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Outline of the talk

• On the importance of similarity and searching 

• Principles of metric similarity searching

• Similarity search applications:

– Searching in images of human faces

– Searching for image annotation

– Stream processing

– Searching in motion capture data
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Real-life Similarity

• Are they similar?
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Real-Life Motivation
The social psychology view

• Any event in the history of organism is, in a sense, 
unique.

• Recognition, learning, and judgment presuppose 
an ability to categorize stimuli and classify 
situations by similarity.

• Similarity (proximity, resemblance, communality, 
representativeness, psychological distance, etc.) is 
fundamental to theories of perception, learning,  
judgment, etc.

• Similarity is subjective a context-dependent
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Contemporary Networked Media
The digital data view

• Almost everything that we see, read, hear, write, 
measure, or observe can be digital.

• Users autonomously contribute to production of global 
media and the growth is exponential.

• Sites like Flickr, YouTube, Facebook host user 
contributed content for a variety of events.

• The elements of networked media are related by 
numerous multi-facet links of similarity.
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Challenge

• Networked media database is getting close to the 
human “fact-bases”
– the gap between physical and digital world has blurred

• Similarity data management is needed to connect, 
search, filter, merge, relate, rank, cluster, classify, 
identify, or categorize objects across various 
collections.

WHY?
It is the similarity which is in the world revealing.
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Similarity and the Big Data

• Loads on a sharp rise – usage on decline

• The (3V) problem of: Volume, Variety, Velocity

• Issues:

– Acquisition: what to keep and what to discard

– Unstructured data: what content to extract

– Datafication: render into data many new aspects

– Inaccuracy: approximation, imprecision, noise
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The Big Data problem

• Shifts in thinking: 

– from some to all (scalability)

– from clean to messy (approximate)

• Technological obstacles: heterogeneity, scale, 

timeliness, complexity, and privacy aspects 

• Foundational challenges: scalable and secure

data analysis, organization, retrieval, and 

modeling
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Search – the goals

1. We search to get results (papers, books, …)

2. We ask to find answers (what time … )

3. We use filters so that the right staff finds us

4. We browse while wandering and way-finding 
in typically restricted space

• In reality, we move fluidly between modes of

ask, browse, filter, and search

Pragu, August 2016

20th East-European Conference on 

Advances in Databases and Information 

Systems

12



Search – some quantitative facts

• 85% of all web traffic comes from search 

engines

• 450+ million searches/day are performed in 

North America alone

• 70%+ of all searches are done on Google sites

Search is the most popular application

(second to E-mail??)
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Search – some experience

• 60% of searchers NEVER go past 1st page of 

search results

• The top three results draw 80% of the 

attention

• The first few results inordinately influence 

query reformulation.
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Search - as an interaction

• When we search, our next actions are reactions 
to the stimuli of previous search results

• What we find is changing what we seek

• In any case, search must be:

fast, simple, and relevant
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Search – changes our cognitive habits

1. We are increasingly handing off the job of 

remembering to search engines

2. When we expect information to be easily found 

again, we do not remember it well

3. Our original memory of facts is changing to a 

memory of ways to find the facts
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State of the art in
Metric Searching technology

Hanan Samet

Foundation of Multidimensional and

Metric Data Structures

Morgan Kaufmann, 2006

P. Zezula, G. Amato, V. Dohnal, and M. Batko

Similarity Search: The Metric Space Approach

Springer, 2005

Teaching material: 

http://www.nmis.isti.cnr.it/amato/similarity-search-

book/
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Similarity Search Conferences
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The MUFIN Approach

MUFIN: MUlti-Feature Indexing Network

SEARCH

infrastructure

Scalability

P2P structure

Extensibility

metric space

Independence

Infrastructure as a service
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Extensibility: Metric Abstraction of Similarity

• Metric space:MMMM = (D,d)

– D – domain

– distance function d(x,y)

∀x,y,z ∈ D
• d(x,y) > 0 - non-negativity

• d(x,y) = 0  ⇔ x = y - identity

• d(x,y) = d(y,x) - symmetry

• d(x,y) ≤ d(x,z) + d(z,y) - triangle inequality
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Examples of Distance Functions

• Lp Minkovski distance (for vectors)

• L1 – city-block distance

• L2 – Euclidean distance

• L∞– infinity

• Edit distance (for strings)

• minimal number of insertions, deletions and substitutions

• d(‘application’, ‘applet’) = 6

• Jaccard’s coefficient (for sets A,B)
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Examples of Distance Functions

• Mahalanobis distance

– for vectors with correlated dimensions

• Hausdorff distance

– for sets with elements related by another distance

• Earth movers distance

– primarily for histograms (sets of weighted features)

• and many others
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Similarity Search Problem

• For X ⊆D in metric space MMMM,

pre-process X so that the similarity queries

are executed efficiently.

