IA159 Formal Verification Methods Abstraction

Jan Strejček

Faculty of Informatics Masaryk University

Focus and sources

Focus

- principle of abstraction
- exact abstractions and non-exact abstractions
- predicate abstraction
- CEGAR: counterexample-guided abstraction refinement

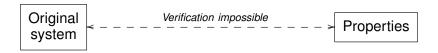
Sources

- Chapter 13 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith: *Model Checking (2nd edition)*, 2018.
- R. Pelánek: Reduction and Abstraction Techniques for Model Checking, PhD thesis, FI MU, 2006.
- E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith: Counterexample-guided Abstraction Refinement for Symbolic Model Checking, J. ACM 50(5), 2003.

Motivation

Abstraction is one of the most important techniques for reducing the state explosion problem.

[CGKPV18]



Motivation

Abstraction is one of the most important techniques for reducing the state explosion problem.

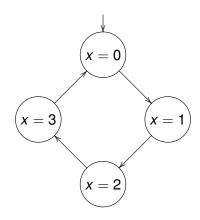
[CGKPV18]

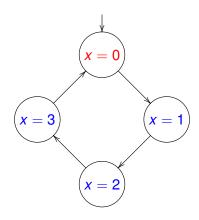
Motivation

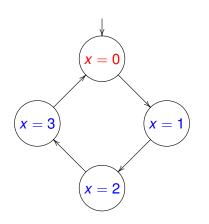
Abstraction is one of the most important techniques for reducing the state explosion problem.

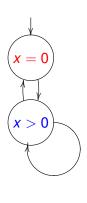
[CGKPV18]

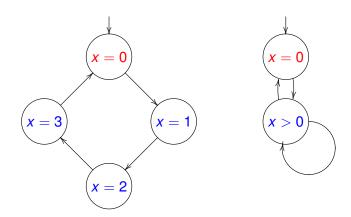
- infinite-state systems → finite systems











- \blacksquare equivalent with respect to F(x > 0)
- \blacksquare nonequivalent with respect to GF(x=0)

Simulation

Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

- lacksquare $\forall s_0 \in S_0 . \exists s_0' \in S_0' : (s_0, s_0') \in R$
- $\blacksquare (s,s') \in R \land s \rightarrow p \implies \exists p' \in S' : s' \rightarrow' p' \land (p,p') \in R$

Simulation

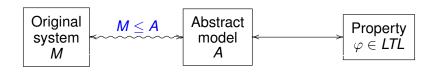
Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

- lacksquare $\forall s_0 \in S_0 \, . \, \exists s_0' \in S_0' \, : \, (s_0, s_0') \in R$
- $\blacksquare (s,s') \in R \land s \rightarrow p \implies \exists p' \in S' : s' \rightarrow' p' \land (p,p') \in R$

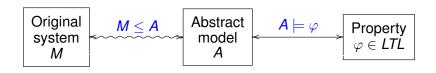
Lemma

If $M \le M'$, then for every path $\sigma = s_1 s_2 \dots$ of M starting in an initial state there is a run $\sigma' = s_1' s_2' \dots$ of M' starting in an initial state and satisfying

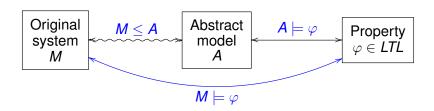
$$L(s_1)L(s_2)... = L'(s'_1)L'(s'_2)...$$



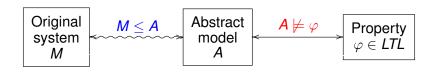
$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)



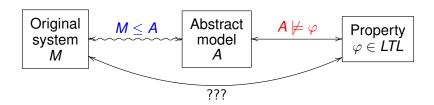
$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)



$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)

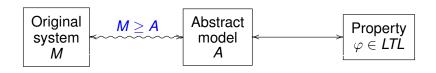


$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)

