = p2 − p1 into the expression for Up1,p2

e1
:

Up1,p2
p2−p1

=
p1

p2
+

p2 − p1

p2

(
p2

p1
− 1

)
=

p1

p2
+

(
1 −

p1

p2

) (
p2

p1
− 1

)
=

p1

p2
+

p1

p2

(
p2

p1
− 1

) (
p2

p1
− 1

)
=

p1

p2

1 +

(
p2

p1
− 1

)2
Denoting G =

p2
p1
− 1 we obtain

Up1,p2
p2−p1

=
p1

p2
(1 + G2) =

1 + G2

p2/p1
=

1 + G2

1 + G

Differentiating w.r.t. G we get

G2 + 2G − 1
(1 + G)2

which attains minimum at G = −1 ±
√

2. Here only G = −1 +
√

2 > 0
is acceptable since the other root is negative.

139

Proof – Special Case (Cont.)
Thus the minimum value of Up1,p2

e1
is

1 + (
√

2 − 1)2

1 + (
√

2 − 1)
=

4 − 2
√

2
√

2
= 2(

√

2 − 1)

It is attained at periods satisfying

G =
p2

p1
− 1 =

√

2 − 1 i.e. satisfying p2 =
√

2p1.

The execution time e1 which at full utilization of the processor (due to
max_e2) gives the minimum utilization is

e1 = p2 − p1 = (
√

2 − 1)p1

and the corresponding max_e2 = p1 −e1 = p1 − (p2 −p1) = 2p1 − p2.

Scaling to p1 = 1, we obtain a completely determined example

p1 = 1 p2 =
√

2 ≈ 1.41 e1 =
√

2−1 ≈ 0.41 max_e2 = 2−
√

2 ≈ 0.59

that fully utilizes the processor (no execution time can be increased)
but has the minimum utilization 2(

√
2 − 1).

140

Proof Idea of Theorem 20
Fix periods p1 < · · · < pn so that (w.l.o.g.) pn ≤ 2p1. Then the
following set of tasks has the smallest utilization among all task sets
that fully utilize the processor (i.e., any increase in any execution time
makes the set unschedulable).

0 p1 2p1

0 p2

0 p3

0 pn−1

0 pn

...

T3

T2

T1

Tn

Tn−1

ek = pk+1 − pk for k = 1, . . . ,n − 1

en = pn − 2
n−1∑
k=1

ek = 2p1 − pn

141

Time-Demand Analysis

Consider a set of n tasks T = {T1, . . . ,Tn}.
Recall that we consider only independent, preemptable, in phase (i.e. ϕi = 0
for all i) tasks without resource contentions.

Assume that Di ≤ pi for every i, and consider an arbitrary
fixed-priority algorithm. W.l.o.g. assume T1 A · · · A Tn.

Idea: For every task Ti and every time instant t ≥ 0, compute the total
execution time wi(t) (the time demand) of the first job Ji,1 and of all
higher-priority jobs released up to time t .

If wi(t) ≤ t for some time t ≤ Di , then Ji,1 is schedulable, and hence all
jobs of Ti are schedulable.

142

Time-Demand Analysis

I Consider one task Ti at a time, starting with highest priority and
working to lowest priority.

I Focus on the first job Ji,1 of Ti .
If Ji,1 makes it, all jobs of Ti will make it due to ϕi = 0.

I At time t for t ≥ 0, the processor time demand wi(t) for this job
and all higher-priority jobs released in [0, t] is bounded by

wi(t) = ei +

i−1∑
`=1

⌈
t
p`

⌉
e` for 0 < t ≤ pi

(Note that the smallest t for which wi(t) ≤ t is the response time of Ji,1,
and hence the maximum response time of jobs in Ti).

I If wi(t) ≤ t for some t ≤ Di , the job Ji,1 meets its deadline Di .

I If wi(t) > t for all 0 < t ≤ Di , then the first job of the task cannot
complete by its deadline.

143

Time-Demand Analysis – Example

Example: T1 = (3,1), T2 = (5,1.5), T3 = (7,1.25), T4 = (9,0.5)

This set of tasks is schedulable by RM even though
U{T1,...,T4} = 0.85 > 0.757 = URM(4) 144

Time-Demand Analysis

I The time-demand function wi(t) is a staircase function
I Steps in the time-demand for a task occur at multiples of

the period for higher-priority tasks
I The value of wi(t) − t linearly decreases from a step until

the next step
I If our interest is the schedulability of a task, it suffices to

check if wi(t) ≤ t at the time instants when a higher-priority
job is released and at Di

I Our schedulability test becomes:
I Compute wi(t)
I Check whether wi(t) ≤ t for some t equal either to Di , or to

j · pk where k = 1,2, . . . , i and j = 1,2, . . . , bDi/pk c

145

Time-Demand Analysis – Comments

I Time-demand analysis schedulability test is more complex than
the schedulable utilization test but more general:

I Works for any fixed-priority scheduling algorithm, provided
the tasks have short response time (Di ≤ pi)
Can be extended to tasks with arbitrary deadlines

I Still more efficient than exhaustive simulation.

I Assuming that the tasks are in phase the time demand analysis
is complete.

We have considered the time demand analysis for tasks in phase. In
particular, we used the fact that the first job has the maximum
response time.

This is not true if the jobs are not in phase, we need to identify the so
called critical instant, the time instant in which the system is most
loaded, and has its worst response time.

146

Critical Instant – Formally

Definition 21
A critical instant tcrit of a task Ti is a time instant in which a job Ji,k in
Ti is released so that Ji,k either does not meet its deadline, or has
the maximum response time of all jobs in Ti .

Theorem 22
In a fixed-priority system where every job completes before the next
job in the same task is released, a critical instant of a task Ti occurs
when one of its jobs Ji,k is released at the same time with a job from
every higher-priority task.

Note that the situation described in the theorem does not have to occur if
tasks are not in phase!

147

Critical Instant and Schedulability Tests

We use critical instants to get upper bounds on schedulability as
follows:

I Set phases of all tasks to zero, which gives a new set of tasks
T
′ = {T ′1, . . . ,T

′
n}

By Theorem 22, the response time of the first job J′i,1 of T ′1 in T ′ is at
least as large as the response time of every job of Ti in T .

I Decide schedulability of T ′, e.g. using the timed-demand
analysis.

I If T ′ if schedulable, then also T is schedulable.
I If T ′ is not schedulable, then T does not have to be

schedulable.
But may be schedulable, which make the time-demand analysis
incomplete in general for tasks not in phase.

148

Dynamic vs Fixed Priority

I EDF
I pros:

I optimal
I very simple and complete test for schedulability

I cons:
I difficult to predict which job misses its deadline
I strictly following EDF in case of overloads assigns higher

priority to jobs that missed their deadlines
I larger scheduling overhead

I DM (RM)
I pros:

I easier to predict which job misses its deadline (in particular,
tasks are not blocked by lower priority tasks)

I easy implementation with little scheduling overhead
I (optimal in some cases often occurring in practice)

I cons:
I not optimal
I incomplete and more involved tests for schedulability

149

Real-Time Scheduling

Priority-Driven Scheduling

Aperiodic Tasks

150

Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks
I Jobs can be preempted at any time and never suspend

themselves
I No resource contentions

I Aperiodic jobs exist
I They are independent of each other, and of the periodic

tasks
I They can be preempted at any time

I There are no sporadic jobs (for now)
I Jobs are scheduled using a priority driven algorithm

151

Scheduling Aperiodic Jobs

Consider:
I A set T = {T1, . . . ,Tn} of periodic tasks
I An aperiodic task A

Recall that:
I A schedule is feasible if all jobs with hard real-time

constraints complete before their deadlines

⇒ This includes all periodic jobs
I A scheduling algorithm is optimal if it always produces a

feasible schedule whenever such a schedule exists, and if
a cost function is given, minimizes the cost

We assume that the periodic tasks are scheduled using a
priority-driven algorithm

152

Background Scheduling of Aperiodic Jobs

I Aperiodic jobs are scheduled and executed only at times
when there are no periodic jobs ready for execution

I Advantages
I Clearly produces feasible schedules
I Extremely simple to implement

I Disadvantages
I Not optimal since the execution of aperiodic jobs may be

unnecessarily delayed

Example: T1 = (3,1), T2 = (10,4)

153

Polled Execution of Aperiodic Jobs

I We may use a polling server
I A periodic job (ps ,es) scheduled according to the periodic

algorithm, generally as the highest priority job
I When executed, it examines the aperiodic job queue

I If an aperiodic job is in the queue, it is executed for up to es

time units
I If the aperiodic queue is empty, the polling server

self-suspends, giving up its execution slot
I The server does not wake-up once it has self-suspended,

aperiodic jobs which become active during a period are not
considered for execution until the next period begins

I Simple to prove correctness, performance less than ideal –
executes aperiodic jobs in particular timeslots

154

Polled Execution of Aperiodic Jobs

Example: T1 = (3,1), T2 = (10,4), poller = (2.5,0.5)

Can we do better?

Yes, polling server is a special case of periodic-server for
aperiodic jobs.

155

Periodic Severs – Terminology

periodic server = a task that behaves much like a periodic task,
but is created for the purpose of executing aperiodic jobs

I A periodic server, TS = (pS ,eS)
I pS is a period of the server
I eS is the (maximal) budget of the server

I The budget can be consumed and replenished; the budget
is exhausted when it reaches 0
(Periodic servers differ in how they consume and replenish the budget)

I A periodic server is
I backlogged whenever the aperiodic job queue is non-empty
I idle if the queue is empty
I eligible if it is backlogged and the budget is not exhausted

I When a periodic server is eligible, it is scheduled as any
other periodic task with parameters (pS ,eS)

156

Periodic Severs

Each periodic server is thus specified by
I consumption rules: How the budget is consumed
I replenishment rules: When and how the budget is

replenished

Polling server
I consumption rules:
I Whenever the server executes, the budget is consumed at

the rate one per unit time.
I Whenever the server becomes idle, the budget gets

immediately exhausted
I replenishment rule: At each time instant k · pS replenish

the budget to eS

157

Periodic Severs

Deferrable sever
I Consumption rules:
I The budget is consumed at the rate of one per unit time

whenever the server executes
I Unused budget is retained throughout the period, to be

used whenever there are aperiodic jobs to execute
(i.e. instead of discarding the budget if no aperiodic job to execute
at start of period, keep in the hope a job arrives)

I Replenishment rule:
I The budget is set to eS at multiples of the period

I i.e. time instants k · pS for k = 0,1,2, . . .
(Note that the server is not able tu cumulate the budget over
periods)

We consider both
I Fixed-priority scheduling
I Dynamic-priority scheduling (EDF)

158

Deferrable Server – RM

Here the tasks are scheduled using RM.

