
IA159 Formal Verification Methods
Shape Analysis via 3-Valued Logic

Jan Strejček

Faculty of Informatics
Masaryk University



Focus and sources

Focus
shape analysis in general
3-valued logic approach

the logic and shape graphs
algorithm
TVLA and (semi)demo

other approaches

Sources
M. Sagiv, T. Reps, R. Wilhelm: Parametric Shape Analysis
via 3-Valued Logic, ACM Trans. Program. Lang. Syst.
24(3), 2002.
B. Jeannet, A. Loginov, T. Reps, M. Sagiv: A Relational
Approach to Interprocedural Shape Analysis, SAS 2004.

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 2/47



Goal

Shape analysis is a static analysis focused on program
properties related to dynamically allocated memory. In
particular, it aims to detect or verify the absence of
heap-specific errors like

null dereference
memory leaking
dangling pointer – a pointer to a deallocated memory
violation of expected properties of dynamic datastructures
(e.g. the datastructure is a cyclic list)
. . .

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 3/47



Basic idea

For each program location, we want to compute all reachable
memory configurations.

x

list2

list1

NULL

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 4/47



Realistic approach

The number of reachable memory configurations can be
very large or even unbounded.
We need to find finite representations of potentially infinite
sets memory configurations.
We compute over-approximations of sets of reachable
memory configurations (an abstraction).
The over-approximations are represented by finite shape
graphs.
Shape graphs can be represented using logics, graph
structures, automata, . . .

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 5/47



3-valued logic approach

Representing concrete memory configurations
with 2-valued logical structures

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 6/47



Logical representation of concrete configurations

Configurations are represented by predicate logic formulas
over the following core predicates:
unary predicate x(v) for each pointer variable x
binary predicate n(v1, v2) for each structure field n serving

as a pointer
binary predicate eq(v1, v2)

predicate intended meaning
x(v) variable x points to memory cell v

n(v1, v2) field n of v1 (i.e. v1.n) points to v2
eq(v1, v2) v1 and v2 denote the same memory cell

memory configurations correspond to interpretations
allocated memory cells correspond to domain elements

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 7/47



Example

typedef struct node {
struct node *n;
int data;

} *List;

NULL

x 5 83 11
y

Logical representation
domain {u1,u2,u3,u4}
x(u1) = y(u1) = 1
n(u1,u2) = n(u2,u3) = n(u3,u4) = 1
eq(u1,u1) = eq(u2,u2) = eq(u3,u3) = eq(u4,u4) = 1
values of all predicates on other arguments is 0

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 8/47



Example

NULL

x 5 83 11
y

Logical representation
domain {u1,u2,u3,u4}
x(u1) = y(u1) = 1
n(u1,u2) = n(u2,u3) = n(u3,u4) = 1
eq(u1,u1) = eq(u2,u2) = eq(u3,u3) = eq(u4,u4) = 1
values of all predicates on other arguments is 0

Visualisation of the logical representation

x // u1
n // u2

n // u3
n // u4

y

99

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 9/47



Notes

storeless approach – it does not model precise location of
allocated cells in the memory
it cannot handle pointer arithmetics

some interpretations do not represent any memory
configuration, e.g. if n(u, v) = n(u,w) = 1 for some v 6= w
these interpretations are eliminated by formulas called
integrity constraints, e.g. n(u, v) ∧ n(u,w) =⇒ eq(v ,w)

the size of a configuration (and its logical representation)
can be unbounded −→ we use an abstraction to get a
less precise, but bounded representation

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 10/47



3-valued logic approach

3-valued logical structures and shape graphs

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 11/47



3-valued logic

1/2

0 1

uses 3 truth values: 0, 1, 1/2 (indefinite value)
new operation the least upper bound t
operations ∧,∨,¬ are extended

t 0 1 1/2
0 0 1/2 1/2
1 1/2 1 1/2

1/2 1/2 1/2 1/2

∧ 0 1 1/2
0 0 0 0
1 0 1 1/2

1/2 0 1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1

1/2 1/2 1 1/2

¬
0 1
1 0

1/2 1/2

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 12/47



Abstraction of concrete configurations

Abstraction
we merge cells with identical values of all unary predicates
values of unary predicates on merged cells keep
unchanged (these are always 0 or 1)
values of binary predicates on merged cells are defined as
the least upper bound of the values on the original cells