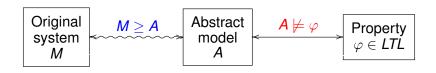


If A has a behaviour violating φ (i.e. $A \not\models \varphi$), then either

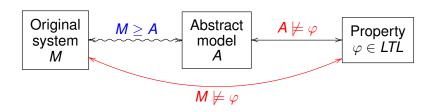
- **1** *M* has this behaviour as well (i.e. $M \not\models \varphi$), or
- 2 M does not have this behaviour, which is then called false positive or spurious counterexample $(M \models \varphi \text{ or } M \not\models \varphi \text{ due to another behaviour violating } \varphi).$



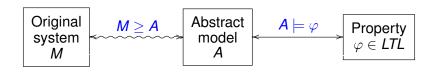
$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



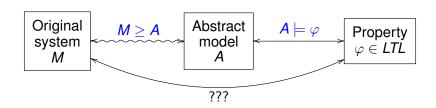
$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



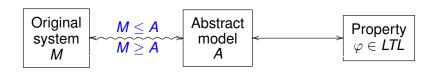
$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)

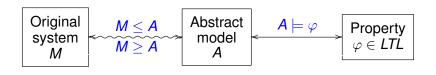


$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



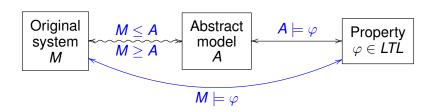
$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

Note:
$$A$$
 and M are bisimilar $\Longrightarrow M \le A \le M$ $\Leftarrow =$



$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

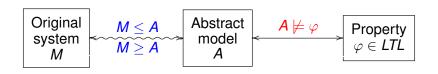
Note:
$$A$$
 and M are bisimilar $\Longrightarrow M \le A \le M$ $\Leftarrow =$



$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

Note: A and M are bisimilar
$$\Longrightarrow M \le A \le M$$

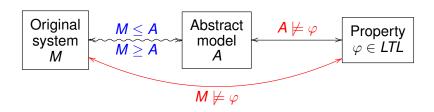
 $\Leftarrow = M$



$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

Note: A and M are bisimilar
$$\Longrightarrow M \le A \le M$$

 $\Leftarrow = M$



$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

Note: A and M are bisimilar
$$\implies M \le A \le M$$

 \Leftarrow



All these relations hold even for $\varphi \in CTL^*$.

Abstraction

Exact abstractions

Cone of influence (aka dead variables)

Idea

We eliminate the variables that do not influence the variables in the specification.

Cone of influence (aka dead variables)

- let *V* be the set of variables appearing in specification
- cone of influence *C* of *V* is the minimal set of variables such that
 - $V \subset C$
 - lacktriangleright if v occurs in a test affecting the control flow, then $v \in C$
 - if there is an assignment v := e for some $v \in C$, then all variables occurring in the expression e are also in C
- C can be computed by the source code analysis
- variables that are not in C can be eliminated from the code together with all commands they participate in

Cone of influence: example

```
S: v := getinput();
   x := getinput();
   y := 1;
   z := 1;
   while v > 0 do
         Z := Z * X:
         x := x - 1:
         V := V * V;
         v := v - 1:
   Z := Z * Y;
E:
```

Specification: F(pc = E)

Cone of influence: example

```
S: v := getinput();
   x := getinput();
   y := 1;
   z := 1;
   while v > 0 do
          Z := Z * X:
          x := x - 1:
          V := V * V;
          v := v - 1:
   Z := Z * Y;
E:
Specification: F(pc = E)
V = \emptyset, C = \{v\}
```

Cone of influence: example

```
S: v := getinput();
                                       S: v := getinput();
   x := getinput();
                                          skip:
                                          skip:
   v := 1:
   z := 1;
                                          skip:
   while v > 0 do
                                          while v > 0 do
                                                skip;
         Z := Z * X:
         x := x - 1:
                                                skip:
         V := V * V;
                                                 skip;
         v := v - 1:
                                                 v := v - 1:
                                          skip;
   Z := Z * Y;
E:
                                       E:
Specification: F(pc = E)
```

