IA159 Formal Verification Methods

Static Analysis and Abstract Interpretation

Jan StrejCek

Faculty of Informatics
Masaryk University

Focus and sources

Focus
m lattices and fixpoints
m static analysis
m abstract interpretation

Source

m P. Cousot and R. Cousot: Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints, POPL 1977.

Special thanks to Marek Trtik for providing me his slides.

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 2/73

Motivation for static analysis

Floyd’s conjecture

To prove static properties of program it is often sufficient to
consider sets of states associated with each program point.

Examples

m to check safety properties (reachability of an error state),
one only needs to know reachable states

m for many optimizations during compilation, static
information is sufficient (e.g. detection of live variables,
available expressions, etc.)

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 3/73

Motivation for static analysis

Operational semantics
m defines how a state changes along program execution
m it is concerned about computational sequences
m computes a function relating input and output states

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 4/73

Motivation for static analysis

Operational semantics
m defines how a state changes along program execution
m it is concerned about computational sequences
m computes a function relating input and output states

Static semantic
m observes which states pass which program location
m it is concerned about observed sets of states at locations

m computes a function assigning set of states to each
program location

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 5/73

Motivation for abstract interpretation

m [t is usually impossible to compute the sets of reachable
states precisely

m we can compute them on some level of abstraction

m for example, instead with precise numbers we work only
with abstract values {+,0, —}

m abstraction brings some level of imprecission, for example,
15 — 17 is seen as (+) — (+), which can be +,0, —

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 6/73

Preliminaries

Lattices and fixpoints

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 7173

Introduction to lattices

Let (L, <) be a partially ordered set and M C L.
m x € Lis an upper bound of M iff y < x holds forall y ¢ M
m x € Lis alower bound of Miff x < y holds forall y ¢ M
m supremum of M is the least upper bound of M
m infimum of M is the greatest lower bound of M

m sup(M) and inf(M) denote supremum and infimum of M,
respectively

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 8/73

Introduction to lattices

Let (L, <) be a partially ordered set and M C L.
m x € Lis an upper bound of M iff y < x holds forall y ¢ M
m x € Lis alower bound of Miff x < y holds forall y ¢ M
m supremum of M is the least upper bound of M
m infimum of M is the greatest lower bound of M

m sup(M) and inf(M) denote supremum and infimum of M,
respectively

Definition (Complete lattice)

An ordered set (L, <) is called complete lattice, if for each
M C L there exist both sup(M) and inf(M).

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 9/73

Introduction to lattices

SRR
L

Which of the partially ordered sets are complete lattices?

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 10/73

Introduction to lattices

SRR
L

Which of the partially ordered sets are complete lattices?
(All of the top row and the left of the bottom row.)

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 11/73

Introduction to lattices

For every set S, the powerset P(S) with the partial order C is
a complete lattice.

For example, (P({0,1,2,3}), C) looks like:

{0,1,2,3}

P

(0,1,2) {0,1,3) (02,3} (1.23)

N

{0,1} {0,2} {0,3} {12} {1,3} {2.3}

{0} {1} {2} (3}

L P

{}

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 12/73

Introduction to lattices

Let (L, <) be a complete lattice.
m the greatest element T = sup(L) is called one of L
m the least element L = inf(L) of L is called zero of L

m the lattice is of finite height if there exists h € N such that
the length of each strictly increasing chain of elements of L
is less than or equal to h

m minimal such his called lattice height

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 13/73

Fixpoint and Knaster-Tarski fixpoint theorem

Let (L, <) be a complete lattice.
m a function f : L — L is monotone if for all x, y € L it holds

x<y = fx)<fy)

m x € Lis called a fixpoint of fif f(x) = x

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 14/73

Fixpoint and Knaster-Tarski fixpoint theorem

Let (L, <) be a complete lattice.
m a function f : L — L is monotone if for all x, y € L it holds

x<y = fx)<fy)

m x € Lis called a fixpoint of fif f(x) = x

Theorem (Knaster-Tarski)

Let (L, <) be a complete lattice and f : L — L be a monotone

function. Then the set of fixpoints of f with partial order < is
also a complete lattice.

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 15/73

Kleene fixpoint theorem

Theorem (Kleene)

Let (L, <) be a complete lattice of finite heightand f : L — L a
monotone function. Then there exists n € N such that for all
k € N jtis (L) = f"k(L) and (L) is the least fixpoint of f.

