IA159 Formal Verification Methods Partial Order Reduction

Jan Strejček

Faculty of Informatics Masaryk University

Focus and sources

Focus

- stuttering principle
- theory of partial order reduction
- heuristics for efficient implementation

Source

Chapter 10 of E. M. Clarke, O. Grumberg, and D. A. Peled: Model Checking, MIT, 1999.

Basic facts on partial order reduction

- compatible with model checking of finite systems against LTL formulae without X operator
- size of the reduced system is 3–99% of the original size
- model checking process for reduced systems is faster and consumes less memory
- best suited for asynchronous systems
- also known as model checking using representatives

Modified definition of Kripke structure

We consider only deterministic systems.

A Kripke structure is a tuple $M = (S, T, S_0, L)$, where

- S is a finite set of states
- T is a set of transitions, each $\alpha \in T$ is a partial function $\alpha : S \rightarrow S$.
- $S_0 \subseteq S$ is a set of initial states
- $L: S \to 2^{AP}$ is a labelling function associating to each state $s \in S$ the set of atomic propositions that are true in s.
- **a** a transition α is enabled in s if $\alpha(s)$ is defined
- lacktriangledown α is disabled in s otherwise
- \blacksquare enabled(s) denotes the set of transitions enabled in s

More definitions

Let φ be an LTL formula and $K = (S, T, S_0, L)$ be a Kripke structure.

- \blacksquare $AP(\varphi)$ is the set of atomic propositions occurring in φ
- **a** path in K starting from a state $s \in S$ is an infinite sequence $\pi = s_0, s_1, \ldots$ of states such that $s_0 = s$ and for each i there is a transition $\alpha_i \in T$ such that $\alpha_i(s_i) = s_{i+1}$
- a path starting in a fixed state can be identified with a sequence of transitions
- a path π satisfies φ , written $\pi \models \varphi$, if $w \models \varphi$, where the word $w = w(0)w(1)\dots$ is defined as $w(i) = L(s_i) \cap AP(\varphi)$ for all i > 0
- K satisfies φ , written $K \models \varphi$, if all paths starting from initial states of K satisfy φ

Goal of partial order reduction

LTL_X denotes LTL formulae without X operator.

Goal

Given a finite Kripke structure K and an LTL $_X$ formula φ , we want to find a smaller Kripke structure K' such that

$$K \models \varphi \iff K' \models \varphi.$$

Reduction method

- K' arises from K by disabling some transitions in some states
- as a result, some states may become unreachable in K'
- for each state s, ample(s) denotes the set of transitions that are enabled in s in K', $ample(s) \subseteq enabled(s)$
- calculation of ample sets needs to satisfy three goals
 - $\mathbf{1}$ K' given by ample sets has to satisfy

$$K \models \varphi \iff K' \models \varphi$$

- \mathbf{Z} K' should be substantially smaller than K
- 3 the overhead in calculating ample sets must be small

A base of partial order reduction

Stuttering principle

Stuttering on words

- let w = w(0)w(1)w(2)... be an infinite word
- a letter w(i) is called redundant iff w(i) = w(i + 1) and there is j > i such that $w(i) \neq w(j)$
- canonical form of w is the word obtained by deleting all redundant letters from w
- infinite words w_1 , w_2 are stutter equivalent, written $w_1 \sim w_2$, iff they have the same canonical form

Example

- **a** canonical form of $kk \ k \ oooo \ om \ k \ k.n^{\omega}$ is $komk.n^{\omega}$
- **a** canonical form of $k oo o mmmmm m kkk k.n^{\omega}$ is $komk.n^{\omega}$
- hence $kkkooooomkk.n^{\omega} \sim kooommmmmmkkkk.n^{\omega}$

Stuttering principle

Theorem (Lamport 1983)

Let φ be an LTL $_{-X}$ formula and w_1, w_2 be two stutter equivalent words. Then

$$w_1 \models \varphi \iff w_2 \models \varphi.$$

Stuttering on paths

Paths $\pi = s_0 s_1 \dots$ and $\pi' = s_0' s_1' \dots$ are stutter equivalent with respect to a set $AP' \subseteq AP$, written $\pi \sim_{AP'} \pi'$, iff $w \sim w'$, where w, w' are defined as $w(i) = L(s_i) \cap AP'$ and $w'(i) = L(s_i') \cap AP'$ for each i.