 $V = \emptyset$, $C = \{v\}$

Other exact abstractions

Symmetry reduction

in systems with more identical parallel components, their order is not important

Equivalent values

- if the set of behaviours starting in a state s is the same for values a, b of a variable v, then the two values can be replaced by one
- applicable to larger sets of values as well
- used in timed automata for timer values

Abstraction

Non-exact abstractions

Concept

We face two problems

- to find a suitable a set of abstract states and a mapping between the original states and the abstract ones
- 2 to compute a transition relation on abstract states

Finding abstract states

Abstract states are usually defined in one of the following ways:

for each variable x, we replace the original variable domain D_x by an abstract domain A_x and we define a total function $h_x: D_x \to A_x$

a state $s = (v_1, \dots, v_m) \in D_{x_1} \times \dots \times D_{x_m}$ given by values of all variables corresponds to an abstract state

$$\textit{h}(\textit{s}) = (\textit{h}_{\textit{x}_1}(\textit{v}_1), \ldots, \textit{h}_{\textit{x}_m}(\textit{v}_m)) \in \textit{A}_{\textit{x}_1} \times \ldots \times \textit{A}_{\textit{x}_m}$$

predicate abstraction - we choose a finite set $\Phi = \{\phi_1, \dots, \phi_n\}$ of predicates over the set of variables; we have several choices of abstract domains

The first approach can be seen as a special case the latter one.

Popular abstract domains for integers

Sign abstraction

Parity abstraction

- $A_x = \{a_e, a_o\}$
- good for verification of properties related to the last bit of binary representation

Popular abstract domains for integers

Congruence modulo an integer

- $h_x(v) = v \pmod{m}$ for some m
- nice properties:

```
((x \mod m) + (y \mod m)) \mod m = x + y \pmod m

((x \mod m) - (y \mod m)) \mod m = x - y \pmod m

((x \mod m) \cdot (y \mod m)) \mod m = x \cdot y \pmod m
```

Representation by logarithm

- $h_{x}(v) = \lceil \log_{2}(v+1) \rceil$
- the number of bits needed for representation of *v*
- good for verification of properties related to overflow problems

Popular abstract domains for integers

Single bit abstraction

- $A_x = \{0, 1\}$
- $h_x(v) =$ the *i*-th bit of v for a fixed i

Single value abstraction

- $A_x = \{0, 1\}$

...and others

Predicate abstraction

Let $\Phi = {\phi_1, \dots, \phi_n}$ be a set of predicates over the set of variables.

Abstract domain $\{0, 1\}^n$

■ a state $s = (v_1, ..., v_m)$ corresponds to an abstract state given by a vector of truth values of $\{\phi_1, ..., \phi_n\}$, i.e.

$$h(s) = (\phi_1(v_1, \dots, v_m), \dots, \phi_n(v_1, \dots, v_m)) \in \{0, 1\}^n$$

■ example:
$$\phi_1 = (x_1 > 3)$$
 $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$ $s = (5,7)$ $h(s) = (1,1,0)$

Abstract structures

Assume that

- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- we have an abstract domain A and a mapping $h: S \rightarrow A$

To define abstract model $(A, \rightarrow', A_0, L_A)$, we set

- $lacksquare A_0 = \{h(s_0) \mid s_0 \in S_0\}$
- $L_A: A \rightarrow 2^{AP}$ has be correctly defined, i.e.
 - for abstraction based on variable domains, validity of atomic propositions is determined by abstract states in $A_{x_1} \times ... \times A_{x_m}$
 - for predicate abstraction, validity of atomic propositions is determined by abstraction predicates $\{\phi_1, \dots, \phi_n\}$ (AP is typically a subset of it)

and L_A has to agree with L, i.e. $L(s) = L_A(h(s))$

Abstract structures

Assume that

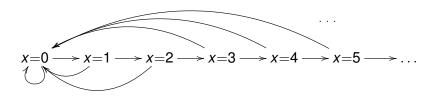
- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- lacktriangle we have an abstract domain A and a mapping $h: S \rightarrow A$