In metric space: no total ordering exists!
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Basic Partitioning Principles

• Given a set X ⊆ D in M=(D,d), basic 

partitioning principles have been defined:

– Ball partitioning

– Generalized hyper-plane partitioning

– Excluded middle partitioning
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Ball Partitioning

• Inner set:  { x ∈ X | d(p,x) ≤ dm }

• Outer set: { x ∈ X | d(p,x) > dm }

p

dm
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Generalized Hyper-plane

• { x ∈ X | d(p1,x) ≤ d(p2,x) }

• { x ∈ X | d(p1,x) > d(p2,x) }

p2

p1
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Similarity Range Query

• range query

– R(q,r) = { x ∈ X | d(q,x) ≤ r }

… all museums up to 2km from my hotel …

r

q
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Nearest Neighbor Query

• the nearest neighbor query
– NN(q) = x
– x ∈ X, ∀y ∈ X, d(q,x) ≤ d(q,y)

• k-nearest neighbor query
– k-NN(q,k) = A
– A ⊆ X, |A| = k
– ∀x ∈ A, y ∈ X – A, d(q,x) ≤ d(q,y)

… five closest museums to my hotel …

q

k=5



Scalability: Peer-to-Peer Indexing

• Local search: Main memory structures

• Native metric techniques: GHT*, VPT*

• Transformation techniques: M-CAN, M-Chord
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Infrastructure Independence: MESSIF 

Metric Similarity Search Implementation Framework

Metric space (D,d) Operations Storage

Centralized index structures

Distributed index structures

Communication

Net
Vectors

• Lp and quadratic form

Strings 

• (weighted) edit and

protein sequence

Insert, delete,

range query,

k-NN query,

Incremental k-NN

Volatile memory

Persistent memory

Performance statistics
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MUFIN demos

• http://disa.fi.muni.cz/imgsearch/similar

• http://www.pixmac.com/

• http://disa.fi.muni.cz/twenga/

• http://disa.fi.muni.cz/fingerprints/

• http://disa.fi.muni.cz/subseq/

• http://disa.fi.muni.cz/FaceMatch/

• http://disa.fi.muni.cz/annotation/

• http://disa.fi.muni.cz/motion-match/

• http://disa.fi.muni.cz/profimedia-
neural_network-20M/
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Preprocessing

Retrieval

Face detection with
several technologies

Merge of
detected faces

<13.9, 9.5, -6.0, 712.1, …>
<17.9, 12.1, -9.1, 692.0, …>
<8.8, 7.7, -3.5, 570.8, …>

<14.4, 8.2, -8.4, 704.0, …>
<10.1, 5.8, 40.6, 99.6, …>

<5.4, 1.2, -60.4, 88.0, …>
<45.1, 64.8, 90.6, 78.6, …>

Face description with
several technologies

Similarity Search in Collections of Faces

<13.9, 9.5, -6.0, 712.1, …>
<10.6, 78.9, -45.6, 101.3, …>

0.12 0.17 0.18
0.23

Fused
features DB

Features indexing
by one technique

Face 
Detection

Features
Extraction

Candidates
filtering

Index

Fused features
saving

Candidate
faces

Query imagePragu, August 2016
20th East-European Conference on Advances 
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Fused Face Detection and Face Matching

• Fused face detection:

• Faces detected by more technologies are taken into account

• Showcase: 3 technologies, compliance of at least two:

• Fused face matching:

• Characteristic features from more technologies are available
for each face

• Similarity of two faces evaluated by each technology is 
normalized into interval [0, 1]

• Normalized value expresses a probability that faces belong to 
the same person

• Highest probability is used to determine the similarity of faces

Software name OpenCV Luxand Verilook Compliance

of at least 2

Recall / precision (%) 55 / 89 64 / 83 73 / 83 64 / 96
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Face Matching Results, Relevance Feedback

• User may improve results by marking correctly found 
faces in several iterations:

query

query

2nd iteration

1st iteration

Pragu, August 2016
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Search-based Image Annotation

� We already have a strong tool – the similarity search

� For any input image, we can retrieve visually similar images

� Metadata of the similar images can be used to describe the original image

� Keyword-based image retrieval 

� Popular and intuitive 

� Needs pictures with text metadata

� Manual annotation is expensive 
?

