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Focus and sources

Focus
m principle of abstraction
m exact abstractions and non-exact abstractions
m predicate abstraction
m CEGAR: counterexample-guided abstraction refinement

Sources

m Chapter 13 of E. M. Clarke, O. Grumberg, D. Kroening, D.
Peled, and H. Veith: Model Checking (2nd edition), 2018.

m R. Pelanek: Reduction and Abstraction Techniques for
Model Checking, PhD thesis, FI MU, 2006.

m E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith:
Counterexample-guided Abstraction Refinement for
Symbolic Model Checking, J. ACM 50(5), 2003.
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Abstraction is one of the most important techniques for
reducing the state explosion problem.

[CGKPV18]

Original Verification impossible )
sysgcem Dt = Properties
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Abstraction is one of the most important techniques for
reducing the state explosion problem.

[CGKPV18]

Orlgmal ] Abstract Verification Properties

system model

m large finite systems — smaller finite systems
m infinite-state systems — finite systems
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Intuition
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Intuition
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Intuition
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Intuition

m equivalent with respect to F(x > 0)
m nonequivalent with respect to GF(x = 0)
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Given two Kripke structures M = (S, —, Sp, L) and
M =(S,-=', S, L"), we say that M’ simulates M, written
M < M, if there exists a relation R C S x S’ such that:

mVsye Sy.3s5€ S : (80,8 € R
m(s,8)eR = L(s)=L(9)
m(s,s)eRANs—p = P eS :5d>"pA(pp)eR
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Simulation

Given two Kripke structures M = (S, —, Sp, L) and
M =(S,-=', S, L"), we say that M’ simulates M, written
M < M, if there exists a relation R C S x S’ such that:
mVsyc Sy.3s5€ S : (80,8) €R
m(s,s)e R = L(s)=1L'(9)
m(s,s)eRANs—p = P eS :5d>"pA(pp)eR

Lemma

If M < M', then for every path o = sys, ... of M starting in an
initial state there is a run o' = s}s, ... of M’ starting in an initial
State and satisfying

L(s1)L(s2)...=L'(s))L'(s) . ...
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Relations between original and abstract systems

Original M< A Abstract Property
system ~ model e LTL
M A ’

M < A = all behaviours of M are also in A
(but not vice versa)
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Relations between original and abstract systems

Original M< A
system
M

Abstract
model
A

Al

M < A = all behaviours of M are also in A
(but not vice versa)
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Relations between original and abstract systems

Original M< A Abstract Al Property
system ~ model eLTL
777

If A has a behaviour violating ¢ (i.e. A [~ ), then either
M has this behaviour as well (i.e. M (~ ), or

M does not have this behaviour, which is then called
false positive or spurious counterexample
(M = ¢ or M |~ ¢ due to another behaviour violating ).
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Relations between original and abstract systems

Original M> A Abstract Property
system ~ model e LTL
M A ’

M > A = all behaviours of A are also in M
(but not vice versa)
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Relations between original and abstract systems

Original M> A Abstract AEp Property
system ~ model e LTL
777

M > A = all behaviours of A are also in M
(but not vice versa)
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Relations between original and abstract systems

Original M< A Abstract Property
sysAt/Iem ey m(?;\jel pelTL

M<A<M = Aand M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar = M <A< M

ot
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Relations between original and abstract systems

Original M< A Abstract AEp Property
system =~ model
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Relations between original and abstract systems

g;isgtie?ril M<A Ar?mztéz?t Al ¢ | Property
¢ A X pe LTl
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Relations between original and abstract systems

Original M< A Abstract AlEp Property
system = model
M ¢

M<A<M = Aand M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar = M <A< M

ot
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Relations between original and abstract systems

Property
p e LTL

Original M< A Abstract A~
system ~ model
M=

All these relations hold even for o € CTL".
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Abstraction

Exact abstractions
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Cone of influence (aka dead variables)

We eliminate the variables that do not influence the variables in
the specification.
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Cone of influence (aka dead variables)

m let V be the set of variables appearing in specification
m cone of influence C of V is the minimal set of variables
such that
mVCC
m if v occurs in a test affecting the control flow, then v € C
m if there is an assignment v := e for some v € C, then all
variables occurring in the expression e are also in C

m C can be computed by the source code analysis

m variables that are not in C can be eliminated from the code
together with all commands they participate in
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Cone of influence: example