We define two abstract models:

$$M_{may} = (A, \rightarrow_{may}, A_0, L_A)$$
, where

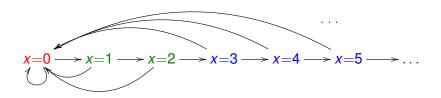
■ $a_1 \rightarrow_{may} a_2$ iff there exist $s_1, s_2 \in S$ such that $h(s_1) = a_1, h(s_2) = a_2$, and $s_1 \rightarrow s_2$

Example M_{may}

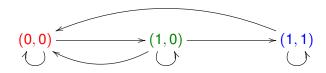


 M_{may} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.

Example M_{may}



 M_{may} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.



Abstract structures

Assume that

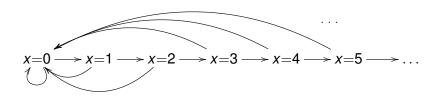
- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- we have an abstract domain A and a mapping $h: S \rightarrow A$

We define two abstract models:

$$M_{must} = (A, \rightarrow_{must}, A_0, L_A)$$
, where

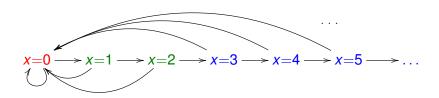
■ $a_1 \rightarrow_{must} a_2$ iff for each $s_1 \in S$ satisfying $h(s_1) = a_1$ there exists $s_2 \in S$ such that $h(s_2) = a_2$ and $s_1 \rightarrow s_2$

Example *M*_{must}

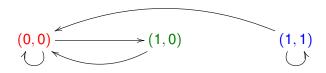


 M_{must} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.

Example *M*_{must}



 M_{must} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.



Relations between M, M_{must} , and M_{may}

Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds:

$$M_{must} \leq M \leq M_{may}$$

Relations between M, M_{must} , and M_{may}

Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds:

$$M_{must} \leq M \leq M_{may}$$

- computing M_{must} or M_{may} requires constructing M first (recall that M can be very large or even infinite)
- we rather compute an under-approximation M'_{must} of M_{must} or an over-approximation M'_{may} of M_{may} directly from the implicit representation of M
- it holds that $M'_{must} \leq M_{must} \leq M \leq M_{may} \leq M'_{may}$

Abstraction

Abstraction in practice

Predicate abstraction: abstracting sets of states

Abstract domain $\{0,1\}^n$ is not used in practice (too many transitions) \implies it is better to assign a single abstract state to a set of original states.

Abstract domain $2^{\{0,1\}^n}$

- let $\vec{b} = \langle b_1, \dots, b_n \rangle$ be a vector of $b_i \in \{0, 1\}$
- we set $[\vec{b}, \Phi] = b_1 \cdot \phi_1 \wedge \ldots \wedge b_n \cdot \phi_n$, where $0 \cdot \phi_i = \neg \phi_i$ and $1 \cdot \phi_i = \phi_i$
- let *X* denotes the set of original states
- $h(X) = \{\vec{b} \in \{0,1\}^n \mid \exists s \in X : s \models [\vec{b}, \Phi]\}$
- example: $\phi_1 = (x_1 > 3)$ $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$ $X = \{(5,7), (4,5), (2,9)\}$ $h(X) = \{(1,1,0), (0,1,0)\}$
- nice theoretical properties
- not used in practice (this abstract domain grows too fast)

Predicate abstraction: abstracting sets of states

Abstract domain $\{0, 1, *\}^n$ (predicate-cartesian abstraction)

- let $\vec{b} = \langle b_1, \dots, b_n \rangle$ be a vector of $b_i \in \{0, 1, *\}$
- we set $[\vec{b}, \Phi] = b_1 \cdot \phi_1 \wedge \ldots \wedge b_n \cdot \phi_n$, where $0 \cdot \phi_i = \neg \phi_i$, $1 \cdot \phi_i = \phi_i$, and $* \cdot \phi_i = \top$
- $h(X) = \min\{\vec{b} \in \{0, 1, *\}^n \mid \forall s \in X : s \models [\vec{b}, \Phi]\},$ where min means "the most specific"
- example: $\phi_1 = (x_1 > 3)$ $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$ $X = \{(5,7), (4,5), (2,9)\}$ h(X) = (*,1,0)
- this one is used in practice