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 16/73

Kleene fixpoint theorem

Theorem (Kleene)

Let (L, <) be a complete lattice of finite heightand f : L — L a
monotone function. Then there exists n € N such that for all
k € N jtis (L) = f"k(L) and (L) is the least fixpoint of f.

Proof: Since L is the least element of L, we have L < f(L).
Since f is monotone, them f(.L) < f(f(_L)) and by induction
fi(L) < f+1(L). Thus, we have a nondecreasing chain

1 < f(L)<fP(L)<....Since Lis assumed to be of a finite
height, there must exist n € N such that (L) = f"*1(L1). To
show that f7(_L) is a least fixpoint of f, let us assume x is
another fixpoint of f. Since L < x and f(L) < f(x) = x from
monotonicity of f, we get by induction (L) < x. O

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 17/73

Fixpoint computation

Algorithm for the least fixpoint computation

X := L;
do { t := x; x := f(x); } while (x # t);
If we start with x := T;, we get the greatest fixpoint.

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 18/73

Product lattice

Lemma (Product lattice)

Let(Ly,<4),...,(Ln, <pn) be complete lattices and order < on
Ly x ... x Ly is defined as (x1,...,%n) < (V1,...,¥n) iff

XX<4yY1 A ... N Xn<np)ln

Then (L1 x ... x Lp, <) is a complete lattice.

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 19/73

Fixpoints on product lattices

Let (L, <) be a complete lattice and (L",C) be the
corresponding product lattice. Further, let Fy,... . Fp: L" — L
be monotone functions, i.e. (x1,...,Xn) C (¥1,...,¥n) implies
Fi(x1,...,Xn) < Fi(y1,...,¥n) foreach 1 <i < n. Then the
function F : L" — L" defined as

F(X‘],,Xn):(F‘](X‘],’Xn),,Fn(X1,7Xn))

is @ monotone function in (L", C). Further, the least fixpoint of F
is the least solution of the system

X1 = F1(X1,...,Xn)

Xn = Fn(X‘],...,Xn)

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 20/73

Fixpoint comutation of product lattices

Naive algorithm for fixpoint computation

Ly
f

X1

o { f:= 5% X :=F(X); } while (X#£D);

Q.

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 21/73

Fixpoint comutation of product lattices
Naive algorithm for fixpoint computation

Ly
f

X1

do { f := X; X := F(X); } while (X#10;

Better algorithm for fixpoint computation (faster convergence)
Xy := 1L; ... Xp := L;
do {

i := X9; ... th 1= Xpn;

Xq F1(X1,...,Xn);

Xn = Fp(X1,...,Xn);
} while (X1§£t1\/...\/Xn§étn);

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 22/73

Moving to abstraction

Abstract interpretation

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 23/73

Abstract interpretation

m an abstract interpretation of a program is kind of a static
semantic, where original data domains are replaced with
abstract ones

m abstract data domain must constitute a complete lattice

m semantic of program instructions have to be changed as
well: we define unique monotone function for each
program instruction

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 24/73

Abstract interpretation: Definition

Definition (Abstract interpretation)

An abstract interpretation / of a program P with n program
locations is a tuple

I= (Lo, <, T,L,F)

where (L, <) is complete lattice, T and _L are one and zero of
(L, <), o is equal either to join or meet operation, and F is a
monotone function on product lattice (L", <) defining the
interpretation of basic instructions.

The meet operator is defined as ao b = inf({a, b}), while
the join operator is defined as ao b = sup({a, b}).

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 25/73

Abstract interpretation: Definition

Definition (Abstract interpretation)

An abstract interpretation / of a program P with n program
locations is a tuple

I= (Lo, <, T,L,F)

where (L, <) is complete lattice, T and _L are one and zero of
(L, <), o is equal either to join or meet operation, and F is a
monotone function on product lattice (L", <) defining the
interpretation of basic instructions.

The meet operator is defined as ao b = inf({a, b}), while
the join operator is defined as ao b = sup({a, b}).

Typically, F(X) = (F1(X), ..., Fa(X)), where each F; : L" — L
defines effect of i-th program instruction.