Is it possible to increase the budget of the server to 1.5 ?

159

Deferrable Server – RM

Consider T1 = (3.5,1.5), T2 = (6.5,0.5) and TDS = (3,1)

A critical instant for T1 = (3.5,1.5) looks as follows:

i.e. increasing the budget above 1 may cause T1 to miss its
deadline

160

Deferrable Server – Critical Instant

Lemma 23
Assume a fixed-priority scheduling algorithm. Assume that
Di ≤ pi and that the deferrable server (pS ,eS) has the highest
priority among all tasks. Then a critical instant of every periodic
task Ti occurs at a time t0 when all of the following are true:
I One of its jobs Ji,c is released at t0
I A job in every higher-priority periodic task is released at t0
I The budget of the server is eS at t0, one or more aperiodic

jobs are released at t0, and they keep the server
backlogged hereafter

I The next replenishment time of the server is t0 + eS

161

Deferrable Server – Critical Instant

Assume TDS A T1 A T2 A · · · A Tn
(i.e. T1 has the highest pririty and Tn lowest)

162

Deferrable Server – Time Demand Analysis

Assume that the deferrable server has the highest priority
I The definition of critical instant is identical to that for the

periodic tasks without the deferrable server +
the worst-case requirements for the server

I Thus the expression for the time-demand function
becomes

wi(t) = ei +

i−1∑
k=1

⌈
t

pk

⌉
ek +eS +

⌈
t − eS

pS

⌉
eS for 0 < t ≤ pi

I To determine whether the task Ti is schedulable, we simply
check whether wi(t) ≤ t for some t ≤ Di

Note that this is a sufficient condition, not necessary.
I Check whether wi(t) ≤ t for some t equal either
I to Di , or
I to j · pk where k = 1,2, . . . , i and j = 1,2, . . . , bDi/pk c, or
I to eS ,eS + pS ,eS + 2pS , . . . ,eS +

⌊
(Di − ei)/pS

⌋
pS

163

Deferrable Server – Time Demand Analysis

TDS = (3,1.0), T1 = (3.5,1.5), T2 = (6.5,0.5)

164

Deferrable Server – Schedulable Utilization

I No maximum schedulable utilization is known in general
I A special case:
I A set T of n independent, preemptable periodic tasks

whose periods satisfy pS < p1 < · · · < pn < 2pS and
pn > pS + eS and whose relative deadlines are equal to
their respective periods, can be scheduled according to RM
with a deferrable server provided that

UT
≤ URM/DS(n) := (n − 1)

(uS + 2
uS + 1

) 1
n−1

− 1

where uS = eS/pS

165

Deferrable Server – EDF

Here the tasks are scheduled using EDF.
TDS = (3,1), T1 = (2,3.5,1.5), T2 = (6.5,0.5)

166

Deferrable Server – EDF – Schedulability

Theorem 24
A set of n independent, preemptable, periodic tasks satisfying
pi ≤ Di for all 1 ≤ i ≤ n is schedulable with a deferrable server
with period pS , execution budget eS and utilization uS = eS/pS
according to the EDF algorithm if:

n∑
k=1

uk + uS

(
1 +

pS − eS

mini Di

)
≤ 1

167

Sporadic Server – Motivation

I Problem with polling server: TPS = (pS ,eS) executes
aperiodic tasks at the multiples of pS

I Problem with deferrable server: TDS = (pS ,eS) may delay
lower priority jobs longer than the periodic task (pS ,eS)
Therefore special version of time-demand analysis and utilization
bounds were needed.

I Sporadic server TSS = (eS ,pS)
I may execute jobs “in the middle” of its period
I never delays periodic tasks for longer time than the periodic

task (pS ,eS)
Thus can be tested for schedulability as an ordinary periodic task.

Originally proposed by Sprunt, Sha, Lehoczky in 1989
original version contains a bug which allows longer delay of lower priority jobs

Part of POSIX standard
also incorrect as observed and (probably) corrected by Stanovich in 2010

168

Very Simple Sporadic Server
For simplicity, we consider only fixed priority scheduling, i.e. assume
T1 A T2 A · · · A Tn and consider a sporadic server TSS = (pS ,eS) with
the highest priority

Notation:
I tr = the latest replenishment time
I tf = first instant after tr at which server begins to execute
I nr = a variable representing the next replenishment

I Consumption rule: The budget is consumed (at the rate of one
per unit time) whenever the current time t satisfies t ≥ tf

I Replenishment rules: At the beginning, tr = nr = 0
I Whenever the current time is equal to nr , the budget is set

to eS and tr is set to the current time
I At the first instant tf after tr at which the server starts

executing, nr is set to tf + pS

(Note that such server resembles a periodic task with the highest priority
whose jobs are released at times tf and execution times are at most eS) 169

Very Simple Sporadic/Background Server
New notation:
I tr = the latest replenishment time
I tf = first instant after tr at which server begins to execute and at

least one task of T is not idle
I nr = a variable representing the next replenishment

I Consumption rule: The budget is consumed (at the rate of one
per unit time) whenever the current time t satisfies t ≥ tf and at
least one task of T is not idle

I Replenishment rules: At the beginning, tr = nr = 0
I Whenever the current time is equal to nr , the budget is set

to eS and tr is set to the current time
I At the beginning of an idle interval of T , the budget is set to

eS and nr is set to the end of this interval
I At the first instant tf after tr at which the server starts

executing and T is not idle, nr is set to tf + pS

This combines the very simple sporadic server with background scheduling.
170

Very Simple Sporadic Server

Correctness (informally):

Assuming that T never idles, the sporadic server resembles a
periodic task with the highest priority whose jobs are released
at times tf and execution times are at most eS

Whenever T idles, the sporadic server executes in the
background, i.e. does not block any periodic task, hence does
not consume the budget

Whenever an idle interval of T ends, we may treat this situation
as a restart of the system with possibly different phases of
tasks (so that it is safe to have the budget equal to eS)

Note that in both versions of the sporadic server, eS units of
execution time are available for aper. jobs every pS units of time
This means that if the server is always backlogged, then it executes for eS

time units every pS units of time

171

Real-Time Scheduling

Priority-Driven Scheduling

Sporadic Tasks

172

Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks, T1, . . . ,Tn

where Ti = (ϕi ,pi ,ei ,Di)
I Jobs can be preempted at any time and never suspend

themselves
I No resource contentions

I Sporadic tasks
I Independent of the periodic tasks
I Jobs can be preempted at any time

I Aperiodic tasks
For simplicity scheduled in the background – i.e. we may ignore them

I Jobs are scheduled using a priority driven algorithm

A sporadic job = a job of a sporadic task

173

Our situation

I Based on the execution time and deadline of each newly arrived
sporadic job, decide whether to accept or reject the job

I Accepting the job implies that the job will complete within its
deadline, without causing any periodic job or previously
accepted sporadic job to miss its deadline

I Do not accept a sporadic job if cannot guarantee it will meet its
deadline 174

Scheduling Sporadic Jobs – Correctness and
Optimality

I A correct schedule is one where all periodic tasks, and all
sporadic jobs that have been accepted, meet their deadlines

I A scheduling algorithm supporting sporadic jobs is a correct
algorithm if it only produces correct schedules for the system

I A sporadic job scheduling algorithm is optimal if it accepts a new
sporadic job, and schedules that job to complete by its deadline,
iff the new job can be correctly scheduled to complete in time

175

Model for Scheduling Sporadic Jobs with EDF

I Assume that all jobs in the system are scheduled by EDF
I if more sporadic jobs are released at the same time their

acceptance test is done in the EDF order

I Definitions:
I Sporadic jobs are denoted by S(r ,d,e) where r is the

release time, d the (absolute) deadline, and e is the
maximum execution time

I The density of S(r ,d,e) is defined by e/(d − r)
I The total density of a set of sporadic jobs is the sum of

densities of these jobs
I The sporadic job S(r ,d,e) is active at time t iff t ∈ (r ,d]

Note that each job of a periodic task (ϕ,p,e,D) can be seen as a
sporadic job; to simplify, we assume that always D ≤ p.
This in turn means that there is always at most one job of a given task active
at a given time instant.
For every job of this task released at r with abs. deadline d, we obtain
the density e/(d − r) = e/D 176

Schedulability of Sporadic Jobs with EDF

Theorem 25
A set of independent preemptable sporadic jobs is schedulable
according to EDF if at every time instant t the total density of all
jobs active at time t is at most one.