Guarded command language

Syntax

- let *V* be a finite set of integer variables
- expressions over V use standard binary operations $(+,-,\cdot,\ldots)$ and boolean relations (=,<,>)
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, \dots, t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $\mathbf{a}_i \in Act$
 - \blacksquare g_i is a boolean expression over V
 - $lue{u}_i$ is a sequence of assignments over V

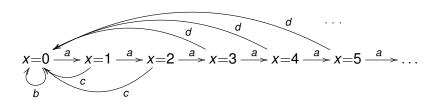
Guarded command language

Syntax

- let *V* be a finite set of integer variables
- expressions over V use standard binary operations $(+, -, \cdot, \ldots)$ and boolean relations (=, <, >)
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, ..., t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $a_i \in Act$
 - \blacksquare g_i is a boolean expression over V
 - \mathbf{u}_i is a sequence of assignments over V

Semantics

- *M* defines a labelled transition system where
 - states are valuations of variables $S = 2^{V \to \mathbb{Z}}$
 - initial state is the zero valuation $s_0(v) = 0$ for all $v \in V$
 - $lacksquare s \stackrel{a_i}{
 ightarrow} s'$ whenever $s \models g_i$ and $s' = u_i(s)$



implicit description in guarded command language:

$$V = \{x\}$$

 $(a, \ \top, \qquad x := x + 1)$
 $(b, \ \neg(x > 0), \qquad x := 0)$
 $(c, \ (x > 0) \land (x \le 2), \ x := 0)$
 $(d, \ (x > 2), \qquad x := 0)$

Abstraction in practice

- we use predicate abstraction with domain $\{0, 1, *\}^n$
- **given** a formula φ with free variables from V, we set

$$pre(a_i, \varphi) = (g_i \implies \varphi[\vec{x}/u_i(\vec{x})])$$

■ we use a sound decision procedure is_valid, i.e.

$$\mathit{is_valid}(\varphi) = \top \implies \varphi \text{ is a tautology}$$

(the procedure *is_valid* does not have to be complete)

Abstraction in practice

for every abstract state $\vec{b} \in \{0, 1, *\}^n$ and for every transition $t_i = (a_i, g_i, u_i)$, we compute an over-approximation of a may-successor of \vec{b} under t_i as

- if $is_valid([\vec{b}, \Phi] \implies \neg g_i)$ then there is no successor
- otherwise, the successor \vec{b}' is given by

$$b'_j = \begin{cases} 1 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \phi_j)) \\ 0 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$b_j' = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_i, \phi_j)) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0)\stackrel{a}{\rightarrow}_{may'}(\ ,\)$$

$$b_j' = \begin{cases} 1 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \phi_j)) \\ 0 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0)\stackrel{a}{\rightarrow}_{may'}(1,)$$

$$\blacksquare$$
 $(x>0) \land (x\leq 2) \implies (\top \implies (x+1>0))$ is true

$$b_j' = \begin{cases} 1 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \phi_j)) \\ 0 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0)\stackrel{a}{
ightarrow}_{may'}(1,*)$$

- \blacksquare $(x>0) \land (x\leq 2) \implies (\top \implies (x+1>0))$ is true
- \blacksquare $(x>0) \land (x\leq 2) \implies (\top \implies (x+1>2))$ is not true
- \blacksquare $(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 \le 2))$ is not true