S: v := getinput();
x := getinput();
y =1,
z:=1,;
while v > 0 do

Z:=2Zx*X,
X =x—-1;
yi=yxV,
vi=v-1:
Z:=2ZxY,
E:

Specification: F(pc = E)
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Cone of influence: example

S: v := getinput();
x := getinput();
y =1,
z:=1,;
while v > 0 do

Z:=2Zx*X,
X =x—-1;
yi=yxV,
vi=v-1:
Z:=2ZxY,
E:

Specification: F(pc = E)
V=90,C={v}
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Cone of influence: example

S: v := getinput(); S: v := getinput();
x = getinput(); skip;
y=1; skip;
z:=1; skip;
while v > 0 do while v > 0 do
Z = Z*X; skip;
X =x—-1; skip;
yi=y=xv, skip;
vi=v-1: vi=v-1:
Z:=2ZxY, skip;
E E:

Specification: F(pc = E)
V=90,C={v}
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Other exact abstractions

Symmetry reduction

m in systems with more identical parallel components, their
order is not important

Equivalent values

m if the set of behaviours starting in a state s is the same for
values a, b of a variable v, then the two values can be
replaced by one

m applicable to larger sets of values as well
m used in timed automata for timer values
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Abstraction

Non-exact abstractions
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We face two problems

to find a suitable a set of abstract states and a mapping
between the original states and the abstract ones

to compute a transition relation on abstract states
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Finding abstract states

Abstract states are usually defined in one of the following ways:

for each variable x, we replace the original variable domain
Dy by an abstract domain Ax and we define a total function
hyx : Dy — Ay

astate s = (v1,...,Vm) € Dy, x ... x Dy, given by values
of all variables corresponds to an abstract state

h(S) = (B, (V1) - -, Bn(Vin)) € Ax, X ... X Ay,

predicate abstraction - we choose a finite set
& = {¢1,...,on} of predicates over the set of variables;
we have several choices of abstract domains

The first approach can be seen as a special case the latter one.
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Popular abstract domains for integers

Sign abstraction
m Ac={a;,a ,ap}
{ a ifv<oO
m h(v)=< a ifv=0

a; ifv>0

Parity abstraction
[ | AX == {ae, ao}

| ae ifviseven
" (V) —{ a if visodd

m good for verification of properties related to the last bit of
binary representation
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Popular abstract domains for integers

Congruence modulo an integer
m hy(v) = v (mod m) for some m
m nice properties:

((x mod m)+ (y mod m)) modm = x-+y (mod m)
(xmod m)—(y mod m)) modm = x—y (mod m)
((x mod m)-(y mod m)) modm = x-y (mod m)

Representation by logarithm
B hy(v) = [loga(v +1)]
m the number of bits needed for representation of v

m good for verification of properties related to overflow
problems
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Popular abstract domains for integers

Single bit abstraction
| ] AX - {0, 1}
m hy(v) =the i-th bit of v for a fixed i

Single value abstraction
| AX - {O, 1}

1 ifv=c
" (V) { 0 otherwise

...and others
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Predicate abstraction

Let & = {¢1,...,¢n} be a set of predicates over the set of
variables.

Abstract domain {0,1}"

m astate s = (vq,..., V) corresponds to an abstract state
given by a vector of truth values of {¢1,...,¢n}, i.e.

h(S):((f)1(V1,...,Vm),...,¢n(V1,...,Vm))E{O,1}n

m example: ¢4 = (X1 >3) o= (X1 <X2) ¢3=(x2>10)
s=(5,7)
h(s) = (1,1,0)
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Abstract structures

Assume that
m we have a Kripke structure M = (S, —, Sy, L)
m we have an abstract domain A and a mappingh: S — A

To define abstract model (A, —', Ag, La), we set
m Ao = {h(so) | So € So}
m L, : A— 24P has be correctly defined, i.e.
m for abstraction based on variable domains, validity of atomic
propositions is determined by abstract states in Ay, x...xAx,
m for predicate abstraction, validity of atomic propositions is
determined by abstraction predicates {¢+,...,¢n} (AP is
typically a subset of it)

and L, has to agree with L, i.e. L(s) = La(h(s))
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Abstract structures

Assume that
m we have a Kripke structure M = (S, —, Sy, L)
m we have an abstract domain A and a mappingh: S — A

We define two abstract models:

W a; —ma a iff there exist sy, S, € S such that
h(sy) = ay, h(s2) = a», and sy — s
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Example Mz,

x=0 x=1 xX=2 X=3 —X=4 —Xx=5—— ...