Proof.
By contradiction, suppose that a job misses its deadline at t , no
deadlines missed before t
Let t−1 be the supremum of time instants before t when either the
system idles, or a job with a deadline after t executes
Suppose that jobs J1, . . . , Jk execute in [t−1, t] and that they are
ordered w.r.t. increasing deadline (Jk misses its deadline at t)
Let L be the number of releases and completions in [t−1, t], denote by
ti the i-th time instant when i-th such event occurs (then t−1 = t1, we
denote by tL+1 the time instant t)
Denote by Xi the set of all jobs that are active during the interval
(ti , ti+1] and let ∆i be their total density

The rest on whiteboard �
177

Sporadic Jobs with EDF – Example

Note that the above theorem includes both the periodic as well
as sporadic jobs

This test is sufficient but not necessary

Example 26
Three sporadic jobs: S1(0,2,1), S2(0.5,2.5,1), S3(1,3,1)

Total density at time 1.5 is 1.5
Yet, the jobs are schedulable by EDF

178

Admission Control for Sporadic Jobs with EDF

Let ∆ be the total density of periodic tasks.
Assume that a new sporadic job S(t ,d,e) is released at time t .
I At time t there are n active sporadic jobs in the system
I The EDF scheduler maintains a list of the jobs, in

non-decreasing order of their deadlines
I The deadlines partition the time from t to ∞ into n + 1

discrete intervals I1, I2, . . . , In+1
I I1 begins at t and ends at the earliest sporadic job deadline
I For each 1 ≤ k ≤ n, each Ik+1 begins when the interval Ik

ends, and ends at the next deadline in the list (or ∞ for In+1)
I The scheduler maintains the total density ∆S ,k of sporadic

jobs active in each interval Ik
I Let I` be the interval containing the deadline d of the new

sporadic job S(t ,d,e)
I The scheduler accepts the job if e/(d − t) + ∆S ,k ≤ 1 −∆

for all k = 1,2, . . . , `
I i.e. accept if the new sporadic job can be added, without

increasing density of any intervals past 1

179

180

Admission Control for Sporadic Jobs with EDF

This acceptance test is not optimal: a sporadic job may be
rejected even though it could be scheduled.
I The test is based on the density and hence is sufficient but

not necessary.
I It is possible to derive a – much more complex –

expression for schedulability which takes into account
slack time, and is optimal. Unclear if the complexity is
worthwhile.

181

Sporadic Jobs with EDF

I One way to schedule sporadic jobs in a fixed-priority system is
to use a sporadic server to execute them

I Because the server (pS ,eS) has eS units of processor time
every pS units of time, the scheduler can compute the least
amount of time available to every sporadic job in the system
I Assume that sporadic jobs are ordered among themselves

according to EDF
I When first sporadic job S1(t ,dS ,1,eS ,1) arrives, there is at

least⌊
(dS ,1 − t)/pS

⌋
eS

units of processor time available to the server before the
deadline of the job

I Therefore it accepts S1 if the slack of the job

σS ,1(t) =
⌊
(dS ,1 − t)/pS

⌋
eS − eS ,1 ≥ 0

182

Sporadic Jobs with EDF

I To decide if a new job Si(t ,dS ,i ,eS ,i) is acceptable when
there are n sporadic jobs in the system, the scheduler first
computes the slack σS ,i(t) of Si :

σS ,i(t) =
⌊
(dS ,i − t)/pS

⌋
eS − eS ,i −

∑
dS ,k<dS ,i

(eS ,k − ξS ,k)

where ξS ,k is the execution time of the completed part of
the existing job Sk
Note that the sum is taken over sporadic jobs with earlier deadline as Si

since sporadic jobs are ordered according to EDF

I The job cannot be accepted if σS ,i(t) < 0
I If σS ,i(t) ≥ 0, the scheduler checks if any existing sporadic

job Sk with deadline equal to, or after dS ,i may be adversely
affected by the acceptance of Si , i.e. check if σS ,k (t) ≥ eS ,i

183

Real-Time Scheduling

Resource Access Control

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]

184

Mars Pathfinder

I Mars Pathfinder = a US spacecraft that landed
on Mars in July 4th, 1997.

I Consisted of a lander and a lightweight
wheeled robotic Mars rover called Sojourner

I The error:
I Few days in to the mission, not long after Pathfinder started

gathering meteorological data, it began experiencing total
system resets, each resulting in losses of data.

I Apparently a software problem caused these resets.

185

Current Assumptions

I Single processor
I Individual jobs

(that possibly belong to periodic/aperiodic/sporadic tasks)
I Jobs can be preempted at any time and never suspend

themselves
I Jobs are scheduled using a priority-driven algorithm

i.e., jobs are assigned priorities, scheduler executes jobs according to
these priorities

I n resources R1, . . . ,Rn of distinct types
I used in non-preemptable and mutually exclusive manner;

serially reusable

186

Motivation & Notation
Resources may represent:
I Hardware devices such as sensors and actuators
I Disk or memory capacity, buffer space
I Software resources: locks, queues, mutexes etc.

Assume a lock-based concurrency control mechanism
I A job wanting to use a resource Rk executes L(Rk) to lock the

resource Rk

I When the job is finished with the resource Rk , unlocks this
resource by executing U(Rk)

I If lock request fails, the requesting job is blocked and has to
wait, when the requested resource becomes available, it is
unblocked
In particular, a job holding a lock cannot be preempted by a higher
priority job needing that lock

The segment of a job that begins at a lock and ends at a matching
unlock is a critical section (CS)
I CS must be properly nested if a job needs multiple resources 187

Example

J1, J2, J3 scheduled according to EDF.
I At 0, J3 is ready and executes
I At 1, J3 executes L(R) and is granted R
I J2 is released at 2, preempts J3 and begins to execute
I At 4, J2 executes L(R), becomes blocked, J3 executes
I At 6, J1 becomes ready, preempts J3 and begins to execute
I At 8, J1 executes L(R), becomes blocked, and J3 executes

I At 9, J3 executes U(R) and both J1 and J2 are unblocked. J1 has higher
priority than J2 and executes

I At 11, J1 executes U(R) and continues executing
I At 12, J1 completes, J2 has higher priority than J3 and has the resource

R, thus executes
I At 16, J2 executes U(R) and continues executing
I At 17, J2 completes, J3 executes until completion at 18

188

Mars Pathfinder

I The system:

I Pathfinder used the well-known real-time embedded
systems kernel VxWorks by Wind River.

I VxWorks uses preemptive priority-based scheduling, in this
case a deadline monotonic algorithm.

I Pathfinder contained an "information bus" (a shared
memory) used for communication, synchronized by locks.

189

Priority Inversion

Definition 27
Priority inversion occurs when
I a high priority job
I is blocked by a low priority job
I which is subsequently preempted by a medium priority job

Then effectively the medium priority job executes with higher
priority than the high priority job even though they do not
contend for resources

There may be arbitrarily many medium priority jobs that
preempt the low priority job⇒ uncontrolled priority inversion

190

Priority Inversion – Example

Uncontrolled priority inversion:

High priority job (J1) can be blocked by low priority job (J3) for
unknown amount of time depending on middle priority jobs (J2)

191

Deadlock

Definition 28 (suitable for resource access control)
A deadlock occurs when there is a set of jobs D such that each
job of D is waiting for a resource previously allocated by
another job of D.

Deadlocks can be
I detected: regularly check for deadlock, e.g. search for

cycles in a resource allocation graph regularly
I avoided: postpone unsafe requests for resources even

though they are available (banker’s algorithm,
priority-ceiling protocol)

I prevented: many methods invalidating sufficient conditions
for deadlock (e.g., impose locking order on resources)

See your operating systems course for more information

192

Deadlock – Example

Deadlock can result from piecemeal acquisition of resources: classic
example of two jobs J1 and J2 both needing both resources R and R ′

I J2 locks R ′ and J1 locks R

I J1 tries to get R ′ and is blocked

I J2 tries to get R and is blocked

193

Timing Anomalies due to Resources

Previous example, the critical section of J3 has length 4

... the critical section of J3 shortened to 2.5

... but response of J1 becomes longer!
194

Mars Pathfinder – The Problem

I Problematic tasks:
I A bus management task ran frequently with high priority to

move data in/out of the bus. If the bus has been locked,
then this thread itself had to wait.

I A meteorological data gathering task ran as an infrequent,
low priority thread, and used the bus to publish its data.

I The bus was also used by a communication task that ran
with medium priority.

I Occasionally the communication task (medium priority) was
invoked at the precise time when the bus management task
(high priority) was blocked by the meteorological data gathering
task (low priority) – priority inversion!

I The bus management task was blocked for considerable amount
of time by the communication task, which caused a watchdog
timer to go off, notice that the bus management task has not
been executed for some time, which typically means that
something had gone drastically wrong, and initiate a total system
reset.

195

Solutions

Contention for resources causes timing anomalies, priority
inversion and deadlock

Several protocols exist to (partially) solve the above problems:
I Non-preemptive CS
I Priority inheritance protocol
I Priority ceiling protocol
I

Terminology:
I A job Jh is blocked by a job Jk when
I the priority of Jk is lower than the priority of Jh and
I Jk holds a resource R and
I Jh executes L(R).

In such situation we sometimes say that Jh is blocked by
the corresponding critical section of Jk .

196

Non-preemptive Critical Sections

The protocol: when a job locks a resource, it is scheduled with
priority higher than all other jobs (i.e., is non-preemptive)

Example 29
Jobs J1, J2, J3 with release times 2,5,0, resp., and with
execution times 4,5,7, resp.

197

Non-preemptive Critical Sections – Features

I no deadlock as no job holding a resource is ever preempted
I no priority inversion:
I A job Jh can be blocked (by a lower priority job) only at

release time.
(Indeed, if Jh is not blocked at the release time rh , it means that no
lower priority job holds any resource at rh . However, no lower
priority job can be executed before completion of Jh , and thus no
lower priority job may block Jh .)

I If Jh is blocked at release time, then once the blocking
critical section completes, no lower priority job can block Jh .

I It follows that any job can be blocked only once, at release
time, blocking time is bounded by duration of one critical
section of a lower priority job.