Abstraction in practice

- for every transition, we compute successors of all abstract states
- based on the successors, we transform the original implicit representation of a system into a boolean program
- boolean program is an implicit representation of an over-approximation of M_{may}
- it uses only boolean variables \vec{b} representing the validity of abstraction predicates Φ
- boolean program can be used as an input for a suitable model checker (of finite-state systems)

$$V = \{x\}$$

 $(a, \ \top, \qquad x := x + 1)$
 $(b, \ \neg(x > 0), \qquad x := 0)$
 $(c, \ (x > 0) \land (x \le 2), \ x := 0)$
 $(d, \ (x > 2), \qquad x := 0)$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we get the boolean program (defining an over-approximation) of M_{may}

Example of a real NQC code and its absraction

```
int x = 0:
                                 bool b = false;
 while (true) {
                                while (true) {
   if (LIGHT > LIGHT THRESHOLD) {
                                 if (*) {
     PlaySound (SOUND_CLICK);
     Wait (30);
     x = x + 1;
                                    b = b? true: *:
   } else {
                                   } else {
     if (x > 2) {
                                     if (b) {
     PlaySound(SOUND_UP);
      ClearTimer(0):
      brick = LONG;
                                      brick = LONG;
     } else if (x > 0) {
                                     } else if (b ? true : *) {
      PlaySound (SOUND_DOUBLE_BEEP);
      ClearTimer(0);
      brick = SHORT:
                                      brick = SHORT:
     x = 0;
                                    b = false;
```

Abstraction

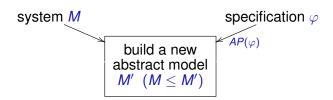
CEGAR: counterexample-guided abstraction refinement

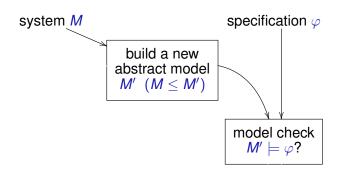
Motivation

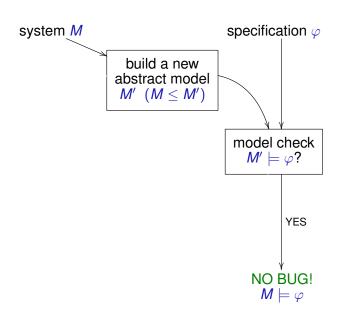
- it is hard to find a small and valuable abstraction
- abstraction predicates are usually provided by a user
- CEGAR tries to find a suitable abstraction automatically
- implemented in SLAM, BLAST, Static Driver Verifier (SDV), and many others
- incomplete method, but very successfull in practice

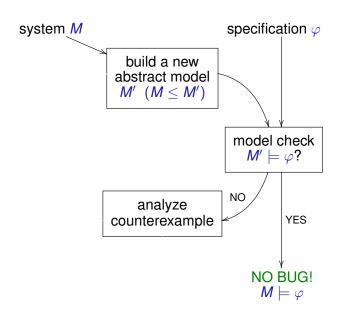
system M

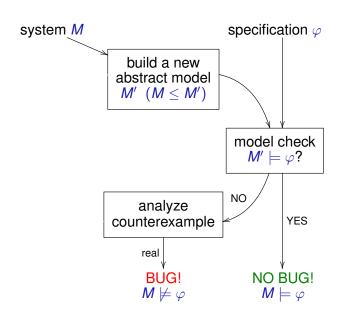
specification φ



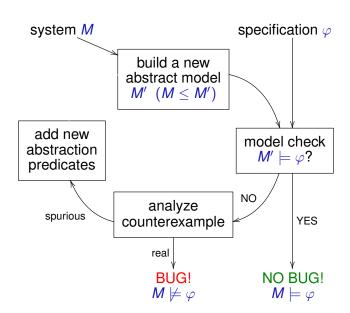




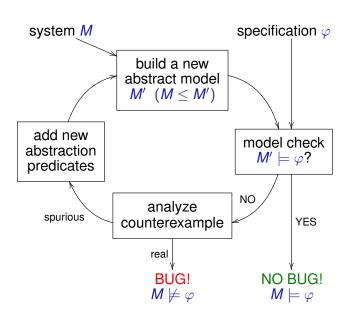




Principle



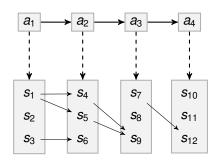
Principle



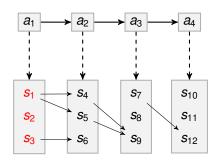
Notes

- added abstraction predicates ensure that the new abstract model M' does not have the behaviour corresponding to the spurious counterexample of the previous M'
- the analysis of an abstract counterexample and finding new abstract predicates are nontrivial tasks
- the method is sound but incomplete (the algorithm can run in the cycle forever)