Kripke structures K, K' are stutter equivalent with respect to AP', written $K \sim_{AP'} K'$, iff

- \blacksquare K and K' have the same set of initial states and
- for each path π of K starting in an initial state s there exists a path π' of K' starting in the same initial state such that $\pi \sim_{AP'} \pi'$ and vice versa.

Stuttering principle for Kripke structures

Corollary

Let φ be an LTL $_X$ formula and K, K' be Kripke structures such that $K \sim_{AP(\varphi)} K'$. Then

$$K \models \varphi \iff K' \models \varphi.$$

Stuttering principle for Kripke structures

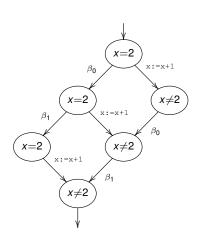
Corollary

Let φ be an LTL $_X$ formula and K, K' be Kripke structures such that $K \sim_{AP(\varphi)} K'$. Then

$$K \models \varphi \iff K' \models \varphi.$$

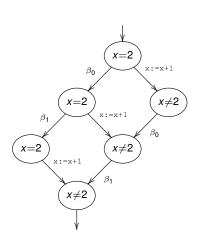
Hence, for every set of stutter equivalent paths (with respect to $AP(\varphi)$) of K it is sufficient to keep at least one representant of these paths in K'.

Example

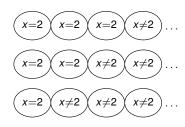


Let $AP(\varphi)$ contain just x = 2.

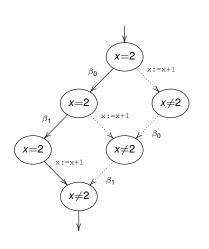
Example



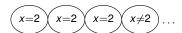
Let $AP(\varphi)$ contain just x = 2.



Example



Let $AP(\varphi)$ contain just x = 2.



Theory of partial order reduction

Conditions on ample sets

Terminology: (in)visibility and full expansion

A transition $\alpha \in T$ is invisible if for each pair of states $s, s' \in S$ such that $\alpha(s) = s'$ it holds that

$$L(s) \cap AP(\varphi) = L(s') \cap AP(\varphi).$$

A transition is visible if it is not invisible.

Terminology: (in)visibility and full expansion

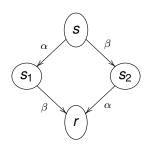
A transition $\alpha \in T$ is invisible if for each pair of states $s, s' \in S$ such that $\alpha(s) = s'$ it holds that

$$L(s) \cap AP(\varphi) = L(s') \cap AP(\varphi).$$

A transition is visible if it is not invisible.

A state s is fully expanded when ample(s) = enabled(s).

Terminology: (in)dependence



An independence relation $I \subseteq T \times T$ is a symmetric and antireflexive relation satisfying the following two conditions for each state $s \in S$ and for each $(\alpha, \beta) \in I$:

- **1** enabledness: if $\alpha, \beta \in enabled(s)$ then $\alpha \in enabled(\beta(s))$
- **2** commutativity: if $\alpha, \beta \in enabled(s)$ then $\alpha(\beta(s)) = \beta(\alpha(s))$

The dependency relation D is the complement of I.

If all ample sets satisfy the following conditions C0, C1, C2, and C3, then $K' \sim_{AP(\omega)} K$.

If all ample sets satisfy the following conditions C0, C1, C2, and C3, then $K' \sim_{AP(\omega)} K$.

