IA159 Formal Verification Methods Property Directed Reachability

(PDR/IC3)

Jan Strejček

Faculty of Informatics Masaryk University

Focus and sources

Focus

- representation of a finite system by boolean formulas
- property directed reachability

Source

N. Een, A. Mishchenko, and R. Brayton: Efficient Implementation of Property Directed Reachability, FMCAD 2011.

Special thanks to Marek Chalupa for providing me his slides.

Short history of IC3/PDR

IC3

- the tool introduced in 2010
 (3rd place in Hardware Model Checking Competition 2010)
- abbreviation for Incremental Construction of Inductive Clauses for Indubitable Correctness
- described in A. R. Bradley: SAT-Based Model Checking Without Unrolling, VMCAI 2011.

PDR

- name for the technique implemented in IC3
- abbreviation for Property Directed Reachability
- suggested by N. Een, A. Mishchenko, and R. Brayton
- they also simplified and improved the algorithm

Short history of IC3/PDR

- originally formulated for finite systems where states are valuations of boolean variables: good for HW, not for SW
- later generalized for other kinds of systems, in particular for program verification
- combined with predicate abstraction, k-induction, . . .

IC3/PDR is currently considered to be one of the most powerfull verification techniques.

Important papers about IC3/PDR

- K. Hoder and N. Bjorner: Generalized Property Directed Reachability, SAT 2012.
- A. Cimatti, A. Griggio: Software Model Checking via IC3, CAV 2012.
- A. R. Bradley: Understanding IC3, SAT 2012.
- T. Welp, A. Kuehlmann: QF_BV Model Checking with Property Directed Reachability, DATE 2013.
- A. Cimatti, A. Griggio, S. Mover, S. Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction, TACAS 2014.
- J. Birgmeier, A. R. Bradley, G. Weissenbacher: Counterexample to Induction-Guided-Abstraction-Refinement (CTIGAR), CAV 2014.
- D. Jovanović, B. Dutertre: Property-Directed k-Induction, FMCAD 2016.
- A. Gurfinkel, A. Ivrii: K-Induction without Unrolling, FMCAD 2017.

Formalization of the problem

Finite state machine

- set of state variables $\bar{x} = \{x_1, x_2, \dots, x_n\}$
- **states** are valuations $v: \bar{x} \rightarrow \{0, 1\}$
- **initial** states given by a propositional formula I over \bar{x}
- transition relation given by a propositional formula T over $\bar{x} \cup \bar{x}'$, where $\bar{x}' = \{x'_1, \dots, x'_n\}$ describe the target states

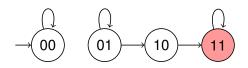
Property

 \blacksquare given by a propositional formula P over \bar{x}

The problem

To decide whether all reachable states of a given finite state machine (\bar{x}, I, T) satisfy a given property P.

Example



$$\bar{X} = \{x_{1}, x_{2}\}
I = \neg x_{1} \land \neg x_{2}
T = (\neg x_{1} \land \neg x_{2} \land \neg x'_{1} \land \neg x'_{2}) \lor (\neg x_{1} \land x_{2} \land \neg x'_{1} \land x'_{2}) \lor
(\neg x_{1} \land x_{2} \land x'_{1} \land \neg x'_{2}) \lor (x_{1} \land x'_{1} \land x'_{2}) \lor
= (x_{1} \lor x_{2} \lor \neg x'_{1}) \land (x_{1} \lor x_{2} \lor \neg x'_{2}) \land
(x_{1} \lor \neg x_{2} \lor x'_{2} \lor x'_{1}) \land (x_{1} \lor \neg x_{2} \lor \neg x'_{1} \lor \neg x'_{2}) \land
(\neg x_{1} \lor x_{2} \lor x'_{1}) \land (\neg x_{1} \lor x_{2} \lor x'_{2}) \land
(\neg x_{1} \lor \neg x_{2} \lor x'_{1}) \land (\neg x_{1} \lor \neg x_{2} \lor x'_{2})$$

$$P = \neg x_{1} \lor \neg x_{2}$$

Terminology and notation

- for any formula F over \bar{x} , F' denotes the same formula over \bar{x}'
- cube is a conjunction of literals
- clause is a disjunction of literals
- negation of a cube is a clause (and vice versa)
- \blacksquare a cube with all variables of \bar{x} represents at most one state
- a set of clauses $R = \{c_1, \dots, c_k\}$ is interpreted as conjunction $c_1 \wedge \dots \wedge c_k$
- each formula can be identified with a set of states (and vice versa)

Intuition

A set S of states is inductive invariant if $S \wedge T \implies S'$.