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 26/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 27/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

var x,Y,zZ,a,b;

z := atb;

y = axb;

while (y > a+b) {
a := at+l;
X := atb;

}

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 28/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}

var xX,Y,zZ,a,b;

z := atb;

y = axb;

while (y > a+b) {
a := atl;
X := atb;

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 29/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))

var xX,Y,zZ,a,b;

z := atb;

y = axb;

while (y > a+b) {
a := atl;
X := atb;

}

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 30/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))
Product lattice: (P°(AExprs), <).

var xX,Y,zZ,a,b; Xq
z := atb; Xo
y = axb; X3
while (y > a+b) { Xy
a := at+l; X5
X = a+tb; X6

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 31/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))
Product lattice: (P8(AExprs), <).

var x,yY,z,a,b; xy=Fi(X)=10
z 1= a+b; Xo = Fp(X) = (xq U{a+b})\ 0
y := ax*b; X3 = F3(X) = (X2 U {axb}) \ {y>a+b}
while (y > a+b) { X3= F(X)=(x3NXg) U{a+tb,y>a+b}
a := a+l; x5 = F5(X) = (x4 U {a+1}) \ AExprs
X = atb; X = FG()?) (xs U{a+b}) \ 0

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 32/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))
Product lattice: (P8(AExprs), <).

var x,yY,z,a,b; xy=Fi(X)=10
z 1= a+b; Xo = Fp(X) = (xq U{a+b})\ 0
y := ax*b; x3 = F3(X) = (xo U {axb}) \ {y>a+b}
while (y > a+b) { X3= F(X)=(x3NXg) U{a+tb,y>a+b}
a := a+l; x5 = F5(X) = (x4 U {a+1}) \ AExprs
X = atb; X = FG()?) (xs U{a+b}) \ 0

}

Direction: Forward

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 33/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))
Product lattice: (P8(AExprs), <).

var x,yY,z,a,b; xy=Fi(X)=10
z 1= a+b; Xo = Fp(X) = (xq U{a+b})\ 0
y := ax*b; X3 = F3(X) = (X2 U {axb}) \ {y>a+b}
while (y > a+b) { X3= F4(X)=(x3Nxg)U{a+tb,y>a+b}
a := a+l; x5 = F5(X) = (x4 U {a+1}) \ AExprs
X = atb; X = FG()?) (xs U{a+b}) \ 0

}

Analysis: Must

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 34/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))
Product lattice: (P8(AExprs), <).

var x,yY,z,a,b; xy=Fi(X)=10
z 1= a+b; Xo = Fp(X) = (xq U{a+b})\ 0
y := ax*b; X3 = F3(X) = (X2 U {axb}) \ {y>a+b}
while (y > a+b) { X3= F(X)=(x3NXg) U{a+tb,y>a+b}
a := a+l; x5 = F5(X) = (x4 U {a+1}) \ AExprs
X = atb; X = FG()?) (xs U{a+b}) \ 0

}

Are all functions F; monotone?

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 35/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))
Product lattice: (P8(AExprs), <).

var x,yY,z,a,b; xy=Fi(X)=10
z 1= a+b; Xo = Fp(X) = (xq U{a+b})\ 0
y := ax*b; X3 = F3(X) = (X2 U {axb}) \ {y>a+b}
while (y > a+b) { X3= F4(X)=(x3Nxg)U{a+tb,y>a+b}
a := a+l; x5 = F5(X) = (x4 U {a+1}) \ AExprs
X = atb; X = FG()?) (xs U{a+b}) \ 0

}

Proof F4: Let X,y € P8(AExprs) such that X < y. .

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 36/73

Example: Available expressions

A nontrivial expression in a program is available at a program
location if its current value has already been computed earlier
in the execution.

Available expressions: AExprs = {a+b,axb,y>a+b,a+1}
A.l: | = (P(AExprs),n, C, AExprs, 0, A\X.(Fy(X), ..., Fs(X)))
Product lattice: (P8(AExprs), <).

a := a+tl; X5 = F5
X = atb; Xe = Fg

x4 U {a+1}) ~\ AExprs
x5 U {a+b}) 0

var x,yY,z,a,b; xy=Fi(X)=10
z 1= a+b; Xo = Fp(X) = (xq U{a+b})\ 0
y := ax*b; X3 = F3(X) = (X2 U {axb}) \ {y>a+b}
while (y > a+b) { Xx4= F4(X)=
(X) =
() =