C₀

$$ample(s) = \emptyset \iff enabled(s) = \emptyset.$$

C1

Along every path in the original structure that starts in s, the following condition holds: a transition outside ample(s) and dependent on a transition in ample(s) cannot be executed without a transition in ample(s) occurring first.

C1

Along every path in the original structure that starts in s, the following condition holds: a transition outside ample(s) and dependent on a transition in ample(s) cannot be executed without a transition in ample(s) occurring first.

Lemma

If C1 holds, then the transitions in enabled(s) \setminus ample(s) are all independent of those in ample(s).

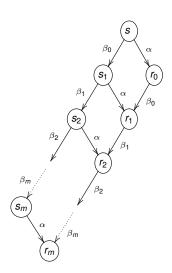
C1

Along every path in the original structure that starts in s, the following condition holds: a transition outside ample(s) and dependent on a transition in ample(s) cannot be executed without a transition in ample(s) occurring first.

Thanks to C1, all paths of K starting in a state s and not included in K' have one of the following two forms:

- the path has a prefix $\beta_0\beta_1...\beta_m\alpha$, where $\alpha \in ample(s)$ and each β_i is independent of all transitions in ample(s) including α .
- the path is an infinite sequence of transitions $\beta_0\beta_1$... where each β_i is independent of all transitions in ample(s).

Condition C1: consequences



Due to C1, after execution of a sequence $\beta_0\beta_1...\beta_m$ of a transitions not in ample(s) from s, all the transitions in ample(s) remain enabled. Further, the sequence $\beta_0\beta_1...\beta_m\alpha$ executed from s leads to the same state as the sequence $\alpha\beta_0\beta_1...\beta_m$.

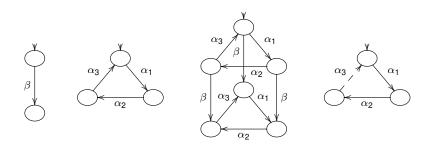
As the sequence $\beta_0\beta_1...\beta_m\alpha$ is not included in the reduced system, we want $\beta_0\beta_1...\beta_m\alpha$ and $\alpha\beta_0\beta_1...\beta_m$ to be prefixes of stutter equivalent paths. This is quaranteed if α is invisible.

C2 (invisibility)

If s is not fully expanded, then every $\alpha \in ample(s)$ is invisible.

Condition C3: motivation

Conditions C0, C1, and C2 are not yet sufficient to guarantee that K' is stutter equivalent to K. There is a possibility that some transition will be delayed forever because of a cycle.



 β is visible, $\alpha_1, \alpha_2, \alpha_3$ are invisible, β is independent of $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_1, \alpha_2, \alpha_3$ are interdependent

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state in which some transition is enabled, but is never included in ample(s) for any state s on the cycle.

Partial order reduction

Correctness

Statement

Theorem

Let φ be an LTL $_X$ formula and K be a Kripke structure. If K' is a reduction of K satisfying C0–C3, then

$$K \sim_{AP(\varphi)} K'$$
.

Terminology

- since now a path can be finite or infinite
- $\sigma \circ \eta$ the concatenation of a finite path σ and a (finite or infinite) path η (\circ is applicable if the last state $last(\sigma)$ of σ is the same as the first state of η)
- $tr(\pi)$ denote the sequence of transitions on a path π
- for a (finite or infinite) sequence v of transitions, vis(v) denotes its projection onto the visible transitions

Construction

For every infinite path π of K starting in some initial state we construct an infinite sequence of paths

$$\pi = \pi_0, \ \pi_1, \ \pi_2, \ \pi_3, \ \dots$$

where, for each i, $\pi_i = \sigma_i \circ \eta_i$ such that $|\sigma_i| = i$.