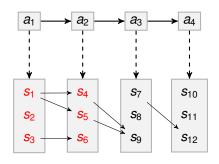
$$\begin{split} S &:= h^{-1}(a_1) \cap \mathit{Init} \\ j &:= 1 \\ \text{while } S \neq \emptyset \ \land \ j < n \\ j &:= j + 1 \\ S' &:= S \\ S &:= \mathit{Succ}(S) \cap h^{-1}(a_j) \\ \text{if } S \neq \emptyset \text{ then return real bug} \\ \text{else return } j, S' \ \ //spurious \end{split}$$



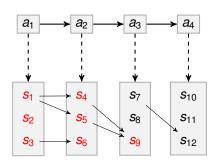
$$\begin{split} S &:= h^{-1}(a_1) \cap \mathit{Init} \\ j &:= 1 \\ \text{while } S \neq \emptyset \ \land \ j < n \\ j &:= j + 1 \\ S' &:= S \\ S &:= \mathit{Succ}(S) \cap h^{-1}(a_j) \\ \text{if } S \neq \emptyset \text{ then return real bug} \\ \text{else return } j, S' \ \ // \text{spurious} \end{split}$$



$$\begin{split} S &:= h^{-1}(a_1) \cap \mathit{Init} \\ j &:= 1 \\ \text{while } S \neq \emptyset \ \land \ j < n \\ j &:= j + 1 \\ S' &:= S \\ S &:= \mathit{Succ}(S) \cap h^{-1}(a_j) \\ \text{if } S \neq \emptyset \text{ then return real bug} \\ \text{else return } j, S' \ // \text{spurious} \end{split}$$

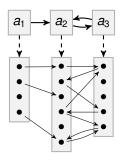


$$\begin{split} \mathcal{S} &:= h^{-1}(a_1) \cap \mathit{Init} \\ j &:= 1 \\ \text{while } \mathcal{S} \neq \emptyset \ \land \ j < n \\ j &:= j+1 \\ \mathcal{S}' &:= \mathcal{S} \\ \mathcal{S} &:= \mathit{Succ}(\mathcal{S}) \cap h^{-1}(a_j) \\ \text{if } \mathcal{S} \neq \emptyset \text{ then return real bug} \\ \text{else return } j, \mathcal{S}' \ \ /\!\! / \text{spurious} \end{split}$$

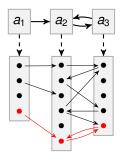


- output: $j = 4, S' = \{s_9\}$
- we need a predicate separating $\{s_9\}$ and $\{s_7\}$ to remove this spurious counterexample

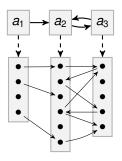
Case 2 Lasso counterexample



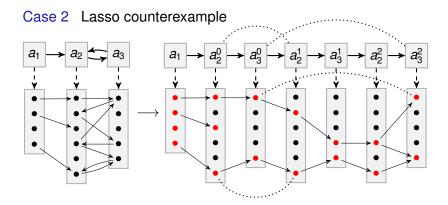
Case 2 Lasso counterexample

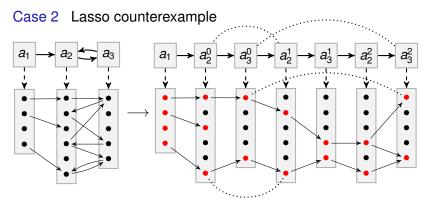


Case 2 Lasso counterexample



Case 2 Lasso counterexample a_1 a_2 a_1





- an abstract loop may correspond to loops of different size and starting at different stages of the unwinding
- the unwinding eventually becomes periodic, the size of the period is the least common multiple of the size of individual loops

Analysis of a lasso counterexample can be reduced to analysis of a finite path counterexample.