O~ ~

Mz, with abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢4 = (x > 0) and ¢2 = (x > 2).
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Example Mz,

x=0 x=1 xX=2 X=3 ——X=4 —Xx=5—— ...

O~ -

Mz, with abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢4 = (x > 0) and ¢2 = (x > 2).

T

(0,0)————(1,0) ——(1,1)

()~ ’
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Abstract structures

Assume that
m we have a Kripke structure M = (S, —, Sy, L)
m we have an abstract domain A and a mappingh: S — A

We define two abstract models:

Mmust = (A, = must, Ao, La), where

B a3, —must @ iff for each sy € S satisfying h(s1) = ay
there exists s, € S such that h(sy) = a»
and sy — S
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Example Mp,st

x=0 x=1 xX=2 X=3 —X=4 —Xx=5—— ...

O~ ~

Mt With abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢4 = (x > 0) and ¢2 = (x > 2).
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Example Mp,st

x=0 x=1 xX=2 X=3 ——X=4 —Xx=5—— ...

O~ -

Mt With abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢4 = (x > 0) and ¢2 = (x > 2).

(0,0) —(1,0) (1,1)
1) >~~—'
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Relations between M, Myust, and M,y

Lemma

For every Kripke structure M, abstract domain A with a
mapping function h it holds:

Mmust < M < Mmay
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Relations between M, Myust, and M,y

Lemma

For every Kripke structure M, abstract domain A with a
mapping function h it holds:

Mmust < M < Mmay

m computing Mmnust or Mgy requires constructing M first
(recall that M can be very large or even infinite)

m we rather compute an under-approximation M}, s; of Mmyst
or an over-approximation M;nay of Mgy directly from the

implicit representation of M
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Abstraction

Abstraction in practice
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Predicate abstraction: abstracting sets of states

Abstract domain {0, 1}" is not used in practice (too many
transitions) = it is better to assign a single abstract state to a
set of original states.

Abstract domain 2{0:1}"
m let b= (by,...,b,) be avector of b; € {0,1}
m we set [B,CD] =bi- -1 A...\bn-dn,
where 0 - gb,' = —|<]5,' and 1 - gb,' = ¢,‘

m let X denotes the set of original states

mh(X)={be{0,1}"|3se X:sk[b, o]}

m example: o1 = (X1 >3) ¢do=(X1 < X2) ¢3=(x2>10)
X = {(57 7)7 (4, 5)7 (27 9)}
h(X) ={(1,1,0),(0,1,0)}

m nice theoretical properties

m not used in practice (this abstract domain grows too fast)
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Predicate abstraction: abstracting sets of states

Abstract domain {0, 1, x}" (predicate-cartesian abstraction)
mleth= (by,...,bn) be avector of b; € {0,1,x*}
m weset[b,®] =by-d1A...Abp-dn,
where 0 - ¢ = =¢j, 1-¢j = ¢j,and x - ¢; = T
m h(X) =min{be {0,1,%}" | Vs e X : s |= [b, ]},
where min means “the most specific”
m example: ¢4 = (xy >3) ¢ = (X1 < X2) ¢3=(x2>10)
X = {(Sa 7)5 (45 5)7 (2’ 9)}
h(X) = (x,1,0)
m this one is used in practice
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Guarded command language

Syntax
m let V be a finite set of integer variables
m expressions over V use standard binary operations
(+,—,-,...) and boolean relations (=, <, >)
m Act is a set of action names
m model is apair M = (V,E), where E = {1,...,tn}isa
finite set of transitions of the form #; = (a;. g;, u;), where
m g € Act
B g;is a boolean expression over V
B u; is a sequence of assignments over V
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Guarded command language

Syntax
m let V be a finite set of integer variables
m expressions over V use standard binary operations
(+,—,-,...) and boolean relations (=, <, >)
m Actis a set of action names

m model is apair M = (V,E), where E = {1,...,tn}isa
finite set of transitions of the form #; = (a;. g;, u;), where

m g € Act
m g; is a boolean expression over V
B u; is a sequence of assignments over V

Semantics
m M defines a labelled transition system where

m states are valuations of variables S = 2Y—%
m initial state is the zero valuation so(v) =0 forall v e V

m s % s whenever s = g; and s’ = uj(5s)
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d
d d

x=3 -2 x=4 -3 x=5-2 .