We are looking for an inductive invariant S satisfying

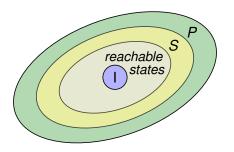
- \blacksquare $I \Longrightarrow S$ (i.e. S contains all reachable states) and
- \blacksquare $S \implies P$ (i.e. all states of S satisfy the property).

Intuition

A set S of states is inductive invariant if $S \wedge T \implies S'$.

We are looking for an inductive invariant S satisfying

- \blacksquare $I \Longrightarrow S$ (i.e. S contains all reachable states) and
- \blacksquare $S \implies P$ (i.e. all states of S satisfy the property).

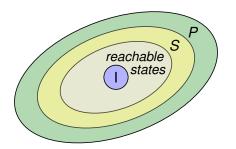


Intuition

A set S of states is inductive invariant if $S \wedge T \implies S'$.

We are looking for an inductive invariant S satisfying

- \blacksquare $I \Longrightarrow S$ (i.e. S contains all reachable states) and
- lacksquare $S \implies P$ (i.e. all states of S satisfy the property).

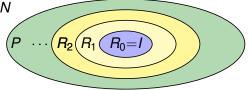


Note that *P* does not have to be an inductive invariant.

Traces

The algorithm gradually builds traces, which are sequences R_0, R_1, \ldots, R_N of formulas called frames such that

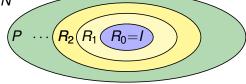
- \blacksquare $R_0 = I$ and for all i < N
- $\blacksquare R_i \implies R_{i+1}$
- $\blacksquare R_i \wedge T \implies R'_{i+1}$
- $\blacksquare R_i \Longrightarrow P$



Traces

The algorithm gradually builds traces, which are sequences R_0, R_1, \ldots, R_N of formulas called frames such that

- $R_0 = I$ and for all i < N■ $R_i \implies R_{i+1}$ $R_i \wedge T \implies R'_{i+1}$
- $\blacksquare R_i \Longrightarrow P$

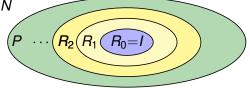


Intuitively, each R_i represents a superset of states reachable from initial states in at most i steps.

Traces

The algorithm gradually builds traces, which are sequences R_0, R_1, \ldots, R_N of formulas called frames such that

- \blacksquare $R_0 = I$ and for all i < N
- $\blacksquare R_i \implies R_{i+1}$
- $\blacksquare R_i \wedge T \implies R'_{i+1}$
- $\blacksquare R_i \Longrightarrow P$



Intuitively, each R_i represents a superset of states reachable from initial states in at most i steps.

Moreover, for each i > 0 it holds that

- \blacksquare R_i is a set of clauses
- \blacksquare $R_{i+1} \subseteq R_i$ (which implies $R_i \implies R_{i+1}$)

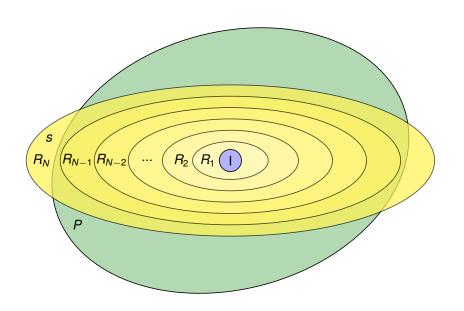
Proof-obligations

- let $R_0, ..., R_N$ be a trace where $R_N \implies P$ does not hold
- let s be a state satisfying $R_N \land \neg P$
- we want to prove that *s* is not reachable in *N* steps
 - \rightsquigarrow so called proof-obligation (s, N)

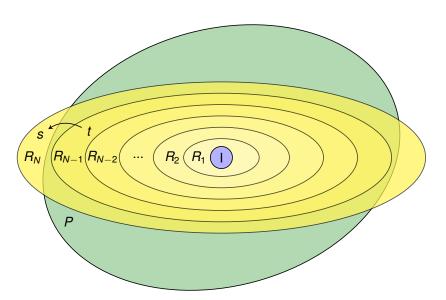
Solving proof-obligation (s, k)

- 1 check satisfiability of $R_{k-1} \wedge T \wedge s'$
- 2 if unsatisfiable, then
 - \blacksquare R_{k-1} is strong enough to block s
 - thus we can add the clause $\neg s$ to R_k
 - we add it also to all $R_1, ..., R_{k-1}$ to keep $R_{i+1} \subseteq R_i$ valid
 - proof-obligation solved
- 3 if satisfiable, then
 - \blacksquare s has some immediate predecessor t in R_{k-1}
 - if k 1 = 0 then return property violated and extract counterexample from proof-obligations
 - if k-1>0 then solve proof-obligation (t,k-1) and go to 1