Need for automatic image annotation

Search-based image annotation
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Search-based annotation principles

Annotated image 

collection

Content-based 

image retrieval

Similar annotated images 

Yellow, 

bloom, 

pretty

Meadow, 

outdoors, 

dandelion

Mary’s 

garden, 

summer

Candidate 

keyword

processing

Semantic 

resources

Final candidate keywords 

with probabilities

Plant 0.3

Flower 0.3

Garden 0.15

Sun 0.05

Human 0.1

Park 0.1

d = 0.2 d = 0.6d = 0.5

?
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Content-based retrieval for annotations

� What we need:

� Large collection of reliably annotated images: Profiset

� 20 million general-purpose photos from the Profimedia photostock company

� Descriptive keywords for each photo provided by authors who want to sell the 

pictures → rich and reliable annotations

� Efficient and effective search: DeCAF descriptors and PPP-codes

� DeCAF: 4096-dimensional vector obtained from the last layer of a neural network 

image classifier

� PPP-codes: effective permutation-based metric space indexing method 

Profiset keywords: botany, close, closeup, color, daytime, detail,  

exterior, flower,  germany, hepatica, horticulture, laughingstock, 

liverwort, lobed, mecklenburg, nature, nobilis, outdoor, outside, plant, 

pomerania, purple, round, western
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ConceptRank

� Candidate keyword analysis inspired by Google PageRank

� Uses semantic connections between candidate keywords to determine the 

probability of individual candidates

� Main steps:

� Construct a graph of candidate keywords related by WordNet semantic links

� New candidates can be found during the WordNet exploration

� Apply biased random walk with restarts to compute the score of each keyword

� Keyword scores from the content-based search are included via the biased restart

Similar annotated images 

Yellow, 

bloom, 

pretty

Meadow, 

outdoors, 

dandelion

Mary’s 

garden, 

summer

d = 0.2 d = 0.6d = 0.5
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Example

Candidate keywords after CBIR

church, architecture, travel, europe, building, religion, germany, buildings, north, churches, christianity, 

america, religious, exterior, st, historic, world, tourism, united, usa, …

1. Retrieve 100 similar images from Profiset

2. Merge their keywords, compute frequencies

3. Build the semantic network using WordNet

4. Compute the ConceptRank

5. Apply postprocessing & return 20 most probable keywords

ConceptRank scores

building (2.53), structure (2.41), LANDSCAPE (2.10), BUILDINGS (1.87), OBJECT (1.84), NATURE (1.78), 

place_of_worship (1.75), church (1.74), Europe (1.68), religion (1.64), continent (1.51), …

Final keywords

building, structure, church, religion, continent, group, travel, island, sky, architecture, tower, person, 

belief, locations, chapel, christianity, tourism, regions, country, district

Semantic network

4 relationships: hypernym (dog → animal), hyponym (animal → dog), meronym (leaf → tree), holonym (tree → leaf)

270 network nodes, 471 edges
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Annotations in use

� Participation in the ImageCLEF 2014 Scalable Annotation Challenge

� 2nd place, mean average precision of annotation approx. 60 %

� Web demo & Mozilla addon

� http://disa.fi.muni.cz/prototype-applications/image-annotation



Similarity Search in Streams

▪Two basic approaches to explore  data:

▪Store, pre-process and search later, database processing

▪Process (filter) continuously, stream processing

▪Examples of stream processing applications:

▪Surveillance camera and event detection

▪Mail stream and spam filter

▪Publish/subscribe applications

41
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Stream Processing Scenarios

▪ Stream: potentially infinite sequence of data items 
(d1, d2, …) – tuples, images, frames, etc.

▪ Basic scenarios:

▪ Data items processed immediately, possible data item skipping
→ minimize delay - e.g., event detection

▪ Process everything as fast as possible, delay possible to 
maximize throughput - our focus

▪ Motivating examples with similarity searching

▪ Image annotation – annotate a stream of images collected by a 
web crawler

▪ Publish/subscribe applications – categorize a stream of 
documents by similarity searching

42
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Processing Streams of Query Objects
▪ Typical large-scale similarity search approach:

▪ partitioned data stored on a disk

▪ partition reads from a disk form the bottleneck

▪ Idea: similar queries need similar sets of partitions → save accesses

▪ Buffer: memory used for reordering (clustering) queries

▪ Cache: memory containing previously read data partitions

43

Disk

Buffer
Query

Cache
Query

Stream

Result

Metric index

Pragu, August 
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Experiment Results

▪ 100,000 processed 10-NN queries

▪ DB: 1 mil. MPEG-7 descriptors

▪ Buffer capacity: 8,000 queries

▪ Cache size: 40,000 objects (4% of the DB)
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▪ 100,000 processed 10-NN queries

▪ DB: 10 mil. MPEG-7 descriptors

▪ Buffer capacity: 10,000 queries

▪ Cache size: 90,000 objects (0.9% of the DB)
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Similarity Search
in Motion Capture (Mocap) Data

Digital representations of human motions, recorded by 
motion capturing devices for further use in a variety of 
applications.
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What Is Mocap
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• Digital representation is depicted by series of coordinates of body 
joints in space-time.

