SIMILARITY SEARCH The Metric Space Approach

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, Michal Batko

Table of Content

Part I: Metric searching in a nutshell

- Foundations of metric space searching
- Survey of existing approaches

Part II: Metric searching in large collections

- Centralized index structures
- Approximate similarity search
- Parallel and distributed indexes

Parallel and Distributed Indexes

1. preliminaries

- 2. processing M-trees with parallel resources
- 3. scalable and distributed similarity search
- 4. performance trials

Parallel Computing

Parallel system

- Multiple independent processing units
- Multiple independent storage places
- Shared dedicated communication media
- Shared data

Example

 Processors (CPUs) share operating memory (RAM) and use a shared internal bus for communicating with the disks

Parallel Index Structures

- Exploiting parallel computing paradigm
- Speeding up the object retrieval
 - Parallel evaluations
 - using multiple processors at the same time
 - Parallel data access
 - several independent storage units
- Improving responses
 - CPU and I/O costs

Parallel Search Measures

The degree of the parallel improvement

Speedup

- Elapsed time of a fixed job run on
 - a small system (ST)
 - a big system (BT)

$$speedup = \frac{ST}{BT}$$

- Linear speedup
 - *n*-times bigger system yields a speedup of *n*

Parallel Search Measures

Scaleup

Elapsed time of

- a small problem run on a small system (STSP)
- a big problem run on a big system (BTBP)

$$scaleup = \frac{STSP}{BTBP}$$

- Linear scaleup
 - The *n*-times bigger problem on *n*-times bigger system is evaluated in the same time as needed by the original system to process the original problem size

Distributed Computing

- Parallel computing on several computers
 - Independent processing and storage units
 - CPUs and disks of all the participating computers
 - Connected by a network
 - High speed
 - Large scale
 - Internet, corporate LANs, etc.
- Practically unlimited resources

Distributed Index Structures

- Data stored on multiple computers
 - Navigation (routing) algorithms
- Solving queries and data updates
 - Network communication
- Efficiency and scalability
 - Scalable and Distributed Data Structures
 - Peer-to-peer networks

Scalable & Distributed Data Structures

- Client/server paradigm
 - Clients pose queries and update data
 - Servers solve queries and store data
- Navigation algorithms
 - Use local information
 - Can be imprecise
 - image adjustment technique to update local info

SDDS Properties

Scalability

 data migrate to new network nodes gracefully, and only when the network nodes already used are sufficiently loaded

No hotspot

there is no master site that must be accessed for resolving addresses of searched objects, e.g., centralized directory

Independence

 the file access and maintenance primitives (search, insert, node split, etc.) never requires atomic updates on multiple nodes

Peer-to-Peer Data Networks

- Inherit basic principles of the SDDS
- Peers are equal in functionality
 - Computers participating in the P2P network have the functionality of both the client and the server
- Additional high-availability restrictions
 - Fault-tolerance
 - Redundancy

Parallel and Distributed Indexes

- 1. preliminaries
- 2. processing M-trees with parallel resources
- 3. scalable and distributed similarity search
- 4. performance trials

Processing M-trees with parallel resources

- Parallel extension to the basic M-Tree
 - To decrease both the I/O and CPU costs
 - Range queries
 - k-NN queries
- Restrictions
 - Hierarchical dependencies between tree nodes
 - □ Priority queue during the *k*-NN search

M-tree: Internal Node (reminder)

- Internal node consists of an entry for each subtree
- Each entry consists of:
 - Pivot: *p*
 - Covering radius of the sub-tree: r^c
 - Distance from p to parent pivot p^{p} : $d(p,p^{p})$
 - Pointer to sub-tree: ptr

 $|\langle p_1, r_1^c, d(p_1, p^p), ptr_1\rangle| |\langle p_2, r_2^c, d(p_2, p^p), ptr_2\rangle| \cdots |\langle p_m, r_m^c, d(p_m, p^p), ptr_m\rangle|$

All objects in the sub-tree *ptr* are within the distance *r^c* from *p*.

M-tree: Leaf Node (reminder)

- Leaf node contains data entries
- Each entry consists of pairs:
 - Object (its identifier): o
 - Distance between *o* and its parent pivot: $d(o, o^p)$

$$\langle o_1, d(o_1, o^p) \rangle \langle o_2, d(o_2, o^p) \rangle \cdots \langle o_m, d(o_m, o^p) \rangle$$

Parallel M-Tree: Lowering CPU costs

- Inner node parallel acceleration
 - Node on given level cannot be accessed
 - Until all its ancestors have been processed
 - □ Up to *m* processors compute distances to pivots $d(q,p_i)$

- Leaf node parallel acceleration
 - □ Independent distance evaluation $d(q,o_i)$ for all leaf objects

$$\langle o_1, d(o_1, o^p) \rangle \langle o_2, d(o_2, o^p) \rangle \cdots \langle o_m, d(o_m, o^p) \rangle$$

- k-NN query priority queue
 - One dedicated CPU

Parallel M-Tree: Lowering I/O costs

- Node accessed in specific order
 - Determined by a specific similarity query
 - Fetching nodes into main memory (I/O)
- Parallel I/O for multiple disks
 - Distributing nodes among disks
 - Declustering to maximize parallel fetch
 - Choose disk where to place a new node (originating from a split)
 - Disk with as few nodes with similar objects/regions as possible is a good candidate.