Construction

For every infinite path π of K starting in some initial state we construct an infinite sequence of paths

$$\pi = \pi_0, \ \pi_1, \ \pi_2, \ \pi_3, \ \dots$$

where, for each i, $\pi_i = \sigma_i \circ \eta_i$ such that $|\sigma_i| = i$.

$$\pi = \pi_0 = (S_0) \xrightarrow{\alpha_0} (S_1) \xrightarrow{\alpha_1} (S_2) \xrightarrow{\alpha_2} \dots$$

Construction

For every infinite path π of K starting in some initial state we construct an infinite sequence of paths

$$\pi = \pi_0, \ \pi_1, \ \pi_2, \ \pi_3, \ \dots$$

where, for each i, $\pi_i = \sigma_i \circ \eta_i$ such that $|\sigma_i| = i$.

$$\pi = \pi_0 = (S_0) \xrightarrow{\alpha_0} (S_1) \xrightarrow{\alpha_1} (S_2) \xrightarrow{\alpha_2} \dots$$

$$\pi_0 = \sigma_0 \circ \eta_0$$

$$S_0 \circ S_1 \circ S_2 \circ S_2 \circ S_1 \circ S_2 \circ S_2$$

Construction of π_{i+1}

Let s_0 be the last state of σ_i . The construction of π_{i+1} depends on α_0 .

$$\pi_{i} = \underbrace{\qquad \qquad \qquad }_{\sigma_{i}} \circ \underbrace{\qquad \qquad \qquad }_{\eta_{i}}$$

$$\bullet \longrightarrow \dots \longrightarrow S_{0} \xrightarrow{\alpha_{0}} \bullet \xrightarrow{\alpha_{1}} \bullet \xrightarrow{\alpha_{2}} \dots$$

Case A $\alpha_0 \in ample(s_0)$.

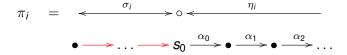
$$\pi_{i} = \underbrace{\qquad \qquad \qquad }_{\sigma_{i}} \circ \underbrace{\qquad \qquad \qquad }_{\eta_{i}}$$

$$\bullet \longrightarrow \dots \longrightarrow S_{0} \xrightarrow{\alpha_{0}} \bullet \xrightarrow{\alpha_{1}} \bullet \xrightarrow{\alpha_{2}} \dots$$

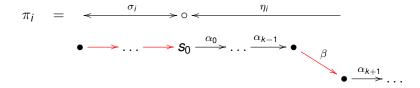
Case A $\alpha_0 \in ample(s_0)$.

$$\pi_{i} = \stackrel{\sigma_{i}}{\longleftrightarrow} \circ \stackrel{\eta_{i}}{\longleftrightarrow} \cdots \stackrel{\eta_{i}}{\longleftrightarrow} \cdots \stackrel{\sigma_{1}}{\longleftrightarrow} \circ \stackrel{\sigma_{2}}{\longleftrightarrow} \cdots \stackrel{\sigma_{2$$

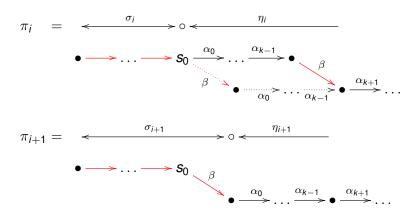
Case B $\alpha_0 \notin ample(s_0)$. By C2, all transitions in $ample(s_0)$ must be invisible. Due to C0 and C1, there are two cases.



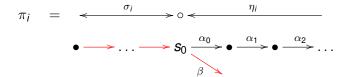
Case B1 $\alpha_0 \notin ample(s_0)$. Some $\beta \in ample(s_0)$ appears on η_i after a finite sequence of independent transitions $\alpha_0 \alpha_1 \dots \alpha_{k-1}$.



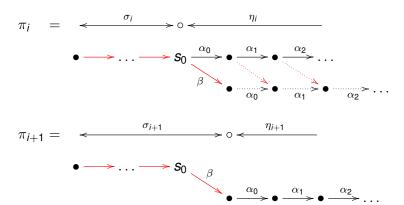
Case B1 $\alpha_0 \notin ample(s_0)$. Some $\beta \in ample(s_0)$ appears on η_i after a finite sequence of independent transitions $\alpha_0 \alpha_1 \dots \alpha_{k-1}$.