implicit description in guarded command language:

V ={x}

(a, T, x:=x+1)
(b, =(x > 0), x:=0)

(¢, ( x>0)A(x<2), x:=0)

(d, (x> 2), x:=0)
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Abstraction in practice

m we use predicate abstraction with domain {0, 1, x}"”
m given a formula ¢ with free variables from V, we set

pre(ai, ) = (gi == ¢[X/ui(X)])
B we use a sound decision procedure is_valid, i.e.
is_valid(¢) =T = ¢ is atautology

(the procedure is_valid does not have to be complete)
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Abstraction in practice

for every abstract state b € {0, 1, «}" and for every transition
ti = (aj, 9i, U;), we compute an over-approximation of a
may-successor of b under t; as

m if is_valid([b, ®] = —g;) then there is no successor

m otherwise, the successor b is given by

b; =

=1 0 ifis_valid([b,®] = pre(a;, ~¢;))

{ 1 if is_valid([b,®] = pre(a;, ¢;))
+ otherwise
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{ 1 if is_valid([b,®] = pre(aj, ¢;))

b —

j 0 ifis_valid([b,®] = pre(a, ~¢))

* otherwise

(a, T, x:=x+1)

using the predicates ¢y = (x > 0), ¢ = (x > 2), we compute
the transition

(170) —a>may’ ( ) )
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{ 1 if is_valid([b,®] = pre(aj, ¢;))

b —

j 0 ifis_valid([b,®] = pre(a, ~¢))

* otherwise

(a, T, x:=x+1)

using the predicates ¢y = (x > 0), ¢ = (x > 2), we compute
the transition

(1,0) 2 (1, )

B(x>0)A(KXx<2) = (T = (x+1>0))istrue
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{ 1 if is_valid([b,®] = pre(aj, ¢;))

b —

j 0 ifis_valid([b,®] = pre(a, ~¢))

* otherwise

(a, T, x:=x+1)

using the predicates ¢y = (x > 0), ¢ = (x > 2), we compute
the transition
(1,0) 2 mayr (1,%)
BE(x>0)AN(x<2) = (T = (x+1>0))istrue
B(x>0)A(Xx<2) = (T = (x+1>2))isnottrue
B(x>0)A(x<2) = (T = (x+1<2))isnottrue
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Abstraction in practice

m for every transition, we compute successors of all abstract
states

m based on the successors, we transform the original implicit
representation of a system into a boolean program

m boolean program is an implicit representation of an
over-approximation of Mpnay

m it uses only boolean variables b representing the validity of
abstraction predicates ¢

m boolean program can be used as an input for a suitable
model checker (of finite-state systems)
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V={x}

(a, T, x:=x+1)
(b, =(x > 0), x:=0)
(c, x>0)A(x<2), x:=0)
(d, (x >2), x:=0)

using the predicates ¢4 = (x > 0), ¢ = (x > 2), we get the
boolean program (defining an over-approximation) of M,y

V = {by, bo}, where by, b> represents validity of ¢+, ¢
(a, T, by := if by then 1 else x

b := if by then 1 else if by then x else 0)
(b, —\b1, b1 = 0, b2 = 0)
(C, by A—=bs, by :=0, by := 0)
(d, b2, b1 = 0, b2 = 0)
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Example of a real NQC code and its absraction

task light_sensor_control () { task A_light_sensor_control () {
int x = 0; bool b = false;
while (true) { while (true) {
if (LIGHT > LIGHT_THRESHOLD) { if (x) |
PlaySound (SOUND_CLICK) ;
Wait (30);
x = x + 1; b =Db ? true : *x ;
} else { } else {
if (x > 2) | if (b) {

PlaySound (SOUND_UP) ;
ClearTimer (0);
brick = LONG; brick = LONG;
} else if (x > 0) { } else if (b ? true : x) {
PlaySound (SOUND_DOUBLE_BEEP) ;
ClearTimer (0);
brick = SHORT; brick = SHORT;

} }
x = 0; b = false;
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Abstraction

CEGAR: counterexample-guided abstraction refinement
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m it is hard to find a small and valuable abstraction
m abstraction predicates are usually provided by a user
m CEGAR tries to find a suitable abstraction automatically

m implemented in SLAM, BLAST, Static Driver Verifier (SDV),
and many others

m incomplete method, but very successfull in practice
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system M specification ¢
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system M specification ¢
buildanew | 7
abstract model
M (M < M)
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system M specification ¢
build a new
abstract model
M (M < M)
model check
M = o?
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system M specification ¢
build a new
abstract model
M (M < M)
model check
M = o?
YES
NO BUG!
M=
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system M specification ¢
build a new
abstract model
M (M < M)
model check
M = o?
NO
analyze /
counterexample YES
NO BUG!
M=
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system M specification ¢
build a new
abstract model
M (M < M)
model check
M = o?