(
(
(3N xg) U{a+b,y>a+b}
(
(

}

Then x3 C y3 and xg C ¥, which implies (x3 N xg) C (Y3 N Ye)- - -

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 37/73

Example: Available expressions

After fixpoint computation ...

var x,yY,zZ,a,b; X1 =1
z := a+tb; X2:{a+b}
y := axb; X3 = {a+b,axb}
while (y > a+b) { X4 ={atb,y>a+b}
a := a+l; X5 =0
X := a+tb; Xg = {a+b}
}

Solution: Minimal

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 38/73

Example: Available expressions

After fixpoint computation ...

var x,yY,zZ,a,b; X1 =1
z := atb; Xo = {a+b}
y := axb; X3 = {a+b,axb}
while (y > a+b) { x4={a+b,y>a+b}
a := at+l; X5:(Z)
X = atb; Xg = {a+tb}
}

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 39/73

Example: Live variables

A variable is live at a program point if its current value may be
read during the remaining execution of the program.

var xX,VY,Zz;

X := 1input;
while (x>1) {
y 1= x/2;
if (y>3)

X 1= X-Y;
z = x—4;
if (z>0)

X 1= x/2;
z = z-1; }

output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 40/73

Example: Live variables

A variable is live at a program point if its current value may be
read during the remaining execution of the program.

Vars = {x,y, z} and
| = (P(Vars), U, C, Vars, 0, \X.(F{(X), ..., F11(X)))

var xX,VY,Zz;

X := 1input;
while (x>1) {
y 1= x/2;
if (y>3)

X 1= X-Y;
z = x—4;
if (z>0)

X 1= x/2;
z = z-1; }

output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 41/73

Example: Live variables

A variable is live at a program point if its current value may be
read during the remaining execution of the program.

Product lattice is (P! (Vars), <).

Xq :XZ\{x,y,z} var X,VY,Zy

Xo = X3\ {x} x := input;
X3:(X4UX11)U{X} while (x>1) {
X = (%5~ {y}) U{x} y = x/2;
X5 = (Xg Ux7)U{y} if (y>3)

Xe = (X7 ~{x})U{x, v} X 1= X-y;
x7 = (xg ~{z}) U{x} z 1= x—4;
Xg = (Xg U Xq9)U{z} if (z>0)

Xg = (x10 ™ {x}) U {x} x 1= x/2;
x10=(x3~{z})U{z} z = z-1; }
x11 = {x} output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 42/73

Example: Live variables

A variable is live at a program point if its current value may be
read during the remaining execution of the program.

Direction: Backward

Xq :XZ\{x,y,z} var X,VY,Zy

Xo = X3\ {x} x := input;
X3:(X4UX11)U{X} while (x>1) {
x4 = (x5 ~ {y}) U{x} y 1= x/2;
X5 = (Xg Ux7)U{y} if (y>3)

Xe = (X7 ~{x})U{x, v} X 1= X-y;
x7 = (xg ~{z}) U{x} z 1= x—4;
Xg = (Xg U Xq9)U{z} if (z>0)

Xg = (x10 ™ {x}) U {x} x 1= x/2;
x10=(x3~{z})U{z} z = z-1; }
x11 = {x} output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 43/73

Example: Live variables

A variable is live at a program point if its current value may be
read during the remaining execution of the program.

Analysis: May

Xq :XZ\{x,y,z} var X,VY,Zy

Xo = X3\ {x} x := input;
X3:(X4UX11)U{X} while (x>1) {
X = (%5~ {y}) U{x} y = x/2;
X5 = (Xg Ux7)U{y} if (y>3)

Xe = (X7 ~{x})U{x, v} X 1= X-y;
x7 = (xg ~{z}) U{x} z 1= x—4;
Xg = (Xg U Xq9)U{z} if (z>0)

Xg = (x10 ™ {x}) U {x} x 1= x/2;
x10=(x3~{z})U{z} z = z-1; }
x11 = {x} output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 44/73

Example: Live variables

A variable is live at a program point if its current value may be
read during the remaining execution of the program.