• Complex multi-dimensional spatio-temporal data (3D space, 31 
joints, 120 frames per second).

• Visualized by simplified human skeleton (stick figure), coordinates 
of joints stored as float numbers.

• 1 minute of such motion data ≈  669,600 float numbers.

Pragu, August 2016



The Need for a Similarity Measure

Almost every application of Mocap data
(analysis, searching, action recognition, detection, synthesis, clustering)

requires a pair-wise action comparison based on 
similarity.

The challenge:

•Develop a measure
for content-based similarity

comparison of Mocap data.
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?
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Motion Similarity Problems

The same action can be performed differently

• by different actors,

• in various styles,

• in various speed,

• or start at different body configurations.

Similarity of motions is application-dependent

• e.g., general action recognition vs.

person-identification

• there is no universal similarity model
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Comparing Similarity in Motions 
General Overview

1. DATA REPRESENTATION

absolute coordinates, relative distances, joint rotation angles or velocities

(quantization or dimensionality reduction might be applied)
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Machine Learning

• Convolutional Neural 
Networks, Boltzmann M.

• Support Vector Machines

Special structures

• Motion and Action graphs

• Temporal pyramids

• Hidden Markov models

Distance-Based functions

• Dynamic Time Warping

• k-NN + L2

2. WAYS OF COMPARISON

+
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Comparing Similarity in Motions 
Examples
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Joint positions features

+ Euclidean Distance

(Krüger 2010)

Fisher Vector

+ SVM classifier

(Evangelidis 2014)

Time Series

+ Dynamic Time Warping

(Müller 2009)
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Our Approach – Motion Images

Every single-frame joint configuration is normalized (by centering and 
rotating), then transformed into a RGB stripe image while fully 
preserving skeleton configuration.
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Motion Images + Caffe

1) Effective transformation 
from (dynamic) motion capture data into (static) images.

2) Extract fixed-size feature vector
using content-based image descriptors.

3) Index for fast and scalable search
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1)

Motion Motion Image

(hop-one-leg)

2)
<0, 0, 4.56, 0, 7.88, 

…>

Nearest neighbors

3)

d = 13.17 d = 10.1

d = 14.2 d = 1.1

4096-dim

Caffe 

vector
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Similarity model: Caffe + L2
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HDM05 dataset

2345 motions
120 fps, 31 joints

122 categories

Motion Images

1 motion = 1 image

Each image is rescaled to 
256 x 256 px to fit as an

input to the neural
network.

Caffe Descriptors

Extracted using
Convolutional Neural 

Network trained on 1.3M 
photographs

Network can be fine-
tuned to the domain of

motion images

Output of 7th layer is a 
4096-dimensional vector

transfor

m

Motion Images

extract

4096-dimensional 

features

Caffe descriptors are fixed sized vectors extracted
from motion images. They are compared for
similarity by L2 distance function.
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Motion Images – Properties

•Pattern recognition is a mature concept nowadays
many highly accurate computer vision techniques might be employed.

•The proposed similarity measure is robust and tolerant
towards inferior data quality, execution speed and imprecise 
segmentation.

•Fixed-size feature vectors can be indexed in large scale

evaluate a query in one year long Mocap data in less than a second

•Fixed-size feature vectors compress the original data
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Sizes Compared

• 5 seconds of mocap
• 3 x 31 x 120 x 5 = 57 600 floats 

• ≈ 460 KB

• 1 image 256 x 256 px in png format
• ≈ 5-10 KB

•1 caffe descriptor
• 4096 floats ≈ 32 KB

• 4096 bits ≈ 1 KB

• 1 mpeg7 descriptor 
• 256 floats ≈ 2 KB
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Laboratory of

Data Intensive Systems and Applications

disa.fi.muni.cz

Pragu, August 2016 20TH EAST-EUROPEAN CONFERENCE ON ADVANCES IN DATABASES AND INFORMATION SYSTEMS 56