Case B2 $\alpha_0 \notin ample(s_0)$. Some $\beta \in ample(s_0)$ is independent of all transitions in η_i .



Case B2 $\alpha_0 \notin ample(s_0)$. Some $\beta \in ample(s_0)$ is independent of all transitions in η_i .



Properties of $\pi_0, \pi_1, \pi_2, \ldots$

Lemma

For all π_i, π_i , it holds:

- $\blacksquare \pi_i \sim_{AP(\varphi)} \pi_i$
- $extbf{vis}(tr(\pi_i)) = vis(tr(\pi_i))$
- if ξ_i, ξ_j are prefixes of π_i, π_j satisfying $vis(tr(\xi_i)) = vis(tr(\xi_i))$, then

$$L(last(\xi_i)) \cap AP(\varphi) = L(last(\xi_i)) \cap AP(\varphi).$$

(It is sufficient to prove it for π_i and π_{i+1} . And this is easy.)

Definition of σ

We define an infinite path σ as the limit of the finite paths σ_i .

To prove correctness of the reduction, we have to show that:

- $oldsymbol{1}$ σ belongs to the reduced structure K'
- $\sigma \sim_{AP(\varphi)} \pi$

(The first item follows directly from the construction of σ_i .)

Properties of σ

"Every transition of π eventually appears in σ ."

Lemma

Let α be the first transition of η_i . There exists j > i such that α is the last transition of σ_j and, for all $i \leq k < j$, α is the first transition of η_k .

(This is a consequence of C3.)

Properties of σ

"Only invisible transitions are added to σ . Visible transitions of π keep their order."

Lemma

Let γ be the first visible transition on η_i and prefix $\gamma(\eta_i)$ be the maximal prefix of $tr(\eta_i)$ that does not contain γ . Then one of the following holds:

- \bullet γ is the first action of η_i and the last transition of σ_{i+1} , or
- γ is the first visible transition of η_{i+1} , the last transition of σ_{i+1} is invisible, and $\operatorname{prefix}_{\gamma}(\eta_{i+1}) \sqsubseteq \operatorname{prefix}_{\gamma}(\eta_i)$.

 $v \sqsubseteq w$ denotes that v = w or v can be obtained from w by erasing one or more transitions.

Properties of σ

Lemma

Let v be a prefix of $vis(tr(\pi))$. Then there exists a path σ_i such that $v = vis(tr(\sigma_i))$.

Lemma

$$\sigma \sim_{AP(\varphi)} \pi$$
.

Hence, $K \sim_{AP(\varphi)} K'$.

Calculating ample sets

Complexity of checking conditions C0–C3

Conditions C0 and C2

C₀

$$ample(s) = \emptyset \iff enabled(s) = \emptyset.$$

C2 (invisibility)

If s is not fully expanded, then every $\alpha \in ample(s)$ is invisible.

- conditions C0 and C2 are local: their validity depends just on enabled(s) and ample(s), not on the whole structure
- C0 can be checked in constant time
- **C2** can be checked in linear time with respect to |ample(s)|

Condition C1

C₁

Along every path in the original structure that starts in s, the following condition holds: a transition outside ample(s) and dependent on a transition in ample(s) cannot be executed without a transition in ample(s) occurring first.

- checking C1 for a state s and a set T ⊆ enabled(s) is at least as hard as checking reachability for K (reachability problem can be reduced to checking C1)
- we give a procedure computing a set of transitions that is guaranteed to satisfy C1
- computed sets do not have to be optimal: tradeoff efficiency Vs. amount of reduction

Condition C3

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state in which some transition is enabled, but is never included in ample(s) for any state s on the cycle.