Advantage: very simple; easy to implement both in fixed and dynamic
priority; no prior knowledge of resource demands of jobs needed

Disadvantage: every job can be blocked by every lower-priority job
with a critical section, even if there is no resource conflict

198

Priority-Inheritance Protocol

Idea: adjust the scheduling priorities of jobs during resource
access, to reduce the duration of timing anomalies
(As opposed to non-preemptive CS protocol, this time the priority is not
always increased to maximum)

Notation:
I assigned priority = priority assigned to a job according to

a standard scheduling algorithm
I At any time t , each ready job Jk is scheduled and executes

at its current priority πk (t) which may differ from its
assigned priority and may vary with time
I The current priority πk (t) of a job Jk may be raised to

the higher priority πh(t) of another job Jh
I In such a situation, the lower-priority job Jk is said to inherit

the priority of the higher-priority job Jh , and Jk executes at
its inherited priority πh(t)

199

Priority-Inheritance Protocol
I Scheduling rules:
I Jobs are scheduled in a preemptable priority-driven manner

according to their current priorities
I At release time, the current priority of a job is equal to its

assigned priority
I The current priority remains equal to the assigned priority,

except when the priority-inheritance rule is invoked
I Priority-inheritance rule:
I When a job Jh becomes blocked on a resource R, the job

Jk which blocks Jh inherits the current priority πh(t) of Jh ;
I Jk executes at its inherited priority until it releases R;

at that time, the priority of Jk is set to the highest priority of
all jobs still blocked by Jk after releasing R.
(the resulting priority may still be an inherited priority)

I Resource allocation: When a job J requests a resource R at t :
I If R is free, R is allocated to J until J releases it
I If R is not free, the request is denied and J is blocked

(Note that J is only denied R if the resource is held by another job.)
200

Priority-Inheritance Simple Example

non-preemptive CS:

priority-inheritance:

I At 3, J1 is blocked by J3, J3 inherits priority of J1

I At 5, J2 is released but cannot preempt J3 since the inherited priority of
J3 is higher than the (assigned) priority of J2

201

Priority-Inheritance Example

I At 0, J5 starts executing at priority 5, at 1 it executes L(Black)

I At 2, J4 preempts J5 and executes
I At 3, J4 executes L(Shaded), J4 continues to execute
I At 4, J3 preempts J4; at 5, J2 preempts J3

I At 6, J2 executes L(Black) and is blocked by J5. Thus J5 inherits the
priority 2 of J2 and executes

I At 8, J1 executes L(Shaded) and is blocked by J4. Thus J4 inherits the
priority 1 of J1 and executes

I At 9, J4 executes L(Black) and is blocked by J5. Thus J5 inherits the
current priority 1 of J4 and executes

I At 11, J5 executes U(Black), its priority returns to 5 (the priority before
locking Black). Now J4 has the highest priority (1) and executes
the Black critical section.

Later, when J4 executes U(Black), the priority of J4 remains 1 (since
Shaded blocks J1), and J4 also finishes the Shaded critical section
(at 13).

I At 13, J4 executes U(Shaded), its priority returns to 4. J1 has now the
highest priority and executes

I At 15, J1 completes, J2 is granted Black and has the highest priority and
executes

I At 17, J2 completes, afterwards J3, J4, J5 complete.

202

Properties of Priority-Inheritance Protocol

I Simple to implement, does not require prior knowledge of
resource requirements

I Jobs exhibit two types of "blocking"
I (Direct) blocking due to resource locks

i.e., a job J` locks a resource R, Jh executes L(R) is directly
blocked by J` on R

I Priority-inheritance "blocking"
i.e., a job Jh is preempted by a lower-priority job that inherited a
higher priority

I Jobs may exhibit transitive blocking
In the previous example, at 9, J5 blocks J4 and J4 blocks J1, hence J5

inherits the priority of J1

I Deadlock is not prevented
In the previous example, let J5 request shaded at 6.5, then J4 and J5

become deadlocked
I Can reduce blocking time (see next slide) compared to

non-preemptable CS but does not guarantee to minimize
blocking

203

Priority-Inheritance – Blocking Time (Optional)

z`,k = the k -th critical section of J`

A job Jh is blocked by z`,k if Jh has higher assigned priority than J` but
has to wait for J` to exit z`,k in order to continue

β∗h,` = the set of all maximal critical sections z`,k that may block Jh ,
i.e., which correspond to resources that are (potentially) used by jobs
with priorities equal or higher than Jh .
(recall that CS are properly nested, maximal CS which may block Jh is the
one which is not contained within any other CS which may block Jh)

Theorem 30
Let Jh be a job and let Jh+1, . . . , Jh+m be jobs with lower priority than
Jh . Then Jh can be blocked for at most the duration of one critical
section in each of β∗h,` where ` ∈ {h + 1, . . . ,h + m}.

The theorem is a direct consequence of the next lemma.

204

Lemma 31
Jh can be blocked by J` only if J` is executing within a critical
section z`,k of β∗h,` when Jh is released

I Assume that Jh is released at t and J` is in no CS of β∗h,` at t . We
show that J` never executes between t and completion of Jh :
I If J` is not in any CS at t , then its current priority at t is

equal to its assigned priority and cannot increase. Thus, J`
has to wait for completion of Jh as the current priority of Jh
is always higher than the assigned priority of J`.

I If J` is still in a CS at t , then this CS does not belong to β∗h,`
and thus cannot block Jh before completion and cannot
execute before completion of Jh .

I Assume that J` leaves z`,k ∈ β∗h,` at time t . We show that J` never
executes between t and completion of Jh :
I If J` is not in any CS at t , then, as above, J` never executes

before completion of Jh and cannot block Jh .
I If J` is still in a CS at t , then this CS does not belong to β∗h,`

because otherwise z`,k would not be maximal. Thus J`
cannot block Jh , and thus J` is never executed before
completion of Jh . 205

Priority-Inheritance – The Worst Case

J1 is blocked for the total duration of all critical sections in all lower
priority jobs.

206

Mars Pathfinder – Solution

I JPL (Jet Propulsion Laboratory) engineers spent hours and
hours running the system on a spacecraft replica.

I Early in the morning, after all but one engineer had gone home,
the engineer finally reproduced a system reset on the replica.

Solution: Turn the priority inheritance on!

This was done online using a C language interpreter which allowed to
execute C functions on-the-fly.

A short code changed a mutex initialization parameter from FALSE to
TRUE.

207

Priority-Ceiling Protocol

The goal: to furhter reduce blocking times due to resource contention
and to prevent deadlock

I in its basic form priority-ceiling protocol works under the
assumption that the priorities of jobs and resources required by
all jobs are known apriori
can be extended to dynamic priority (job-level fixed priority), see later

Notation:

I The priority ceiling of any resource Rk is the highest priority of all
the jobs that require Rk and is denoted by Π(Rk)

I At any time t , the current priority ceiling Π(t) of the system is
equal to the highest priority ceiling of the resources that are in
use at the time

I If all resources are free, Π(t) is equal to Ω, a newly introduced
priority level that is lower than the lowest priority level of all jobs

208

Priority-Ceiling Protocol

The scheduling and priority-inheritance rules are the same as for
priority-inheritance protocol

I Scheduling rules:

I Jobs are scheduled in a preemptable priority-driven manner
according to their current priorities

I At release time, the current priority of a job is equal to its
assigned priority

I The current priority remains equal to the assigned priority,
except when the priority-inheritance rule is invoked

I Priority-inheritance rule:

I When job Jh becomes blocked on a resource R, the job Jk
which blocks Jh inherits the current priority πh(t) of Jh ;

I Jk executes at its inherited priority until it releases R;
at that time, the priority of Jk is set to the highest priority of
all jobs still blocked by Jk after releasing R.
(which may still be an inherited priority)

209

Priority-Ceiling Protocol

Resource allocation rules:

I When a job J requests a resource R held by another job, the
request fails and the requesting job blocks

I When a job J requests a resource R at time t , and that resource
is free:

I If J’s priority π(t) is strictly higher than current priority
ceiling Π(t), R is allocated to J

I If J’s priority π(t) is not higher than Π(t), R is allocated to J
only if J is the job holding the resource(s) whose priority
ceiling is equal to Π(t), otherwise J is blocked
(Note that only one job may hold the resources whose priority
ceiling is equal to Π(t))

Note that unlike priority-inheritance protocol, the priority-ceiling
protocol can deny access to an available resource.

210

Priority-Ceiling Protocol

I At 1, Π(t) = Ω, J5 executes L(Black), continues executing
I At 3, Π(t) = 2, J4 executes L(Shaded); because the ceiling of the

system Π(t) is higher than the current priority of J4, job J4 is blocked, J5

inherits J4’s priority and executes at priority 4
I At 4, J3 preempts J5; at 5, J2 preempts J3. At 6, J2 requests Black and

is directly blocked by J5. Consequently, J5 inherits priority 2 and
executes until preempted by J1

I At 8, J1 executes L(Shaded), its priority is higher than Π(t) = 2, its
request is granted and J1 executes; at 9, J1 executes U(Shaded) and at
10 completes

I At 11, J5 releases Black and its priority drops to 5; J2 becomes
unblocked, is allocated Black and executes

I At 14, J2 and J3 complete, J4 is granted Shaded (because its priority is
higher than Π(t) = Ω) and executes

I At 16, J4 executes L(Black) which is free, the priority of J4 is not higher
than Π(16) = 1 but J4 is the job holding the resource whose priority
ceiling is equal to Π(16). Thus J4 gets Black , continues to execute;
the rest is clear

211

Priority-Ceiling Protocol

Theorem 32
Assume a system of preemptable jobs with fixed assigned
priorities. Then
I deadlock may never occur,
I a job can be blocked for at most the duration of one critical

section.

212

These situations cannot occur with priority ceiling protocol:

213

Differences between the priority-inheritance and
priority-ceiling

I Priority-inheritance is greedy, while priority ceiling is not

The priority-ceiling protocol may withhold access to a free
resource, i.e., a job can be prevented from execution by a
lower-priority job which does not hold the requested
resource – avoidance "blocking"

I The priority ceiling protocol forces a fixed order onto
resource accesses thus eliminating deadlock

214

Resources in Dynamic Priority Systems

The priority ceiling protocol assumes fixed and known priorities

In a dynamic priority system, the priorities of the periodic tasks
change over time, while the set of resources is required by
each task remains constant
I As a consequence, the priority ceiling of each resource

changes over time

What happens if T1 uses resource X , but T2 does not?
I Priority ceiling of X is 1 for 0 ≤ t ≤ 4, becomes 2 for

4 ≤ t ≤ 5, etc. even though the set of resources is required
by the tasks remains unchanged

215

Resources in Dynamic Priority Systems

I If a system is job-level fixed priority, but task-level dynamic
priority, a priority ceiling protocol can still be applied
I Each job in a task has a fixed priority once it is scheduled,

but may be scheduled at different priority to other jobs in
the task (e.g. EDF)

I Update the priority ceilings of all resources each time a new
job is introduced; use until updated on next job release

I Has been proven to prevent deadlocks and no job is ever
blocked for longer than the length of one critical section
I But: very inefficient, since priority ceilings updated

frequently
I May be better to use priority inheritance, accept longer

blocking

216

Schedulability Tests with Resources

How to adjust schedulability tests?