Solution: Minimal

X1:@ X1:X2\{x,y,z} var X,V,z;

Xo =10 Xo = X3\ {x} x := input;
X3:{X} X3:(X4UX11)U{X} while (x>1) {
x4 = {x} X = (%5~ {y}) U{x} y = x/2;
xs ={x,v} Xs=(XgUX7)U{y} if (y>3)

Xe ={x,v} Xe=(x7~{x})U{x, v} X 1= X-y;
x7 = {x} x7 = (xg ~{z}) U{x} z 1= x—4;
Xg={x,z} Xg=(XgUXq09)U{z} if (z>0)

Xg ={x,2z} Xg= (X0~ {x})U{x} x 1= x/2;
xi0o=A{x,z} Xx10=(s~{z})u{z} z = z-1; }
x11 = {x} X114 = {x} output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 45/73

Example: Live variables

A variable is live at a program point if its current value may be
read during the remaining execution of the program.

Variables vy, z are never live together.

X1:@ X1:X2\{x,y,z} var X,V,z;

Xo =10 Xo = X3\ {x} x := input;
X3:{X} X3:(X4UX11)U{X} while (x>1) {
x4 = {x} X = (%5~ {y}) U{x} y = x/2;
xs ={x,v} Xs=(XgUX7)U{y} if (y>3)

Xe ={x,v} Xe=(x7~{x})U{x, v} X 1= X-y;
x7 = {x} x7 = (xg ~{z}) U{x} z 1= x—4;
Xg={x,z} Xg=(XgUXq09)U{z} if (z>0)

Xg ={x,2z} Xg= (X0~ {x})U{x} x 1= x/2;
xi0o=A{x,z} Xx10=(s~{z})u{z} z = z-1; }
x11 = {x} X114 = {x} output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 46/73

Example: Reaching definitions

The reaching definitions for a given program point are those
assignments that may have defined the current values of

variables.

var xX,VY,z;

x := 1input;
while (x>1) {
y 1= x/2;
if (y>3)

X 1= X-y;
z = x—4;
if (z>0)

X 1= x/2;
z = z-1; }

output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 47/73

Example: Reaching definitions

The reaching definitions for a given program point are those
assignments that may have defined the current values of

variables.

Assignments:
var XY, zi Asgns = {x=input, y=x/2, x=x-y,
® o= input; z=x-4, x=x/2, z=z-1}
while (x>1) {

y 1= x/2;
if (y>3)
X 1= xX-Yy;
z = x—4;
if (z>0)
X 1= x/2;
z = z-1; }
output x;

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 48/73

Example: Reaching definitions

The reaching definitions for a given program point are those
assignments that may have defined the current values of
variables.

Assignments:

var X,V,2zy Asgns — {X:lnput, y:x/2’ X=X-Y,

x ?= input; Z=x—4,x=x/2,Z=Z_l}
while (x>1) {
v :(yig? I = (P(Asgns), U, C, Asgns, 0),
L MX.(F1(X), ..., F11(X)))
z = x-4;
if (z>0)
X 1= x/2;
z = z-1; 1}

output x;

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 49/73

Example: Reaching definitions

The reaching definitions for a given program point are those
assignments that may have defined the current values of

variables.
_ Assignments:
Vaf_xf Yr 21,;- Asgns = {x=input, y=x/2, x=x-vy,
x i= input; z=x-4, x=x/2, z=2-1}
while (x>1) {
v :(yig? I = (P(Asgns), U, C, Asgns, 0),
e s AX.(F1(X),. .., F11(X)))
7 = X—4,‘ H . 11 C
AN Product lattice: (P'1(Asgns), C)
X 1= x/2;
z = z-1; 1}

output x;

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 50/73

Example: Reaching definitions

The reaching definitions for a given program point are those
assignments that may have defined the current values of
variables.

Assignments:

var X,V,2zy Asgns — {X:lnput, y:x/2’ X=X-Y,

x ?= input; Z=x—4,x=x/2,Z=Z_l}
while (x>1) {
zi/f : =(y>><g)2 | = (P(Asgns), U, C, Asgns,),
T AX(F1(X), ..., F11(X)))
7 .= X—4,‘ H . 11 C
AN Product lattice: (P'1(Asgns), C)
x 1= x/2; Direction: Forward
z := z-1; }

Analysis: May

output x; . .o
P ! Solution: Minimal

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 51/73

Example: Busy expressions

An expression is busy if it will definitely be evaluated again
before its value changes.