Proof-obligations



Proof-obligations



PDR: high level view

- if $I \wedge \neg P$ is satisfiable then return property violated
- $R_0 := I$
- N := 0
- 4 while $R_N \wedge \neg P$ is satisfiable do
 - find a state s satisfying $R_N \land \neg P$
 - \blacksquare solve proof-obligation (s, N)
- **5** $R_{N+1} := \emptyset$
- 6 N := N + 1
- 7 propagate learned clauses
 - for each i from 1 to N-1
 - for each clause $c \in R_i$, if $R_i \wedge T \implies c'$ then add c to R_{i+1}
- if $R_i = R_{i+1}$ for some i then return property satisfied (R_i is inductive invariant)
- go to 4

Termination

Termination follows from finiteness of considered systems

- each proof-obligation must be solved in finitely many steps (either successfully or by detection of proterty violation)
- if the shortest path to a state violating P has j steps, then some state violating P is discovered when N = j
- if P is satisfied, an inductive invariant is eventually found as
 - there are only finitely many sets of states
 - \blacksquare R_0, R_1, \dots, R_N always represent sets ordered by inclusion
 - if R_i and R_{i+1} become semantically equivalent, then clause propagation makes them also syntactically equivalent

Termination

Termination follows from finiteness of considered systems

- each proof-obligation must be solved in finitely many steps (either successfully or by detection of proterty violation)
- if the shortest path to a state violating P has j steps, then some state violating P is discovered when N = j
- if P is satisfied, an inductive invariant is eventually found as
 - there are only finitely many sets of states
 - \blacksquare R_0, R_1, \dots, R_N always represent sets ordered by inclusion
 - if R_i and R_{i+1} become semantically equivalent, then clause propagation makes them also syntactically equivalent

Still, for a system with $\bar{x} = \{x_1, \dots, x_n\}$, we may need a trace with up to 2^n elements to find an inductive invariant.

PDR: important tricks

The presented algorithm is correct, but slow. PDR uses several tricks to boost efficiency, in particular it

- generalizes blocked states
- uses relative induction in proof-obligation solving
- blocks states in future frames

Generalization of blocked states

- the presented proof-obligation algorithm adds $\neg s$ to R_k when s is blocked, i.e. $R_{k-1} \wedge T \wedge s'$ is unsatisfiable
- PDR generalizes this state to a set of states that are blocked for the same reason
- there are several ways to achieve that
 - use ternary simulation
 - use unsat cores
 - use interpolants
 - manually drop parts of s

Generalization of blocked states

- the presented proof-obligation algorithm adds $\neg s$ to R_k when s is blocked, i.e. $R_{k-1} \wedge T \wedge s'$ is unsatisfiable
- PDR generalizes this state to a set of states that are blocked for the same reason
- there are several ways to achieve that
 - use ternary simulation
 - use unsat cores
 - use interpolants
 - manually drop parts of s

Use of unsat cores

- one can build the cube r' of the literals of s' that appear in the unsat core and then add $\neg r$ to R_k
- the clause $\neg r$ is smaller than $\neg s$ and represents less states

Relative induction in proof-obligation solving

- to solve proof-obligation (s, k), we checked $R_{k-1} \wedge T \wedge s'$
- PDR checks satisfiability of $R_{k-1} \land \neg s \land T \land s'$ instead
- this query is more likely to be unsatisfied (it has one more clause) and state s can be blocked sooner
- in fact, it checks whether $\neg s$ is inductive relative to R_{k-1} : the query is unsatisfiable iff $(R_{k-1} \land \neg s \land T) \implies \neg s'$
- intuitively, in this way we ignore self-loops of the system

Relative induction in proof-obligation solving

- to solve proof-obligation (s, k), we checked $R_{k-1} \wedge T \wedge s'$
- PDR checks satisfiability of $R_{k-1} \land \neg s \land T \land s'$ instead
- this query is more likely to be unsatisfied (it has one more clause) and state s can be blocked sooner
- in fact, it checks whether $\neg s$ is inductive relative to R_{k-1} : the query is unsatisfiable iff $(R_{k-1} \land \neg s \land T) \implies \neg s'$
- intuitively, in this way we ignore self-loops of the system
- in fact, PDR combines this technique with the generalization of blocked clauses
- thus, PDR searches for a subclause (ideally minimal) $c \subseteq \neg s$ such that $I \implies c$ and $(R_{k-1} \land c \land T) \implies c'$

The End

Thank you for your attention!

- individual oral exam via a videocall (approx 30 min)
- open-book exam, what matters is your understanding
- every student gets one randomly selected topic to explain
 - overview of formal methods
 - reachability in pushdown systems
 - partial order reduction
 - **.** . . .