Add the blocking times to execution times of jobs; then run the
test as normal

The blocking time bi of a job Ji can be determined for all three
protocols:
I non-preemptable CS⇒ bi is bounded by the maximum

length of a critical section in lower priority jobs
I priority-inheritance⇒ bi is bounded by the total length of

the m longest critical sections where m is the number of
jobs that may block Ji
(For a more precise formulation see Theorem 30)

I priority-ceiling⇒ bi is bounded by the maximum length of
a critical section

217

Comments on Priority Inheritance Protocol (PIP)

Source: Zhang et al. Priority Inheritance Protocol Proved Correct. ITP 2012

218

Comments on Priority Inheritance Protocol (PIP)

219

Real-Time Scheduling

Multiprocessor Real-Time Systems

220

Multiprocessor Real-time Systems

I Many embedded systems are composed of many processors
(control systems in cars, aircraft, industrial systems etc.)

I Today most processors in computers have multiple cores
The main reason is that increasing frequency of a single processor is
no more feasible (mostly due to power consumption problems, growing
leakage currents, memory problems etc.)

Applications must be developed specifically for multiprocessor
systems.

221

Multiprocessor Frustration

In case of real-time systems, multiple processors bring serious
difficulties concerning correctness, predictability and efficiency.

The “root of all evil” in global scheduling: (Liu, 1969)

Few of the results obtained for a single processor generalize
directly to the multiple processor case; bringing in additional
processors adds a new dimension to the scheduling problem.
The simple fact that a task can use only one processor even
when several processors are free at the same time adds a
surprising amount of difficulty to the scheduling of multiple
processors.

222

The Model

I A job is a unit of work that is scheduled and executed by
a system
(Characterised by the release time ri , execution time ei and deadline di)

I A task is a set of related jobs which jointly provide some
system function

I Jobs execute on processors

In this lecture we consider m processors

I Jobs may use some (shared) passive resources

223

Schedule

Schedule assigns, in every time instant, processors and resources to
jobs.

A schedule is feasible if all jobs with hard real-time constraints
complete before their deadlines.

A set of jobs is schedulable if there is a feasible schedule for the set.

A scheduling algorithm is optimal if it always produces a feasible
schedule whenever such a schedule exists.
(and if a cost function is given, minimizes the cost)

We also consider online scheduling algorithms that do not use any
knowlede about jobs that will be released in the future but are given
a complete information about jobs that have been released.
(e.g. EDF is online)

224

Multiprocessor Taxonomy

I Identical processors: All processors identical, have the same
computing power

I Uniform processors: Each processor is characterized by its own
computing capacity κ, completes κt units of execution after t
time units

I Unrelated processors: There is an execution rate ρij associated
with each job-processor pair (Ji ,Pj) so that Ji completes ρij t
units of execution by executing on Pj for t time units

In addition, cost of communication can be included etc.

225

Assumptions – Priority Driven Scheduling

Throughout this lecture we assume:

I Unless otherwise stated, consider m identical processors

I Jobs can be preempted at any time and never suspend
themselves

I Context switch overhead is negligibly small
i.e. assumed to be zero

I There is an unlimited number of priority levels

I For simplicity, we assume independent jobs that do not contend
for resources

Unless otherwise stated, we assume that scheduling decisions take
place only when a job is released, or completed.

226

Multiprocessor Scheduling Taxonomy

Multiprocessor scheduling attempts to solve two problems:

I the allocation problem, i.e., on which processor a given job
executes

I the priority problem, i.e., when and in what order the jobs
execute

227

Issues

What results from single processor scheduling remain valid in
multiprocessor setting?

I Are there simple optimal scheduling algorithms?
I Are there optimal online scheduling algorithms

(i.e. those that do not know what jobs come in future)

I Are there efficient tests for schedulability?

In this lecture we consider:
I Individual jobs
I Periodic tasks

Start with n individual jobs {J1, . . . , Jn}

228

Individual Jobs – Timing Anomalies

Priority order: J1 A · · · A J4

229

Individual Jobs – EDF

EDF on m identical processors: At any time instant, jobs with
the earliest absolute deadlines are executed on available processors.
(Recall: no job can be executed on more than one processor at a given time!)

Is this optimal? NO!

Example:
J1, J2, J3 where

I ri = 0 for i ∈ {1,2,3}

I e1 = e2 = 1 and e3 = 5

I d1 = 1, d2 = 2, d3 = 5

2 processors.

230

Individual Jobs – Online Scheduling

No optimal online scheduler exists for the following jobs on two
processors:

Consider three jobs J1, J2, J3 are released at time 0 with the following
parameters:

I e1 = e2 = 2 and e3 = 4

I d1 = d2 = 4 and d3 = 8

Depending on scheduling in [0,2], new jobs J4, J5 are released at 2:

I If J3 is executed in [0,2], then at 2 release J4, J5 with d4 = d5 = 4
and e4 = e5 = 2.

I If J3 is not executed in [0,2], then at 4 release J4, J5 with
d4 = d5 = 8 and e4 = e5 = 4.

In either case the schedule produced is not feasible. However, if the
scheduler is given either of the sets {J1, . . . , J5} at the beginning, then
there is a feasible schedule.

231

Individual Jobs – Speedup Helps(?)

Theorem 33
If a set of jobs is feasible on m identical processors, then the same
set of jobs will be scheduled to meet all deadlines by EDF on identical
processors in which the individual processors are (2 − 1

m) times as
fast as in the original system.

The result is tight for EDF (assuming dynamic job priority):

Theorem 34
There are sets of jobs that can be feasibly scheduled on m identical
processors but EDF cannot schedule them on m processors that are
only (2 − 1

m − ε) faster for every ε > 0.

... there are also general lower bounds for online algorithms:

Theorem 35
There are sets of jobs that can be feasibly scheduled on m (here m is
even) identical processors but no online algorithm can schedule
them on m processors that are only (1 + ε) faster for every ε < 1

5 .

[Optimal Time-Critical Scheduling Via Resource Augmentation, Phillips et al, STOC 1997] 232

Reactive Systems
Consider fixed number, n, of independent periodic tasks
T = {T1, . . . ,Tn}

i.e. there is no dependency relation among jobs

I Unless otherwise stated, assume no phase and deadlines equal
to periods

I Ignore aperiodic tasks
I No sporadic tasks unless otherwise stated

Utilization ui of a periodic task Ti with period pi and execution time ei
is defined by ui := ei/pi
ui is the fraction of time a periodic task with period pi and execution time ei

keeps a processor busy

Total utilization UT of a set of tasks T = {T1, . . . ,Tn} is defined as the
sum of utilizations of all tasks of T , i.e. by UT :=

∑n
i=1 ui

Given a scheduling algorithm ALG, the schedulable utilization UALG of
ALG is the maximum number U such that for all T : UT ≤ U implies T
is schedulable by ALG.

233

Multiprocessor Scheduling Taxonomy

Allocation (migration type)

I No migration: each task is allocated to a processor

I (Task-level migration: jobs of a task may execute on different
processors; however, each job is assigned to a single processor)

I Job-level migration: A single job can migrate and execute on
different processors
(however, parallel execution of one job is not permitted and migration
takes place only when the job is rescheduled)

Priority type

I Fixed task-level priority (e.g. RM)

I Fixed job-level priority (e.g. EDF)

I (Dynamic job-level priority)

Partitioned scheduling = No migration
Global scheduling = job-level migration

234

Fundamental Limit – Fixed Job-Level Priority

Consider m processors and m + 1 tasks T = {T1, . . . ,Tm+1}, each
Ti = (L ,2L − 1).

Then
UT =

∑m+1
i=1 L/(2L −1) = (m + 1) (L/(2L − 1)) = (m + 1)/2 ·L/(L −1)

For very large L , this number is close to (m + 1)/2.

The set T is not schedulable using any fixed job-level priority
algorithm.

In other words, the schedulable utilization of fixed job-level priority
algorithms is at most (m + 1)/2, i.e., half of the processors capacity.

There are variants of EDF achieving this bound (see later slides).

235

Partitioned vs Global Scheduling

Most algorithms up to the end of 1990s based on partitioned
scheduling
I no migration

From the end of 1990s, many results concerning global
scheduling
I job-level migration

The task-level migration has not been much studied, so it is not covered in
this lecture.

We consider fixed job-level priority (e.g. EDF) and fixed
task-level priority (e.g. RM).
As before, we ignore dynamic job-level priority.

236

Partitioned Scheduling & Fixed Job-Level Priority

The algorithm proceeds in two phases:

1. Allocate tasks to processors, i.e., partition the set of tasks into m
possibly empty modules M1, . . . ,Mm

2. Schedule tasks of each Mi on the processor i according to
a given single processor algorithm

The quality of task assignment is determined by the number of
assigned processors

I Use EDF to schedule modules

I Suffices to test whether the total utilization of each module is ≤ 1
(or, possibly, ≤ Û where Û < 1 in order to accomodate aperiodic jobs ...)

Finding an optimal schedule is equivalent to a simple uniform-size
bin-packing problem (and hence is NP-complete)

Similarly, we may use RM for fixed task-level priorities (total utilization in
modules ≤ log 2, etc.)

237

Global Scheduling

I All ready jobs are kept in a global queue
I When selected for execution, a job can be assigned to any

processor
I When preempted, a job goes to the global queue (i.e.,

forgets on which processor it executed)

238

Global Scheduling – Fixed Job-Level Priority

Dhall’s effect:

I Consider m > 1 processors

I Let ε > 0

I Consider a set of tasks T = {T1, . . . ,Tm,Tm+1} such that

I Ti = (1,2ε) for 1 ≤ i ≤ m
I Tm+1 = (1 + ε,1)

I T is schedulable

I Stadnard EDF and RM schedules are not feasible (whiteb.)