Example: if u2,u3,u4 is merged into u′ and u1 is not, then

n(u1,u′) = n(u1,u2) t n(u1,u3) t n(u1,u4)

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 13/47



Example

x // u1
n // u2

n // u3
n // u4

y

99

let u2, u3, and u4 be merged into u′

eq(u′,u′) = eq(u2,u2) t eq(u2,u3) t . . . t eq(u4,u4) = 1/2
cells with eq(u,u) = 1/2 are called summary nodes
n(u1,u′) = 1/2 and n(u′,u′) = 1/2

x // u1
n // u′

n

��

y

::

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 14/47



Example

x // u1
n // u2

n // u3
n // u4

y

99

let u2, u3, and u4 be merged into u′

eq(u′,u′) = eq(u2,u2) t eq(u2,u3) t . . . t eq(u4,u4) = 1/2
cells with eq(u,u) = 1/2 are called summary nodes

n(u1,u′) = 1/2 and n(u′,u′) = 1/2

x // u1
n // u′

n

��

y

::

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 15/47



Example

x // u1
n // u2

n // u3
n // u4

y

99

let u2, u3, and u4 be merged into u′

eq(u′,u′) = eq(u2,u2) t eq(u2,u3) t . . . t eq(u4,u4) = 1/2
cells with eq(u,u) = 1/2 are called summary nodes
n(u1,u′) = 1/2 and n(u′,u′) = 1/2

x // u1
n // u′

n

��

y

::

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 16/47



Shape graph interpretation

x // u1
n // u′

n

��

y

::

This shape graph may represent:
an acyclic list of 2+ elements pointed by x and y
a cyclic list of 2+ elements pointed by x and y , with the first
element not lying on the cycle
besides of these, u′ can also represent another cyclic or
acyclic lists not pointed by anything (i.e. garbage)

To refine the abstraction, we add instrumentation predicates.

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 17/47



Instrumentation predicates

Instrumentation predicates
are defined by first-order formulas over core predicates
may also use transitive (or reflexive and transitive) closures
of binary predicates

Typical instrumentation predicates for linked lists

predicate meaning definition
t [n](v1, v2) v2 is reachable from v1 n∗(v1, v2)

via n-fields
r [n, x ](v) v is reachable from variable x ∃v1.x(v1) ∧ t [n](v1, v)

via n-fields
c[n](v) v lies on a cycle of n-fields ∃v1.n(v , v1) ∧ t [n](v1, v)

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 18/47



Example

we add instrumentation predicates r [n, x ] a c[n]

x // u1
r [n, x ]

n // u2
r [n, x ]

n // u3
r [n, x ]

n // u4
r [n, x ]

y

::

there are more unary predicates determining cell merging

x // u1
r [n, x ]

n // u′

r [n, x ]

n
��

y

;;

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 19/47



Example

x // u1
r [n, x ]

n // u′

r [n, x ]

n
��

y

;;

Now it represents exactly all acyclis lists of 2+ elements:
all nodes satisfy r [n, x ], hence they are reachable from x
(i.e. there is no garbage)
c[n] does not hold in any node, hence the list is acyclic

The choice of instrumentation predicates is crucial for obtaining
some useful output.

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 20/47



Example

Compute the shape graph given by core predicates and
instrumentation predicates r [n, x ], r [n, y ]:

x // u1
n // u2

n // u3
n // u4

n // u5

y // v1
n

88

Decide whether the shape graph represents also the
configuration below.

x // u1
n // u2

n // u3
n // u4

n // u5
n // u6

y // v1
n

88

Suggest an instrumentation predicate that would make shape
graphs for the two configurations different.