Parallel M-Tree: Declustering

- Global allocation declustering
 - Only number of nodes stored on a disk taken into account
 - Round robin strategy to store a new node
 - Random strategy
 - No data skew
- Proximity-based allocation declustering
 - Proximity of nodes' regions determine allocation
 - Choose the disk with the lowest sum of proximities
 - between the new node region
 - and all the nodes already stored on the disk

Parallel M-Tree: Efficiency

Experimental evaluation

- Good speedup and scaleup
- Sequential components not very restrictive
- Linear speedup on CPU costs
 - Adding processors linearly decreased costs
- Nearly constant scaleup
 - Response time practically the same with
 - a five times bigger dataset
 - a five times more processors
 - Limited by the number of processors

Parallel M-Tree: Object Declustering

- Declusters objects instead of nodes
 - Inner M-Tree nodes remain the same
 - Leaf nodes contain pointers to objects
 - Objects get spread among different disks
- Similar objects are stored on different disks
 - Objects accessed by a similarity query are maximally distributed among disks
 - Maximum I/O parallelization
 - □ Range query $R(o_N, d(o_N, p))$ while inserting o_N
 - Choose the disk for physical storage
 - with the minimum number of retrieved objects

Parallel and Distributed Indexes

- 1. preliminaries
- 2. processing M-trees with parallel resources
- **3.** scalable and distributed similarity search
- 4. performance trials

Distributed Similarity Search

- Metric space indexing technique
 - Generalized hyper-plane partitioning
- Peer-to-Peer paradigm
 - Self organizing
 - Fully scalable
 - No centralized components

GHT* Structure

GHT* Architecture

Peers

- Computers connected by the network
 - message passing paradigm
 - request and acknowledgment messages
- Unique (network node) identifier NNID
- Issue queries
- Insert/update data
- Process data and answer queries

GHT* Architecture (cont.)

Buckets

- Storage for data
 - metric space objects
 - no knowledge about internal structure
- Limited space
 - Splits/merges possible
- □ Held by peers, multiple buckets per peer
 - there can be no bucket in a peer
 - identified by *BID*, unique within a peer

GHT* Architecture (cont.)

- Precise location of every object
 - Impossible to maintain on every peer
 - Navigation needed in the network
- Address search tree (AST)
 - Present in every peer
 - May be imprecise
 - repeating navigation in several steps
 - image adjustment

GHT* Address Search Tree

- Based on Generalized Hyperplane Tree
- Binary tree
- Inner nodes
 - pairs of pivots
 - serial numbers
- Leaf nodes
 - BID pointers to buckets
 - NNID pointers to peers

GHT* Address Search Tree

GHT* Inserting Objects

Peer 1 starts inserting an object o

- Use local AST
- Start from the root
- In every inner node:
 - take right branch if $d(p_1, o) > d(p_2, o)$
 - take left branch if $d(p_5, o) \le d(p_6, o)$
- □ Till a leaf node is reached

GHT* Inserting Objects (cont.)

Peer 1 inserting the object o

□ If a *BID* pointer is found

- Store the object *o* into the pointed bucket
- The bucket is local (stored on *peer 1*)

GHT* Inserting Objects (cont.)

Peer 1 inserting the object o

□ If an *NNID* pointer is found

- The inserted object o is sent to peer 2
- Where the insertion resumes

GHT* Binary Path

- Represents an AST traversal path
- String of ones and zeros
 - '0' means left branch
 - '1' means right branch
- Serial numbers
 - in inner nodes
 - detect obsolete parts
- Traversal example:

GHT* Binary Path (cont.)