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 52/73

Example: Busy expressions

An expression is busy if it will definitely be evaluated again
before its value changes.

Direction: Backward
Analysis: Must
Solution: Minimal

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 53/73

Computing variable values: different abstraction levels

We may consider different abstraction levels of variable values:
m sets of integer values: P(Z)
m intervals: {[/,u] | ,u € ZU{—o0,00},/ <u}uU{L}
m only signs with zero: P({—,0,+})
m initialized or not: {L, T}

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 54/73

Computing variable values: different abstraction levels

We may consider different abstraction levels of variable values:
m sets of integer values: P(Z)
m intervals: {[/,u] | ,u € ZU{—o0,00},/ <u}uU{L}
m only signs with zero: P({—,0,+})
m initialized or not: {L, T}

Which abstraction is more precise than other?

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 55/73

Fixpoint approximation techniques

Widening and narrowing

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 56/73

Fixpoint approximation techniques

When the extreme fixpoints of the system of equations cannot
be computed in finitely many steps, they can be approximated.

Generally, we have these two approaches:
we can find more abstract interpretation

we can make approximations in the current interpretation
to accelerate convergence of Kleene’s sequence

Here we are concerned about second approach — the
technique called widening.

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 57/73

Fixpoint approximation techniques

Widening makes Kleene’s sequence to converge
m to a fixpoint possibly greater than the least one or
m to an element s, such that s > F(s).

In the second case, since s is greater then the least fixpoint, we
can use narrowing to make the solution more precise —i.e. to
find some fixpoint smaller than s but possibly greater than the
least fixpoint.

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 58/73

m If the Kleene’s sequence does not converge, then there
exists a location x; on a program loop where the sequence
does not converge.

m We need a widening function v : L x L — L, which is
applied every time the location x; is updated: x; = x;V F;(X).

m We must define v such that

m foreach x,y € L, x oy < xVy, i.e. V overapproximates
operation o,

m it ensures that every infinite sequence of elements
occurring in x; is not strictly increasing.

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 59/73

Example: Interval bounds of integer variable x

{locations are after}

1 x :=1;

2 while (x <= 100) {
3 X = x + 1;

4 '}

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 60/73

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x :=1; xy =[1,1]

2 while (x <= 100) { Xo = (X1 UX3) N [—o0,100]
3 x 1= x + 1; X3 = Xo +[1,1]

4) X4 = (Xg Uxz)N[101, 0]

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 61/73

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x :=1; xy =[1,1]

2 while (x <= 100) { Xo = (X1 UX3) N [—o0,100]
3 x 1= x + 1; X3 = Xo +[1,1]

4) X4 = (Xg Uxz)N[101, 0]

Widening operator v:
[i,1V1k,] = [ite(k < i,—o0, i), ite(] > j, 00,)]

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 62/73

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x :=1; xy =[1,1]

2 while (x <= 100) { Xo = (X1 UX3) N [—o0,100]
3 x 1= x + 1; X3 = Xo +[1,1]

4) X4 = (Xg Uxz)N[101, 0]

Widening operator v:
[i,1V1k,] = [ite(k < i,—o0, i), ite(] > j, 00,)]

{no widening}

X1 = [1,1]
X2 = [1,100]
x3 =[2,101]

x4 =[101,101]
100 iterations

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 63/73

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x :=1; xy =[1,1]

2 while (x <= 100) { Xo = (X1 UX3) N [—o0,100]
3 x 1= x + 1; X3 = Xo +[1,1]

4) X4 = (Xg Uxz)N[101, 0]

Widening operator v:
[i,1V1k,] = [ite(k < i,—o0, i), ite(] > j, 00,)]

{no widening} {x3 =x3V(x2 + [1,1])}
X1:[171] X1:[171]

X2 = [1,100] X = [1,100]
X3:[27101] X3:[2,00]

x4 =[101,101] Xq = [101, 0]

100 iterations 2 iterations

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 64/73

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x :=1; xy =[1,1]

2 while (x <= 100) { Xo = (X1 UX3) N [—o0,100]
3 x 1= x + 1; X3 = Xo +[1,1]

4) X4 = (Xg Uxz)N[101, 0]

Widening operator v:
[i,1V1k,] = [ite(k < i,—o0, i), ite(] > j, 00,)]

{no widening} {x3 =x3V(x2 + [1,1])}
X1:[171] X1:[171]