Solution: is[n](v) defined by ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ v1 6= v2

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 21/47



Example

Compute the shape graph given by core predicates and
instrumentation predicates r [n, x ], r [n, y ]:

x // u1
n // u2

n // u3
n // u4

n // u5

y // v1
n

88

Decide whether the shape graph represents also the
configuration below.

x // u1
n // u2

n // u3
n // u4

n // u5
n // u6

y // v1
n

88

Suggest an instrumentation predicate that would make shape
graphs for the two configurations different.

Solution: is[n](v) defined by ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ v1 6= v2

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 22/47



Example

Compute the shape graph given by core predicates and
instrumentation predicates r [n, x ], r [n, y ]:

x // u1
n // u2

n // u3
n // u4

n // u5

y // v1
n

88

Decide whether the shape graph represents also the
configuration below.

x // u1
n // u2

n // u3
n // u4

n // u5
n // u6

y // v1
n

88

Suggest an instrumentation predicate that would make shape
graphs for the two configurations different.

Solution: is[n](v) defined by ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ v1 6= v2

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 23/47



Example

Compute the shape graph given by core predicates and
instrumentation predicates r [n, x ], r [n, y ]:

x // u1
n // u2

n // u3
n // u4

n // u5

y // v1
n

88

Decide whether the shape graph represents also the
configuration below.

x // u1
n // u2

n // u3
n // u4

n // u5
n // u6

y // v1
n

88

Suggest an instrumentation predicate that would make shape
graphs for the two configurations different.

Solution: is[n](v) defined by ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ v1 6= v2
IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 24/47



3-valued logic approach

Algorithm – the first look

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 25/47



Algorithm – the first look

there are only finitely many different shape graphs for a
fixed finite set of core and instrumentation predicates
the algorithm is a standard abstract interpretation

Algorithm
input: a program and shape graphs describing possible initial

memory configurations

1 assign input shape graphs to the initial program location
2 for each program statement, take the shape graphs

assigned to the location before the statement and update
shape graphs in the locations after the statement

3 repeat step 2 until a fixpoint is reached

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 26/47



Step 2

for each core predicate and each program statement, there
is a predicate-update formula describing the values of the
predicate after the statement using the values of core
predicates before the statement
using the predicate-update formulae, it is easy to compute
the effect of the statement on concrete memory
configurations
to compute the effect of a statement on shape graphs is
harder: values of instrumentation predicates are given by
their definition formulas and values of core predicates, but
this approach would quickly lead to loss of precision
(values 1/2)
to get better results, we define also predicate-update
formulas for instrumentation predicates, which may use
values of both core and instrumentation predicates before
the statement

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 27/47



3-valued logic approach

TVLA and (semi)demo

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 28/47



TVLA

= Three Valued Logic Analysis Engine
developed at Tel Aviv University under supervision of
Mooly Sagiv
written in Java
currently in version 3 (extended with heap decomposition)
available for academic purposes
http://www.cs.tau.ac.il/~tvla/

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 29/47

http://www.cs.tau.ac.il/~tvla/


Input

Program has to be specified in four parts
1 declaration of predicates and integrity constraints

core predicates are just declared
instrumentation predicates have to be defined by formulas

2 operation semantics of all program statements
for each statement used in the program, the corresponding
predicate-update formulas have to be given
each statement can be accompanied by an error detection
formula (e.g. null dereference)

3 program flowgraph (including asserts)
4 the list of locations for which we want to get all reachable

shape graphs

parts 1 and 2 can be used repeatedly and they are
available for certain classes of programs (e.g. for programs
manipulating linked lists or trees)
part 4 is optional

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 30/47



Input

Initial shape graphs
described using a simple text format

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 31/47



Execution and output

tvla <program> <initial_graphs>

Output file contains
picture of the program flowgraph
reachable shape graphs for specified locations
potential error messages

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 32/47



Example

typedef struct node {
struct node *n;
int data;

} *List;

List reverse(List x) {
List y, t;
y = NULL;
(x != NULL) {
t = x->n;
x->n = y;
y = x;
x = t;

}
return y;

}

(SEMI)DEMO

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 33/47



3-valued logic approach

Algorithm – a closer look

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 34/47



Computing the effect of a statement on a shape graph

1 operation Focus
2 evaluation of statement guards
3 computing new values of predicates
4 operation Coerce
5 operation Blur