NO
analyze /
counterexample YES

reall

BUG! NO BUG!
M % o M=o
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system M specification ¢
build a new
abstract model
M (M < M)
add new
abstraction m%e’l_ch%ck
predicates = "

NO

\ analyze /

spurious counterexample YES
reall

BUG! NO BUG!
Ml#@ M}:(p
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system M specification ¢
build a new
abstract model
/ M/ (M S M/)
add new
abstraction m%e’l_ch%ck
predicates = "

NO

\ analyze /

spurious counterexample YES
reall

BUG! NO BUG!
Ml#@ M}:(p
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m added abstraction predicates ensure that the new abstract
model M’ does not have the behaviour corresponding to
the spurious counterexample of the previous M’

m the analysis of an abstract counterexample and finding
new abstract predicates are nontrivial tasks

m the method is sound but incomplete
(the algorithm can run in the cycle forever)
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Counterexample analysis

Case 1 Finite path counterexample (e.g. for reachability)

S .= h—1(a1)ﬂlnit a——> A& —> a3 —> &
fi=1 | : \ :
while S#0 A j<n I I I I
ji=j+1 y ¥ v v
S/ =S S —> 54 S7 S10
S = Suce(S) N h~'(a)) 6 Trss \ - \SH
if S # 0 then return real bug sl s ™~ s 51

else return j, S’ //spurious
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Counterexample analysis

Case 1 Finite path counterexample (e.g. for reachability)

S .= h—1(a1)ﬂlnit a——> A& —> a3 —> &
fi=1 | : \ :
while S#0 A j<n I I I I
ji=j+1 y ¥ v v
S/ =S S —> 4 S7 S10
S = Suce(S) N h~'(a)) S \ - \SH
if S # 0 then return real bug N ™~ s 51

else return j, S’ //spurious
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Counterexample analysis

Case 1 Finite path counterexample (e.g. for reachability)

S .= h—1(a1)ﬂlnit a——> A& —> a3 —> &
fi=1 | : \ :
while S#0 A j<n I I I I
ji=j+1 y ¥ v v
S/ =S S —> S4 S7 S10
S = Suce(S) N h~'(a)) A \ - \SH
if S # 0 then return real bug N ™~ s 51

else return j, S’ //spurious
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Counterexample analysis

Case 1 Finite path counterexample (e.g. for reachability)

S .= h—1(a1)ﬂlnit a——> A& —> a3 —> &
fi=1 | : \ :
while S#0 A j<n I I I I
ji=j+1 y ¥ v v
S/ =S S —> S4 S7 S10
S = Suce(S) N h~'(a)) A \ - \SH
if S # 0 then return real bug sl s ™~ . 51

else return j, S’ //spurious

m output: j = 4,5 = {sg}
m we need a predicate separating {sg} and {s7} to remove
this spurious counterexample
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Counterexample analysis

Case 2 Lasso counterexample

as — a \_7" as

\ 4 \ 4 \ 4

\}
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Counterexample analysis

Case 2 Lasso counterexample

as — a ~—7E as

\ 4 \ 4 \ 4

\:2.
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Counterexample analysis

Case 2 Lasso counterexample

as — a \_7" as

\ 4 \ 4 \ 4

. .>‘Z.
G
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Counterexample analysis

a —a s as ar—a) — al — a}
1 1 1
| | . | I | |
Y Y \ 4 Y Y Y \ 4
o—>0—>0 o—>0—>0 [ ]
° o‘/o — | e ° o\o
° ° . ° ° ° °
° 0e<— o ° ° ° °
\0\0 ° ° °
.ﬂ ./ \.
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Counterexample analysis

Case 2 Lasso counterexample e .