However,

UT = m
2ε
1

+
1

1 + ε

which means that for small ε the utilization UT is close to 1
(i.e., UT /m is very small for m >> 0 processors)

239

How to avoid Dhall’s effect?

I Note that RM and EDF only account for task periods and
ignore the execution time!

I (Partial) Solution: Dhall’s effect can be avoided by giving
high priority to tasks with high utilization

Then in the previous example, Tm+1 is executed whenever
it comes and the other tasks are assigned to the remaining
processors – produces a feasible schedule

240

Global Scheduling – Fixed Job-Level Priority

Apparently there is a problem with long jobs due to Dhall’s effect.

There is an improved version of EDF called EDF-US(1/2) which

I assigns the highest priority to tasks with ui ≥ 1/2

I assigns priorities to the rest according to deadlines

which reaches the generic schedulable utilization bound (m + 1)/2.

241

Partitioned vs Global

Advantages of the global scheduling:

I Load is automatically balanced

I Better average response time (follows from queueing theory)

Disadvantages of the global scheduling:

I Problems caused by migration (e.g. increased cache misses)

I Schedulability tests more difficult (active area of research)

Is either of the approaches better from the schedulability standpoint?

242

Global Beats Partitioned

There are sets of tasks schedulable only with global scheduler:
I T = {T1,T2,T3} where T1 = (2,1),T2 = (3,2),T3 = (3,2),

can be scheduled using a global scheduler:

I No feasible partitioned schedule exists, always at least one
processor gets tasks with total utilization higher than 1.

243

Partitioned Beats Global

There are task sets that can be scheduled only with partitioned
scheduler (assuming fixed task-level priority assignment):

I T = {T1, . . . ,T4} where
T1 = (3,2),T2 = (4,3),T3 = (15,5),T4 = (20,5), can be
scheduled using a fixed task-level priority partitioned schedule:

I Global scheduling (fixed job-level priority): There are 9 jobs
released in the interval [0,12). Any of the 9! possible priority
assignments leads to a deadline miss.

244

Optimal Algorithm?
There IS an optimal algorithm in the case of job-level migration &
dynamic job-level priority. However, the algorithm is time driven.

The priority fair (PFair) algorithm is optimal for periodic systems with
deadlines equal to periods

Idea (of PFair): In any interval (0, t] jobs of a task Ti with utilization ui
execute for amount of time W so that ui t − 1 < W < ui t + 1
(Here every parameter is assumed to be a natural number)

This is achieved by cutting time into small quanta and scheduling jobs
in these quanta so that the execution times are always (more or less)
in proportion.

There are other optimal algorithms, all of them suffer from a large
number of preemptions/migrations.

No optimal algorithms are known for more general settings: deadlines
bounded by periods, arbitrary deadlines.

Recall, that no optimal on-line scheduling possible
245

Real-Time Programming & RTOS

Concurrent and real-time programming tools

246

Concurrent Programming

Concurrency in real-time systems

I typical architecture of embedded real-time system:

I several input units
I computation
I output units
I data logging/storing

I i.e., handling several concurrent activities

I concurrency occurs naturally in real-time systems

Support for concurrency in programming languages (Java, Ada, ...)
advantages: readability, OS independence, checking of interactions by
compiler, embedded computer may not have an OS

Support by libraries and the operating system (C/C++ with POSIX)
advantages: multi-language composition, language’s model of concurrency
may be difficult to implement on top of OS, OS API stadards imply portability

247

Processes and Threads

Process
I running instance of a program,
I executes its own virtual machine to avoid interference from

other processes,
I contains information about program resources and

execution state, e.g.:
I environment, working directory, ...
I program instructions,
I registers, heap, stack,
I file descriptors,
I signal actions, inter-process communication tools (pipes,

message boxes, etc.)
Thread
I exists within a process, uses process resources ,
I can be scheduled by OS and run as an independent entity,
I keeps its own: execution stack, local data, etc.
I share global data and resources with other threads of

the same process
248

Processes and threads in UNIX

249

Process (Thread) States

250

Communication and Synchronization

Communication
I passing of information from one process (thread) to

another
I typical methods: shared variables, message passing

Synchronization
I satisfaction of constraints on the interleaving of actions of

processes
e.g. action of one process has to occur after an action of another one

I typical methods: semaphores, monitors

Communication and synchronization are linked:
I communication requires synchronization
I synchronization corresponds to communication without

content
251

Communication: Shared Variables
Consistency problems:
I unrestricted use of shared variables is unreliable
I multiple update problem

example: shared variable X , assignment X := X + 1
I load the current value of X into a register
I increment the value of the register
I store the value of the register back to X

I two processes executing these instruction⇒ certain
interleavings can produce inconsistent results

Solution:
I parts of the process that access shared variables (i.e. critical

sections) must be executed indivisibly with respect to each other
I required protection is called mutual exclusion

... one may use a special mutual ex. protocol (e.g. Peterson) or a
synchronization mechanism – semaphores, monitors

252

Synchronization: Semaphores

A sempahore contains an integer variable that, apart from
initialization, is accessed only through two standard operations:
wait() and signal().

I semaphore is initialized to a non-negative value (typically 1)

I wait() operation: decrements the semaphore value if the value
is positive; otherwise, if the value is zero, the caller becomes
blocked

I signal() operation: increments the semaphore value; if the
value is not positive, then one process blocked by the
semaphore is unblocked (usually in FIFO order)

I both wait and signal are atomic

Semaphores are elegant low-level primitive but error prone and hard
to debug (deadlock, missing signal, etc.)

For more details see an operating systems course.

253

Synchronization: Monitors

I encapsulation and efficient condition synchronization

I critical regions are written as procedures; all encapsulated in
a single object or module

I procedure calls into the module are guaranteed to be mutually
exclusive

I shared resources accessible only by these procedures

For more details (such as condition variables) see an operating
systems course.

254

Communication: Message Passing

Communication among two, or more processes where there is no
shared region between the two processes. Instead they communicate
by passing messages.

I synchronous (rendezvous): send and receive operations are
blocking, no buffer required

I asynchronous (no-wait): send operation is not blocking,
requires buffer space (mailbox)

I remote invocation (extended rendezvous): sender is blocked
until reply is received

255

Synchronous Message Passing

256

Asynchronous Message Passing

257

Asynch. Message Passing with Bounded Buffer

258

Concurrent Programming is Complicated

Multi-threaded applications with shared data may have
numerous flaws.
I Race condition

Two or more threads try to access the same shared data, the result
depends on the exact order in which their instructions are executed

I Deadlock
occurs when two or more threads wait for each other, forming a cycle
and preventing all of them from making any forward progress

I Starvation
an idefinite delay or permanent blocking of one or more runnable
threads in a multithreaded application

I Livelock
occurs when threads are scheduled but are not making forward
progress because they are continuously reacting to each other’s state
changes

Usually difficult to find bugs and verify correctness.
259

Real-Time Aspects

I time-aware systems make explicit references to the time
frame of the enclosing environment
e.g. a bank safe’s door are to be locked from midnight to nine o’clock

I the "real-time" of the environment must be available

I reactive systems are typically concerned with relative
times
an output has to be produced within 50 ms of an associated input

I must be able to measure intervals
I usually must synchronize with environment: input sampling

and output signalling must be done very regularly with
controlled variability

260

The Concept of Time
Real-time systems must have a concept of time – but what is time?
I Measure of a time interval
I Units?

seconds, milliseconds, cpu cycles, system "ticks"
I Granularity, accuracy, stability of the clock source

I Is "one second" a well defined measure?
"A second is the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium-133
atom."

I ... temperature dependencies and relativistic effects
(the above definition refers to a caesium atom at rest, at
mean sea level and at a temperature of 0 K)

I Skew and divergence among multiple clocks
Distributed systems and clock synchronization

I Measuring time
I external source (GPS, NTP, etc.)
I internal – hardware clocks that count the number of

oscillations that occur in a quartz crystal
261

Requirements for Interaction with "time"

For RT programming, it is desirable to have:
I access to clocks and representation of time
I delays
I timeouts
I (deadline specification and real-time scheduling)

262

Access to Clock and Representation of Time

I requires a hardware clock that can be read like a regular
external device

I mostly offered by an OS service, if direct interfacing to
the hardware is not allowed

Example of time representation: (POSIX high resolution clock, counting
seconds and nanoseconds since 1970 with known resolution)

struct timespec {
time_t tv_sec;
long tv_nsec;

}

int clock_gettime(clockid_t clock_id,
struct timespec * tp);

int clock_settime(clockid_t id,
const struct timespec * tp);

Time is often kept by incrementing an integer variable, need to take
case of overflows (i.e. jumps to the past).

263

Delays
In addition to having access to a clock, need ability to
I Delay execution until an arbitrary calendar time

What about daylight saving time changes? Problems with leap seconds.

I Delay execution for a relative period of time
I Delay for t seconds

I Delay for t seconds after event e begins

264

A Repeated Task (An Attempt)

The goal is to do work repeatedly every 100 time units

while(1) {
delay(100);
do_work();

}

Does it work as intended? No, accumulates drift ...

Each turn in the loop will take at least 100 + x milliseconds,
where x is the time taken to perform do_work()

265

A Repeated Task (An Attempt)

The goal is to do work repeatedly every 100 time units

while(1) {
delay(100);
do_work();

}

Does it work as intended? No, accumulates drift ...

Delay is just lower bound, a delaying process is not guaranteed
access to the processor (the delay does not compensate for this)

266

Eliminating (Part of) The Drift: Timers

I Set an alarm clock, do some work, and then wait for
whatever time is left before the alarm rings

I This is done with timers
I Thread is told to wait until the next ring – accumulating drift

is eliminated
I Two types of timers
I one-shot

After a specified interval call an associated function.
I periodic (also called auto-reload timer in freeRTOS)

Call the associated function repeatedly, always after the specified
interval.