- C3 is also non-local
- in contrast to C1, C3 refers only to the reduced structure
- instead of checking C3, we formulate a stronger condition which is easier to check

Condition C3

Lemma

Assume that C1 holds for all ample sets along a cycle in a reduced structure. If at least one state along the cycle is fully expanded, then C3 hold for this cycle.

- C1 implies that each α ∈ enabled(s) \ ample(s) is independent of transitions in ample(s)
- $\alpha \in enabled(s) \setminus ample(s)$ is also enabled in the next state on the cycle in K'
- if the cycle contains a fully expanded state, then it surely satisfies C3

Condition C3'

If K' is generated using depth-first search strategy, then every cycle in K' has to contain a back edge (i.e. an edge going to a state on the search stack)

C3'

If s is not fully expanded, then no transition in ample(s) may reach a state that is on the search stack.

■ C3' can be checked efficiently during nestedDFS algorithm

Calculating ample sets

Algorithm

Basic information

Reduced system is constructed on-the-fly: ample(s) is computed only when a model checking algorithm needs to know successors of s.

Algorithm computing ample sets depends on the model of computation. We consider processes with

- shared variables and
- message passing with queues.

Notation

- $pc_i(s)$ denotes the program counter of process P_i in a state s
- $pre(\alpha)$ is a set including all transitions β such that there exists a state s for which $\alpha \notin enabled(s)$ and $\alpha \in enabled(\beta(s))$
- \blacksquare $dep(\alpha)$ is the set of all transitions that are dependent on α
- \blacksquare T_i is the set of transitions of process P_i
- \blacksquare $T_i(s) = T_i \cap enabled(s)$
- **current**_i(s) is the set of all transitions of P_i that are enabled in some s' such that $pc_i(s) = pc_i(s')$ (note that $T_i(s) \subseteq current_i(s)$)

Tradeoff

We do not compute the sets $pre(\alpha)$ and $dep(\alpha)$ precisely. We preffer to efficiently compute over-approximations of these sets.

Computing $pre(\alpha)$

- $pre(\alpha)$ includes the transitions of the processes that contain α and that can change a program counter to a value from which α can execute
- if the enabling condition for α involves shared variables, then $pre(\alpha)$ includes all other transitions that can change these shared variables
- if α sends or receives messages on some queue q, then $pre(\alpha)$ includes transitions of other processes that receive or send data through q, respectively

Computing $dep(\alpha)$

- pairs of transitions that share a variable, which is changed by at least one of them, are dependent
- pairs of transitions belonging to the same process are dependent
- two receive transitions that use the same message queue are dependent
- two send transitions are also dependent (sending a message may cause the queue to fill)

Note that a pair of send and receive transitions in different processes are independent as they can potentially enable each other, but not disable.

Sketch of the algorithm

- C1 implies that transitions in *enabled(s)* \ ample(s) are independent on those in *ample(s)*
- \blacksquare as transitions in $T_i(s)$ are interdependent, it holds

$$T_i(s) \subseteq ample(s) \lor T_i(s) \cap ample(s) = \emptyset$$

■ hence, $T_i(s)$ is a good candidate for ample(s)

Sketch of the algorithm

- C1 implies that transitions in enabled(s) \ ample(s) are independent on those in ample(s)
- \blacksquare as transitions in $T_i(s)$ are interdependent, it holds

$$T_i(s) \subseteq ample(s) \lor T_i(s) \cap ample(s) = \emptyset$$

■ hence, $T_i(s)$ is a good candidate for ample(s)

Idea of the algorithm

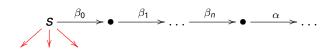
We check whether some $T_i(s) \neq \emptyset$ satisfies the conditions C1, C2, and C3'. If there is no such $T_i(s)$, we set ample(s) = enabled(s).

Checking C1

C₁

Along every path in the original structure that starts in s, the following condition holds: a transition outside ample(s) and dependent on a transition in ample(s) cannot be executed without a transition in ample(s) occurring first.