X2 = [1,100] X = [1,100]
X3:[27101] X3:[2¢OC]

x4 =[101,101] Xq = [101, o]

100 iterations 2 iterations

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 65/73

Narrowing

m When widening ends with s > F(s), we improve solution s
as follows: s > F(s) > ... > F"(s) > ... > sy, where sg is
the least fixpoint.

m When the sequence is finite, its limit is better
approximation of sg.

m If the sequence is infinite, we apply narrowing function
A: L x L — L at not stabilizing location x; such that
Xi = Xj A F,()?)
m Operator A must satisfy:
mforeachx,yel,x>y—=(x>xAy>y)ie. Atriesto
slow down the decreasing of the sequence,

m it ensures, that every infinite sequence of elements starting
from any s is not strictly decreasing.

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 66/73

Narrowing

Example: Interval bounds of integer variable x

{locations are after}

1 x :=1;

2 while (x <= 100) {
3 X = x + 1;

4 '}

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 67/73

Narrowing

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x :=1; xy =[1,1]

2 while (x <= 100) { X2 = (X1 UXx3) N [—00,100]
3 X = x + 1; X3 =X+ [1,1]

4 } X4:(X1 UX3)ﬂ[101,00]

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 68/73

Narrowing

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x :=1; x1 = [1,1]

2 while (x <= 100) { X2 = (X1 UXx3) N [—00,100]
3 X 1= x + 1; X3 =X+ [1,1]

4 } X4:(X1 UX3)ﬂ[101,00]

Narrowing operator A:
[i,] & [k,] = [ite(i = —co, k, min(i, k)., ite(j = cc, |, max(j,))]

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 69/73

Narrowing

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x := 1; x1 = [1,1]

2 while (x <= 100) { X2 = (X1 UXx3) N [—00,100]
3 X 1= x + 1; X3 = Xo + [1,1]

4) Xg = (X1 Uxz)N[101, 0]

Narrowing operator A:
[i,] & [k,] = [ite(i = —co, k, min(i, k)., ite(j = cc, |, max(j,))]

{no widening} {widening}
X1:[171] X1:[171]
X2:[1,100] X2:[1,100]
X3 = [2, 101] X3 = [2,00]
X4:[101,101] X4:[101,oo]
100 iterations 2 iteration

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 70/73

Narrowing

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x := 1; x1 = [1,1]

2 while (x <= 100) { X2 = (X1 UXx3) N [—00,100]
3 X 1= x + 1; X3 =X+ [1,1]

4) Xg = (X1 Uxz)N[101, 0]

Narrowing operator A:
[i,] & [k,] = [ite(i = —co, k, min(i, k)., ite(j = cc, |, max(j,))]

{no widening} {widening} {Xz3=x3A (x2+[1,1])}
X1:[171] X1:[171] X1:[171]

X2 = [1,100] X2 = [1,100] X2 = [1,100]
X3:[2,101] X3:[2,00] X3:[2,101]

Xq = [101,101] Xq = [101, 0] X4 = [101,101]

100 iterations 2 iteration +1 iteration

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 71/73

Narrowing

Example: Interval bounds of integer variable x

{locations are after} {functions}

1 x := 1; x1 = [1,1]

2 while (x <= 100) { X2 = (X1 UXx3) N [—00,100]
3 X 1= x + 1; X3 =X+ [1,1]

4) Xg = (X1 Uxz)N[101, 0]

Narrowing operator A:
[i,] & [k,] = [ite(i = —co, k, min(i, k)., ite(j = cc, |, max(j,))]

{no widening} {widening} {Xz3=x3A (x2+[1,1])}
X1:[171] X1:[171] X1:[171]

X2 = [1,100] X2 = [1,100] X2 = [1,100]

X3 =[2,101] X3 = [2, 9] X3 =[2,101]

Xq = [101,101] X4 =[101,00] x4 =[101,101]

100 iterations 2 iteration +1 iteration

I1A159 Formal Verification Methods: Static Analysis and Abstract Interpretation 72/73

Coming next week

Shape Analysis via 3-Valued Logic

m Static analysis of dynamic memory.
m It can detect NULL dereferences, memory leaks, etc.
m Applicable to real code.

IA159 Formal Verification Methods: Static Analysis and Abstract Interpretation 73/73