I Even with timers, drift may still occur, but it does not
accumulate (local drift)

267

Timeouts

Synchronous blocking operations can include timeouts
I Synchronization primitives

Semaphores, locks, etc.
... timeout usually generates an error/exception

I Networking and other I/O calls
E.g. select() in POSIX
Monitors readiness of multiple file descriptors, is ready when the
corresponding operation with the file desc is possible without blocking.
Has a timeout argument that specifies the minimum interval that
select() should block waiting for a file descriptor to become ready.

May also provide an asynchronous timeout signal
I Detect time overruns during execution of periodic and

sporadic tasks

268

Deadline specification and real-time scheduling

Clock driven scheduling trivial to implement via cyclic executive.

Other scheduling algorithms need OS and/or language support:

I System calls create, destroy, suspend and resume tasks.
I Implement tasks as either threads or processes.

Threads usually more beneficial than processes (with separate address
space and memory protection):
I Processes not always supported by the hardware
I Processes have longer context switch time
I Threads can communicate using shared data (fast and

more predictable)
I Scheduling support:
I Preemptive scheduler with multiple priority levels
I Support for aperiodic tasks (at least background

scheduling)
I Support for sporadic tasks with acceptance tests, etc.

269

Jobs, Tasks and Threads

I In theory, a system comprises a set of (abstract) tasks,
each task is a series of jobs
I tasks are typed, have various parameters, react to events,

etc.
I Acceptance test performed before admitting new tasks

I In practice, a thread (or a process) is the basic unit of work
handled by the scheduler
I Threads are the instantiation of tasks that have been

admitted to the system

How to map tasks to threads?

270

Periodic Tasks

Real-time tasks defined to execute periodically T = (φ,p,e,D)

It is clearly inefficient if the thread is created and destroyed
repeatedly every period

I Some op. systems (funkOS) and programming languages
(Real-time Java & Ada) support periodic threads
I the kernel (or VM) reinitializes such a thread and puts it to

sleep when the thread completes
I The kernel releases the thread at the beginning of the next

period
I This provides clean abstraction but needs support from OS

I Thread instantiated once, performs job, sleeps until next period,
repeats
I Lower overhead, but relies on programmer to handle timing
I Hard to avoid timing drift due to sleep overuns

(see the discussion of delays earlier in this lecture)
I Most common approach

271

Sporadic and Aperiodic Tasks

Events trigger sporadic and aperiodic tasks
I Might be extenal (hardware) interrupts
I Might be signalled by another task

Usual implementation:
I OS executes periodic server thread

(background server, deferrable server, etc.)

I OS maintains a “server queue” = a list of pointers which give
starting addresses of functions to be executed by the server

I Upon the occurrence of an event that releases an aperiodic or
sporadic job, the event handler (usually an interrupt routine)
inserts a pointer to the corresponding function to the list

272

Real-Time Programming & RTOS

Real-Time Operating systems

273

Operating Systems – What You Should Know ...

An operating system is a collection of software that manages
computer hardware resources and provides common services
for computer programs.

Basic components multi-purpose OS:
I Program execution & process management

processes (threads), IPC, scheduling, ...
I Memory management

segmentation, paging, protection ...
I Storage & other I/O management

files systems, device drivers, ...
I Network management

network drivers, protocols, ...
I Security

user IDs, privileges, ...
I User interface

shell, GUI, ...
274

Operating Systems – What You Should Know ...

275

Implementing Real-Time Systems

I Key fact from scheduler theory: need predictable behavior
I Raw performance less critical than consistent and

predictable performance; hence focus on scheduling
algorithms, schedulability tests

I Don’t want to fairly share resources – be unfair to ensure
deadlines met

I Need to run on a wide range of – often custom – hardware
I Often resource constrained:

limited memory, CPU, power consumption, size, weight, budget
I Closed set of applications

(Do we need a wristwatches to play DVDs?)
I Strong reliability requirements – may be safety critical
I How to upgrade software in a car engine? A DVD player?

276

Implications on Operating Systems

I General purpose operating systems not well suited for
real-time
I Assume plentiful resources, fairly shared amongst

untrusted users
I Serve multiple purposes
I Exactly opposite of an RTOS!

I Instead want an operating system that is:
I Small and light on resources
I Predictable
I Customisable, modular and extensible
I Reliable

... and that can be demonstrated or proven to be so

277

Implications on Operating Systems

I Real-time operating systems typically either cyclic
executive or microkernel designs, rather than a traditional
monolithic kernel
I Limited and well defined functionality
I Easier to demonstrate correctness
I Easier to customise

I Provide rich support for concurrency & real-time control
I Expose low-level system details to the applications

control of scheduling, interaction with hardware devices, ...

278

Cyclic Executive without Interrupts
I The simplest real-time systems use a “nanokernel” design
I Provides a minimal time service: scheduled clock pulse

with a fixed period
I No tasking, virtual memory/memory protection etc.
I Allows implementation of a static cyclic schedule, provided:

I Tasks can be scheduled in a frame-based manner
I All interactions with hardware to be done on a polled basis

I Operating system becomes a single task cyclic executive

279

Microkernel Architecture

I Cyclic executive widely used in low-end embedded devices

I 8 bit processors with kilobytes of memory
I Often programmed in (something like) C via cross-compiler,

or assembler
I Simple hardware interactions
I Fixed, simple, and static task set to execute
I Clock driven scheduler

I But many real-time embedded systems are more complex,
need a sophisticated operating system with priority
scheduling

I Common approach: a microkernel with priority scheduler
Configurable and robust, since architected around interactions between
cooperating system servers, rather than a monolithic kernel with ad-hoc
interactions

280

Microkernel Architecture

I A microkernel RTOS typically provides:
I Timing services, interrupt handling, support for hardware

interaction
I Task management, scheduling
I Messaging, signals
I Synchronization and locking
I Memory management (and sometimes also protection)

281

Example RTOS: FreeRTOS

I RTOS for embedded devices (ported to many
microcontrollers from more than 20 manufacturers)

I Distributed under GPL
I Written in C, kernel consists of 3+1 C source files

(approx. 9000 lines of code including comments)

I Largely configurable

282

Example RTOS: FreeRTOS

I The OS is (more or less) a library of object modules;
the application and OS modules are linked together in
the resulting executable image

I Prioritized scheduling of tasks
I tasks correspond to threads (share the same address

space; have their own execution stacks)
I highest priority executes; same priority⇒ round robin
I implicit idle task executing when no other task executes⇒

may be assigned functionality of a background server
I Synchronization using semaphores
I Communication using message queues
I Memory management
I no memory protection in basic version (can be extended)
I various implementations of memory management

memory can/cannot be freed after allocation, best fit vs
combination of adjacent memory block into a single one

That’s (almost) all 283

Example RTOS: FreeRTOS

Tiny memory requirements: e.g. IAR STR71x ARM7 port, full
optimisation, minimum configuration, four priorities⇒
I size of the scheduler = 236 bytes
I each queue adds 76 bytes + storage area
I each task 64 bytes + the stack size

284

Details of FreeRTOS Scheduling

I The scheduler must be explicitly invoked by calling
void vTaskStartScheduler(void) from main().
The scheduler may also stop either due to error, or if one of the tasks
calls void vTaskEndScheduler(void).

I It is possible to create a new task by calling

portBASE_TYPE xTaskCreate(
pdTASK_CODE pvTaskCode,
const char * const pcName,
unsigned short usStackDepth,
void *pvParameters,
unsigned portBASE_TYPE uxPriority,
xTaskHandle *pvCreatedTask);

pvTaskCode is a pointer to a function that will be executed as the task,
pcName is a human-readable name of the task, usStackDepth indicates
how many words must be reserved for the task stack, pvParameters is
a pointer to parameters of the task (without interpretation by the OS),
uxPriority is the assigned priority of the task (see resource control
lecture 7), pvCreatedTask is the task handle used by OS routines. 285

Details of FreeRTOS Scheduling

I A task can be deleted by means of
void vTaskDelete(xTaskHandle pxTaskToDelete)
I Like most other (non-POSIX-compliant) small real-time

systems, does not provide a task cancellation mechanism,
i.e. tasks cannot decline, or postpone deletion –
the deletion is immediate.

I Memory is not freed immediately, only the idle task can do it
that must be executed occasionally.

I A shared resource owned by a deleted task remains locked.
I Priorities are handled by means of uxTaskPriorityGet and
uxTaskPrioritySet. FreeRTOS implements priority inheritance
protocol, the returned priorities are the current ones.

I Tasks can be
suspended vTaskSuspend or vTaskSuspendAll
(suspends of but the calling one),
and resumed by vTaskResume or vTaskResumedAll.
Suspend/resume all can be used to implement non-preemptable critical
sections. 286

Clocks & Timers in FreeRTOS

I portTickType xTaskGetTickCount(void)

Get current time, in ticks, since the scheduler was started.
The frequency of ticks is determined by configTICK_RATE_HZ
set w.r.t. the HW port.

I void vTaskDelay(portTickType xTicksToDelay)

Blocks the calling task for the specified number of ticks.

I void vTaskDelayUntil(
portTickType *pxPreviousWakeTime,
portTickType xTimeIncrement
);

Blocks the calling process for xTimeIncrement ticks since
the pxPreviousWakeTime.
(At the wakeup, the pxPreviousWakeTime is incremented by
xTimeIncrement so that it can be readily used to implement periodic
tasks.)

287

Real-Time Programming & RTOS

Real-Time Programming Languages

Brief Overview

288

C and POSIX

IEEE 1003 POSIX
I "Portable Operating System Interface"
I Defines a subset of Unix functionality, various (optional)

extensions added to support real-time scheduling, signals,
message queues, etc.