We will compute the effect of t = x->n on the shape graph:

x // u
r [n, x ]

n // v
r [n, x ]

n
��

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 35/47



Operation Focus

applied on statements with defined focus formula, which is
a formula with exactly one free variable
operation Focus takes the shape graph and returns the set
of shape graphs representing the same configurations and
such that the focus formula is not evaluated to 1/2 on any
node of any of the graphs.
operation Focus modifies only values of predicates in the
focus formula, values of other predicates are not
recomputed
hence, some resulting graphs may not satisfy integrity
constraints

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 36/47



Operation Focus – example

focus formula for t = x->n is f (w) = ∃v1.x(v1) ∧ n(v1,w)

formula ensures that after the statement, the predicate t(v)
cannot have value 1/2

input output

u
r [n, x ]

v
r [n, x ]

n

n

x

u
r [n, x ]

v
r [n, x ]

n

x

u
r [n, x ]

v
r [n, x ]

n

n

x

u
r [n, x ]

v1
r [n, x ]

n

n

x

v0
r [n, x ]

n

n

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 37/47



Evaluation of statement guards

for each statement, there can be defined a guard, which is
again a formula
the statements is not performed on the shape graphs for
which the guard evaluates to 0
it is typically used to handle program branching
statement t = x->n has no guard

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 38/47



Computing new values of predicates

we use predicate-update formulas corresponding to the
statement to compute new predicate values
predicates with no predicate-update formulas keep their
value

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 39/47



Computing new values of predicates – example

Predicate-update formulas for t = x->n

predicate predicate-update formula
t(v) ∃v1.x(v1) ∧ n(v1, v)

r [n, t ](v) r [n, x ](v) ∧ (c[n](v) ∨ ¬x(v))

Output

u
r [n, x ]

v
r [n, x ]

n

x

u
r [n, x ]

v
r [n, x ]
r [n, t ]

n

n

x

t

u
r [n, x ]

v1
r [n, x ]
r [n, t ]

n

n

x

t

v0
r [n, x ]
r [n, t ]

n

n

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 40/47



Operation Coerce

removes shape graphs not satisfying integrity constraints
makes values of some predicates more precise

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 41/47



Operation Coerce – example

shape graph on the left is corrupted as r [n, x ](v) cannot
hold =⇒ the graph is removed
in the shape graph in the middle, v cannot be a summary
node as t(v) holds
on the right, v1 cannot be a summary node for the same
reason, and moreover c[n](v1) does not hold and thus
n(v1, v1),n(v0, v1) cannot hold

u
r [n, x ]

v
r [n, x ]
r [n, t ]

n

x

t

u
r [n, x ]

v1
r [n, x ]
r [n, t ]

n

x

t

v0
r [n, x ]
r [n, t ]

n
n

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 42/47



Operation Blur

can further merge nodes with same values of unary
predicates
consequently, some shape graphs can become identical
in our example, Blur has no effect

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 43/47



Notes

TVLA works automatically, but the user has to
provide semantics of program statements
select/supply suitable instrumentation predicates
process the results and filter out false alarms

Studied extensions and applications
interprocedural shape analysis (can handle also recursive
programs)
lazy shape analysis
shape analysis and CEGAR
shape analysis for parallel processes
mix of shape analysis and data-related abstract
interpretation (can be used e.g. to prove that sorting
algorithms output sorted linked lists)
can be used also to analyse liveness of java objects and
their timely deallocation
. . .

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 44/47



Shape analysis

Other approaches and tools

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 45/47



Other approaches and tools

Other approaches to analysis of dynamically allocated memory
are based on

separation logic and (bi-)abduction (Infer)
translation to first-order logic and automated theorem
proving (HAVOC)
symbolic memory graphs (Predator)
tree automata (Forester)
. . .

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 46/47



Coming next week

Verification via automata, symbolic execution, and interpolation

Try to hit an error location and learn from failure.
Implemented in Ultimate Automizer,
the winner of SV-COMP 2016 and 2017.

IA159 Formal Verification Methods: Shape Analysis via 3-Valued Logic 47/47