Example of a different path

GHT* Storage Management

Database grows as new data are inserted

Buckets have limited capacity

Bucket splits

- Allocate a new bucket
- Extend routing information
 - choose new pivots
- Move objects

Splitting

- Bucket capacity is reached
- Allocate a new bucket
 - Either a new local bucket
 - or at another peer

Splitting **AST** p_3 p_4 Bucket capacity is reached p_7 p_8 Allocate a new bucket Either a new local bucket **BID/NNID BID** • or at another peer Choose new pivots **Overfilled bucket New bucket** Adjust AST \bigcirc p_8 Inner node with pivots \bigcirc Leaf node for the new bucket Move objects

Similarity Search:

 p_7

Pivot Choosing Algorithm

- Pivots are pre-selected during insertion
 - Two objects are marked at any time
 - □ The marked objects become pivots on split
- Heuristic to maximize the distance between pivots
 - Mark the first two inserted objects
 - Whenever a new object arrives
 - Compute its distances from the currently marked objects
 - If one of the distances is greater than the distance between marked objects
 - change the marked objects

GHT* Range Search

Peer 1 starts evaluating a query R(q,r)

- Use the local AST
- Start from the root
- In each inner node:
 - take right branch if $d(p_a,q)+r > d(p_b,q)-r$
 - take left branch if $d(p_a,q) r \le d(p_b,q) + r$
 - both branches can qualify
- Till a leaf node is reached in each followed path

GHT* Range Search (cont.)

Peer 1 evaluating the range query R(q,r)

- □ For every *BID* pointer found
 - Search the corresponding local bucket
 - Retrieve all objects *o* in the bucket that satisfy

 $d(q,o) \le r$

 Any centralized similarity search method can be used

GHT* Range Search (cont.)

- Peer 1 evaluating the range query R(q,r)
 - □ For every *NNID* pointer found
 - Continue with the search at corresponding peers

GHT* Range Search (cont.)

Peer 1 evaluating the range query R(q,r)

- □ For every *NNID* pointer found
 - Continue with the search at corresponding peers
 - Build BPATH for the traversal
 - Forward the message
 - Destination peers consult their ASTs
 - Avoid repeated computations using the *BPATH*
 - Wait until the results are gathered from all active peers
 - Merge them with results from local buckets

GHT* Nearest Neighbor Search

- Based on the range search
 - Estimate the query radius
- Evaluate k-nearest neighbors query k-NN(q)
 - Locate a bucket where *q* would be inserted
 - use the strategy for inserting an object
 - Start a range query with radius *r* equal to the distance between *q* and the *k*-th nearest neighbor of *q* in this bucket
 - If the bucket contains less than **k** objects, estimate *r* using:
 - an optimistic strategy
 - an pessimistic strategy
 - □ The result of the range query contains the *k*-*NN* result

GHT* *k*-NN Search Example

Example 5-NN(q)

Use the insert strategy in the local AST

 $d(p_1,q) > d(p_2,q)$

 $d(p_5,q) \le d(p_6,q)$

- Until a BID pointer is found
 - Continue searching at other peer whenever an NNID pointer is found
- Search the destination bucket

GHT* &-NN Search Example (cont.)

Example 5-NN(q)

- Retrieve five nearest neighbors of *q* in the local bucket
- Set r to the distance of the fifth nearest neighbor found
- Evaluate a distributed range search *R(q,r)*
 - results include at least five nearest neighbors from the local bucket
 - however, some additional objects closer to *q* can be found

□ Get the first five nearest objects of *R(q,r)*

GHT* Updates and Deletions

- Updating an object
 - Delete the original object
 - Insert the updated version
- Deleting an object
 - Locate the bucket where the object is stored
 - the insert navigation algorithm is used
 - Remove the object from the bucket
 - The bucket occupation may become too low
 - merge the bucket with another one
 - update the corresponding nodes in the AST

GHT* Merging Buckets

Remove a bucket

- Get its sibling
 - either a leaf node (bucket)
 - or an inner node
- Reinsert all remaining objects
 - into the sibling
 - multiple buckets possibly
- Remove the inner node N_p
- Increase the node's serial number

AST: Image Adjustment

The AST is modified on bucket splits and merges
 Only changed peers are aware of the change (4 and 5)

AST: Image Adjustment (cont.)

- The AST is modified on bucket splits and merges
 Only changed peers are aware of the change (4 and 5)
- When other peer searches

Forwards the query to a peer

AST: Image Adjustment (cont.)

- The AST is modified on bucket splits and merges
 - Only changed peers are aware of the change (4 and 5)
- When other peer searches
 - Forwards the query to a peer
 - which has a different AST view
 - The incomplete search is detected
 - by too short BPATH
 - The search evaluation resumes
 - possibly forwarding the query to some other peers

AST: Image Adjustment (cont.)

- The AST is modified on bucket splits and merges
 - Only changed peers are aware of the change (4 and 5)
- When other peer searches
 - Forwards the query to a peer
 - which has a different AST view
 - The incomplete search is detected
 - by too short BPATH
 - The search evaluation resumes
 - possibly forwarding the query to some other peers
- Image adjustment is sent back

AST: Logarithmic Replication

- The full AST on every peer is space consuming
 many pivots must be replicated at each peer
- Only a limited AST stored
 - all paths to local buckets
 - nothing more
- Hidden parts
 - replaced by the NNIDs of the leftmost peers

AST: Logarithmic Replication (cont.)