I Widely implemented:
I Unix variants and Linux
I Dedicated real-time operating systems
I Limited support in Windows

Several POSIX standards for real-time scheduling
I POSIX 1003.1b ("real-time extensions")
I POSIX 1003.1c ("pthreads")
I POSIX 1003.1d ("additional real-time extensions")
I Support a sub-set of scheduler features we have discussed

289

POSIX Scheduling API (Threads)

struct sched_param typically contains only sched_priority.

pthread_join suspends execution of the thread until termination of the
thread; retval of the terminating thread is available to any successfully
joined thread. 290

Threads: Example I

#include <pthread.h>

pthread_t id;
void *fun(void *arg) {
// Some code sequence

}

main() {
pthread_create(&id, NULL, fun, NULL);
// Some other code sequence

}

291

Threads: Example II

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
printf("\n%d: Hello World!\n", threadid);
pthread_exit(NULL);

}

int main (int argc, char *argv[])
{
pthread_t threads[NUM_THREADS];
int rc, t;
for(t=0; t<NUM_THREADS; t++){
printf("Creating thread %d\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}
pthread_exit(NULL);

}

292

POSIX: Synchronization and Communication

I Synchronization:
I mutexes

(variables that can be locked/unlocked by threads),
I (counting) semaphores,
I condition variables,

(Used to wait for some condition. The waiting thread is put into a
queue until signaled on the condition variable by another thread.)

I ...

I Communication:
I signals (kill(pid,sig)),
I message passing,
I shared memory.

293

POSIX: Real-Time Support

Getting Time
I time() = seconds since Jan 1 1970
I gettimeofday() = seconds + nanoseconds since Jan 1

1970
I tm = structure for holding human readable time

I POSIX requires at least one clock of minimum resolution
50Hz (20ms)

294

POSIX: High Resolution Time & Timers
High resolution clock. Known clock resolution.

struct timespec {
time_t tv_sec;
long tv_nsec;

}

int clock_gettime(clockid_t clock_id,
struct timespec * tp);

int clock_settime(clockid_t id,
const struct timespec * tp);

Simple waiting: sleep, or

Sleep for the interval specified. May return earlier due to signal (in
which case remaining gives the remaining delay).

Accuracy of the delay not known (and not necessarily correlated to
clock_getres() value)

295

POSIX: Timers

I type timer_t; can be set:
I relative/absolute time
I single alarm time and an optional repetition period

I timer “rings” according to sevp (e.g. by sending a signal)

int timer_create(clockid_t clockid, struct sigevent *sevp,
timer_t *timerid);

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *new_value,
struct itimerspec * old_value);

where

struct itimerspec {
struct timespec it_interval; /* Timer interval */
struct timespec it_value; /* Initial expiration */

};

296

POSIX Scheduling API

I Four scheduling policies:
I SCHED_FIFO = Fixed priority, pre-emptive, FIFO on the same

priority level
I SCHED_RR = Fixed priority, pre-emptive, round robin on the

same priority level
I SCHED_SPORADIC = Sporadic server
I SCHED_OTHER = Unspecified (often the default time-sharing

scheduler)
I A process can sched_yield() or otherwise block at any time
I POSIX 1003.1b provides (largely) fixed priority scheduling
I Priority can be changed using sched_set_param(), but this

is high overhead and is intended for reconfiguration rather
than for dynamic scheduling

I No direct support for dynamic priority algorithms (e.g. EDF)
I Limited set of priorities:
I Use sched_get_priority_min(),
sched_get_priority_max() to determine the range

I Guarantees at least 32 priority levels 297

Using POSIX Scheduling: Rate Monotonic

Rate monotonic and deadline monotonic schedules can be
naturally implemented using POSIX primitives

1. Assign priorities to tasks in the usual way for RM/DM
2. Query the range of allowed system priorities
sched_get_priority_min() and
sched_get_priority_max()

3. Map task set onto system priorities
Care needs to be taken if there are large numbers of tasks, since some
systems only support a few priority levels

4. Start tasks using assigned priorities and SCHED_FIFO

There is no explicit support for indicating deadlines, periods

EDF scheduling not supported by POSIX

298

Using POSIX Scheduling: Sporadic Server

POSIX 1003.1d defines a hybrid sporadic/background server

When server has budget, runs at sched_priority, otherwise
runs as a background server at sched_ss_low_priority
Set sched_ss_low_priority to be lower priority than real-time tasks, but
possibly higher than other non-real-time tasks in the system

Also defines the replenishment period and the initial budget
after replenishment

299

POSIX-compliant RTOS

Examples of POSIX-compliant implementations:
I commercial:
I VxWorks
I QNX
I OSE

I Linux-related:
I RTLINUX
I RTAI

300

Latency

(Some) sources of hard to predict latency caused by the
system:
I Interrupts

see next slide

I System calls
RTOS should characterise WCET; kernel should be preemptable

I Memory management: paging
avoid, either use segmentation with a fixed memory management
scheme, or memory locking

I Caches
may introduce non-determinism; there are techniques for computing
WCET with processor caches

I DMA
competes with processor for the memory bus, hard to predict who wins

301

Interrupts

The amount of time required to handle interrupt varies

Thus in most OS, interrupt handling is divided into two steps
I Immediate interrupt service

very short; invokes a scheduled interrupt handling routine

I Scheduled interrupt service
preemptable, scheduled as an ordinary job at a suitable priority

302

Immediate Interrupt Service

Interrupt latency is the time between interrupt request and execution
of the first instruction of the interrupt service routine

The total delay caused by interrupt is the sum of the following factors:

I the time the processor takes to complete the current instruction,
do the necessary chores (flush pipeline and read the interrupt
vector), and jump to the trap handler and interrupt dispatcher

I the time the kernel takes to disable interrupts

I the time required to complete the immediate interrupt service
routines with higher-priority interrupts (if any) that occurred
simultaneously with this one

I the time the kernel takes to save the context of the interrupted
thread, identify the interrupting device, and get the starting
address of the interrupt service routine

I the time the kernel takes to start the interrupt service routine

303

Event Latency

304

Java

I object-oriented programming language
I developed by Sun Microsystems in the early 1990s
I compiled to bytecode (for a virtual machine), which is

compiled to native machine code at runtime
I syntax of Java is largely derived from C/C++

305

Concurrency: Threads

I predefined class java.lang.Thread – provides the
mechanism by which threads are created

I to avoid all threads having to be child classes of Thread, it
also uses a standard interface:

public interface Runnable {
public abstract void run();

}

I any class which wishes to express concurrent execution
must implement this interface and provide the run()
method

306

Threads: Creation & Termination

Creation:

I dynamic thread creation, arbitrary data to be passed as
parameters

I thread hierarchies and thread groups can be created

Termination:

I one thread can wait for another thread (the target) to
terminate by issuing the join method call on the target’s
thread object

I the isAlive method allows a thread to determine if the
target thread has terminated

I garbage collection cleans up objects which can no longer
be accessed

I main program terminates when all its user threads have
terminated

307

Synchronized Methods

I monitors are implemented in the context of classes and
objects

I lock associated with each object; lock cannot be accessed
directly by the application but is affected by
I the method modifier synchronized
I block synchronization

I synchronized method – access to the method can only
proceed once the lock associated with the object has been
obtained

I non-synchronized methods do not require the lock, can be
called at any time

308

Waiting and Notifying

I wait() always blocks the
calling thread and releases the
lock associated with the object

I notify() wakes up one
waiting thread
which thread is woken is not defined

I notifyAll() wakes up all
waiting threads

I if no thread is waiting, then
notify() and notifyAll()
have no effect

309

Real-Time Java

I Standard Java is not enough to handle real-time constraints

I Java (and JVM) lacks semantic for standard real-time
programming techniques.

I Embedded Java Specification was there, but merely a subset of
standard Java API.

I There is a gap for a language real-time capable and equipped
with all Java’s powerful advantages.

I IBM, Sun and other partners formed Real-time for Java Expert
Group sponsored by NIST in 1998

I It came up with Real-Time Specification for Java (RTSJ) to fill
this gap for real-time systems

I RTSJ proposed seven areas of enhancements to the standard
Java

310

RTSJ – Areas of Enhancement

1. Thread scheduling and dispatching
see the next slides

2. Memory management
immortal memory (no garbage collection), threads not preemptable by
garbage collector

3. Synchronization and resource sharing
priority inheritance and ceiling protocols

4. Asynchronous event handling, asynchronous transfer of
control, asynchronous thread termination
reaction to OS-level signals (POSIX), hardware interrupts and custom
events defined and fired by the application

5. Physical memory access

The resulting real-time extension needs a modified Java virtual
machine due to changes to memory model, garbage collector
and thread scheduling

311

Real-Time Java: Time

I java.lang.System.currentTimeMilis returns the number
of milliseconds since Jan 1 1970

I Real Time Java adds real time clocks with high resolution
time types

Timers
I one shot timers (javax.realtime.OneShotTimer)
I periodic timers (javax.realtime.PeriodicTimer)

Constructor:
Timer(HighResolutionTime t, Clock c, AsyncEventHandler handler)

... create a timer that fires at time t, according to Clock c and is handled by
the specified handler.

312

Real-Time Thread Scheduling

I Extends Java with a schedulable interface and
RealtimeThread class, and numerous supporting libraries

⇒ Allows definition of timing and scheduling parameters,
and memory requirements of threads

I Abstract Scheduler and SchedulingParameters classes
defined
I Allows a range of schedulers to be developed

I Current standards only allow system-defined schedulers;
cannot write a new scheduler without modifying the JVM

I Current standards provide a pre-emptive fixed priority
scheduler (PriorityScheduler class)
I Allows monitoring of execution times; missed deadlines;

CPU budgets
I Allows thread priority to be changed programatically
I Limited support for acceptance tests (isFeasible())

313

Real-Time Thread Scheduling

I Class hierarchy to express
release timing parameters

I Deadline monitoring:
missHandler if deadline
exceeded

I Execution time monitoring:

I cost = needed CPU time
I overrunHandler if

execution time budget
exceeded

314

Real-Time Thread Scheduling

I The RealtimeThread class extends Thread with extra
methods and parameters
I Direct support for periodic threads

I run() method will be a loop ending in a
waitForNextPeriod() call

I ... i.e. does not have to be implemented using sleep as e.g.
with POSIX API

315

Ada

I designed for United States
Department of Defense during
1977-1983

I targeted at embedded and
real-time systems

I Ada 95 revision
I used in critical systems

(avionics, weapon systems,
spacecrafts)

I free compiler: gnat

Ada Lovelace
(1815-1852)

... see the lecture of Petr Holub.

316