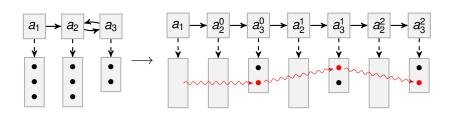
Theorem

Abstract lasso $a_1 ldots a_i(a_{i+1} ldots a_n)^\omega$ corresponds to a concrete lasso iff there is a concrete path corresponding to the abstract path $a_1 ldots a_i(a_{i+1} ldots a_n)^{m+1}$, where $m = \min_{i+1 \le j \le n} |h^{-1}(a_j)|$.

Analysis of a lasso counterexample can be reduced to analysis of a finite path counterexample.

Theorem

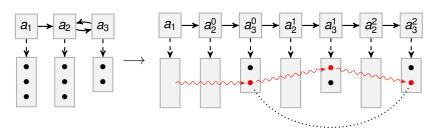
Abstract lasso $a_1 ldots a_i(a_{i+1} ldots a_n)^\omega$ corresponds to a concrete lasso iff there is a concrete path corresponding to the abstract path $a_1 ldots a_i(a_{i+1} ldots a_n)^{m+1}$, where $m = \min_{i+1 \le j \le n} |h^{-1}(a_j)|$.

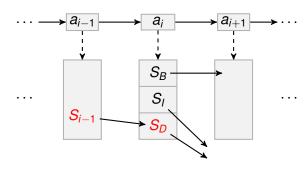


Analysis of a lasso counterexample can be reduced to analysis of a finite path counterexample.

Theorem

Abstract lasso $a_1 ldots a_i(a_{i+1} ldots a_n)^\omega$ corresponds to a concrete lasso iff there is a concrete path corresponding to the abstract path $a_1 ldots a_i(a_{i+1} ldots a_n)^{m+1}$, where $m = \min_{i+1 \le j \le n} |h^{-1}(a_j)|$.

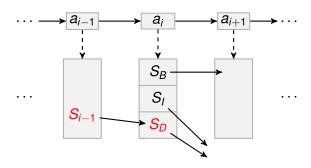




$$S_B = h^{-1}(a_i) \cap Succ^{-1}(h^{-1}(a_{i+1}))$$

 $S_I = h^{-1}(a_i) \setminus (S_B \cup S_D)$
 $S_D = S_i$

bad states irrelevant states dead-end states



$$S_B = h^{-1}(a_i) \cap Succ^{-1}(h^{-1}(a_{i+1}))$$
 bad $S_I = h^{-1}(a_i) \setminus (S_B \cup S_D)$ irrelated $S_D = S_i$

bad states irrelevant states dead-end states

To eliminate the spurious counterexample, we need to refine the abstraction such that no abstract state simultaneously contains states from S_B and from S_D .

Consider abstract state $(3 \le x \le 5) \land (7 \le y \le 9)$ and S_B, S_I, S_D :

	3	4	5
7	В		Τ
8	D	ı	В
9	ı	D	D

Consider abstract state $(3 \le x \le 5) \land (7 \le y \le 9)$ and S_B, S_I, S_D :

- there could be more possible abstraction refinements
- we want the coarsest refinement (i.e. with the least number of abstract states)

Consider abstract state $(3 \le x \le 5) \land (7 \le y \le 9)$ and S_B, S_I, S_D :

- there could be more possible abstraction refinements
- we want the coarsest refinement (i.e. with the least number of abstract states)

Theorem

The problem of finding the coarsest refinement is NP-hard.

→ heuristics

Coming next week

Abstract interpretation + static analysis

- Another standard approach.
- Applicable to large software projects, e.g. Linux kernel.
- What can one learn about a program without executing it?