P 0 0l 1 2
a — a5 a3 a— & —>a—a —»>al—a — a
1 i 1 i 1 1 L ..., ! 1
1 1 1 | | 1 U U I U
\ 4 \ 4 \ 4 Y Y \ 4 \ 4 V Y
e —>0—>e@ e—>0— >0 ° ° ["®
° o‘/o —3 e ° o\ . . .
[ ] [ ] [ ]
[ ]
[ ) [ ]

\}

IA159 Formal Verification Methods: Abstraction 84/94



Counterexample analysis

Case 2 Lasso counterexample e _

a —a s as a —>a —>a—>al —»al—a—>a
1
| I I I | I EREEE AR L |
Y Y Y Y Y Y Y Y A AN 4
e —>0—>e@ e——>0— >0 ° ° ° ["®
° o/o — e ° \o ° ° °
° ° ° o\o ° 0\' ° °
° 0e<— o ° ° ° ° e— >eo °
\o\o ° ° ° ° .\.
.ﬂ ° ./ \./

m an abstract loop may correspond to loops of different size
and starting at different stages of the unwinding

m the unwinding eventually becomes periodic, the size of the
period is the least common multiple of the size of individual
loops
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Counterexample analysis

Analysis of a lasso counterexample can be reduced to analysis
of a finite path counterexample.

Theorem

Abstract lasso ay ... aj(aj.1 - .. an)* corresponds to a concrete
lasso iff there is a concrete path corresponding to the abstract
path ai ... ai(aj1...an)™", where m = minj;1<j<n |h~'(&))].
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Counterexample analysis

Analysis of a lasso counterexample can be reduced to analysis
of a finite path counterexample.

Theorem

Abstract lasso ay ... aj(aj.1 - .. an)* corresponds to a concrete
lasso iff there is a concrete path corresponding to the abstract
path ai ... ai(aj1...an)™", where m = minj;1<j<n |h~'(&))].

ay — a5 as a—a—a—al—al—>a —>a
1 1 1 1 1 1 1 1 1 1
v v 4 Y v v Y Y v v
° ° o| ° ° °
° ° ° W.W.W.
[ ] [ ]
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Counterexample analysis

Analysis of a lasso counterexample can be reduced to analysis
of a finite path counterexample.

Theorem

Abstract lasso ay ... aj(aj.1 - .. an)* corresponds to a concrete
lasso iff there is a concrete path corresponding to the abstract
path ai ... ai(aj1...an)™", where m = minj;1<j<n |h~'(&))].

ay — a5 as a—a—a—al—al—>a —>a
1 1 1 1 1 1 1 1 1 1
v v 4 Y v v Y Y v v
° ° o| ° ° °
° ° ° W.W.W.
[ ] [ ] i
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Abstraction refinement

o —>di | —> 4 ——>ajf1—>--
1 1 1

1 1
1 1
Y Y Y

Si1i—0 | SD\
\

Sg = h™'(a;)) N Succ™'(h~1(a,1)) bad states
S = h"(a)~ (SgU Sp) irrelevant states
Sp =S dead-end states
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Abstraction refinement

—> a1 —> 8 —> aj{1—> -
1 1 1

1 1
1 1
Y Y Y

Si1i—0 | SD\
\

Sg = h™'(a;)) N Succ™'(h~1(a,1)) bad states
S = h'(a)~ (SgU Sp) irrelevant states
Sp =S dead-end states

To eliminate the spurious counterexample, we need to refine
the abstraction such that no abstract state simultaneously
contains states from Sg and from Sp.
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Abstraction refinement

Consider abstract state (3<x<5) A (7<y<9) and Sg, S, Sp:
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Abstraction refinement

Consider abstract state (3<x<5) A (7<y<9) and Sg, S, Sp:
3 4|5 3 |45
7/B+1|1 7
?
8 D+1B or 9B+|D+| /
9/D+1|D 8/ D |B+I

m there could be more possible abstraction refinements
m we want the coarsest refinement (i.e. with the least number
of abstract states)
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Abstraction refinement

Consider abstract state (3<x<5) A (7<y<9) and Sg, S;, Sp:
3 4|5 3 |45
7/B+1|1 7
?
8 D+1B or 9B+|D+| /
9/D+1|D 8/ D |B+I

m there could be more possible abstraction refinements
m we want the coarsest refinement (i.e. with the least number
of abstract states)

The problem of finding the coarsest refinement is NP-hard.

— heuristics
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Coming next week

Abstract interpretation + static analysis

m Another standard approach.
m Applicable to large software projects, e.g. Linux kernel.
m What can one learn about a program without executing it?
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