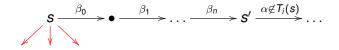
If $ample(s) = T_i(s)$ violates C1, then there is a path



where

- $\alpha \notin T_i(s)$ and α is dependent on $T_i(s)$,
- lacksquare β_0, \ldots, β_n are independent on $T_i(s)$.

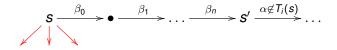
Checking C1



There are two cases.

Case A $\alpha \in T_j$ for some $i \neq j$. Then $dep(T_i(s)) \cap T_j \neq \emptyset$.

Checking C1



There are two cases.

Case A $\alpha \in T_j$ for some $i \neq j$. Then $dep(T_i(s)) \cap T_j \neq \emptyset$. Case B $\alpha \in T_i$.

- β_0, \ldots, β_n are independent on $T_i(s)$ and hence $\beta_0, \ldots, \beta_n \notin T_i$ (all transitions of P_i are considered as interdependent).
- Therefore $pc_i(s) = pc_i(s')$ and thus $\alpha \in current_i(s) \setminus T_i(s)$.
- As $\alpha \notin T_i(s)$, some transition of β_0, \dots, β_n has to be included in $pre(\alpha)$.
- Hence, $pre(current_i(s) \setminus T_i(s)) \cap T_i \neq \emptyset$ for some $j \neq i$.

Algorithm checking C1

```
function checkC1(s, P_i)
forall P_i \neq P_j do
if dep(T_i(s)) \cap T_j \neq \emptyset \lor pre(current_i(s) \setminus T_i(s)) \cap T_j \neq \emptyset then return false
return true
end function
```

If the function returns true, then C1 holds. It may return false even if $T_i(s)$ satisfies C1.

Algorithm

```
\begin{array}{lll} \text{function checkC2}(X) & \text{function checkC3'}(s,X) \\ & \text{forall } \alpha \in X \text{ do} & \text{forall } \alpha \in X \text{ do} \\ & \text{if } \textit{visible}(\alpha) \text{ then} & \text{if } \textit{onStack}(\alpha(s)) \text{ then} \\ & \text{return false} & \text{return false} \\ & \text{return true} & \text{end function} \end{array}
```

```
function ample(s)
forall P_i such that T_i(s) \neq \emptyset do
if checkC1(s, P_i) \land checkC2(T_i(s)) \land checkC3'(s, T_i(s)) then
return T_i(s)
return enabled(s)
end function
```

Partial order reduction

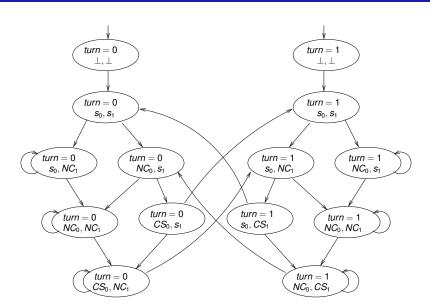
Example

Example: code

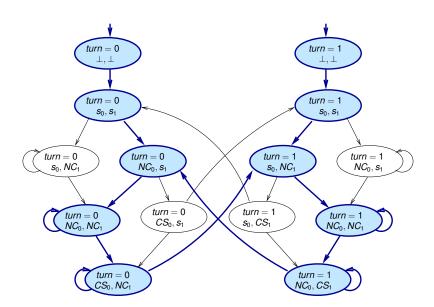
```
P:: m: cobegin P_0 || P_1 coend
P_0 :: s_0 : while true do
    NC_0: wait(turn = 0);
     CS₁:
                 turn := 1:
            endwhile:
P_1 :: s_1 : while true do
    NC_1: wait(turn = 1);
     CS_1:
          turn := 0;
            endwhile:
```

Specification formula
$$\varphi = G \neg ((pc_0 = CS_0) \land (pc_1 = CS_1))$$

Example



Example



Coming next week

Abstraction

- How to verify large systems?
- How to find a good abstraction?
- When is an abstraction considered to be good?