Result of logarithmic replication

The partial AST

- Hidden parts
 - replaced by the NNIDs of the leftmost peers

GHT* Joining P2P Network

A new node joining the network sends "I'm here"

- Received by each active peer
- Peers add the node to their lists of available peers
- If a node is needed by a split
 - Get one peer from the list
 - send an activation request
 - The peer sends "I'm being used"
 - the other peers remove it from their lists
 - The peer is "Ready to serve"

GHT* Leaving P2P Network

- Unexpected leaves not handled
 - Requires replication or other fault-tolerant techniques
- Peers without storage
 - Can leave without restrictions
- Peers storing some data
 - Delete all stored data
 - all buckets are merged
 - Reinsert data back to the structure
 - without offering its own storage capacity

Better leaving/fault-tolerant is a research challenge

Parallel and Distributed Indexes

- 1. preliminaries
- 2. processing M-trees with parallel resources
- 3. scalable and distributed similarity search
- 4. performance trials

Performance Trials

Objectives: show the performance of the distributed similarity search index structure

The same datasets as for the centralized ones
 Comparison possible

⇒ Experiments show that the response times are nearly constant

Datasets

- Trials performed on two datasets:
 - VEC: 45-dimensional vectors of image color features compared by the *quadratic distance* measure
 - STR: sentences of a Czech language corpus compared by the *edit distance*

Datasets: Distance Distribution

Distribution of the distances within the datasets

- VEC: practically normal distance distribution
- STR: skewed distribution

Computing Infrastructure

- 300 Intel Pentium workstations
 - Linux operating system
 - available for use to university students
- Connected by a 100Mbps network
 access times approximately 5ms
- Memory based buckets
 - □ limited capacity up to 1,000 objects
- Basic datasets:
 - 100,000 objects
 - □ 25 peers

Performance Trials: Measures

Distance computations

- Number of all evaluations of the metric function
 - either in the AST or in buckets
- Represent the CPU costs
 - depends on the metric function complexity
 - the evaluation may vary from hundreds of nanoseconds to seconds

Accessed buckets

- Number of buckets accessed during a query evaluation
- Represents the I/O costs

Performance Trials: Measures (cont.)

Messages sent

- Transmitted between peers using the computer network
- Represent the communication costs
 - depends on the size of the sent objects

Performance Trials: Remarks

- Response times are imprecise:
 - not dedicated computers
 - depend on the actual load of used computers and the underlying network
 - other influences
- Query objects follow the dataset distribution
- Average over 50 queries:
 - different query objects
 - □ the same selectivity (radius or number of nearest neighbors)

Performance Trials: Outline

Performance of similarity queries

- Global costs
 - CPU, I/O and communication
 - similar to the centralized structures
- Parallel costs
- □ Comparison of range and *k*-nearest neighbors queries
- Data volume scalability
 - Costs changes while increasing the size of the data
 - Intraquery parallelism
 - Interquery parallelism

- Changing range query radius
- Result set size
 - grows exponentially
- Buckets accessed (I/O costs)
 - grows practically linearly
- Similar to centralized structures
- Peers accessed
 - Only slight increase
 - more buckets accessed per peer

- Changing k for k-NN queries
 - logarithmic scale

Buckets accessed

- □ grows very quickly as *k* increases
- k-NN is very expensive
 - similar to centralized structures
- Peers accessed
 - follows the number of buckets
 - practically all buckets per peer are accessed for higher values of k

- Changing range query radius
- **Distance computations** (CPU costs)
 - Divided for AST and buckets
 - small percentage of distance comp. during the AST navigation
 - Buckets use linear scan
 - all objects must be accessed
 - no additional pruning technique used
- Similar to centralized structures

50

0

n

5

20

15

10

range query radius

- Changing k for k-NN queries
 - logarithmic scale

Distance computations

- only a small percentage of distance computations during the AST navigation is needed
- k-NN very expensive
 - also with respect to the CPU costs

Similarity Queries Global Costs

- Changing range query radius
- Number of messages
 (Communication costs)
 - Divided for requests and forwards
 - Forward messages means misaddressing
 - Only 10% messages forwarded
 - even though logarithmic replication used
- No communication in centralized structures

Similarity Queries Global Costs

- Changing k for k-NN queries
 - logarithmic scale

Number of messages

- very small number of messages forwarded
- corresponds with the number of peers accessed
 - practically all peers accessed for k greater than 100
- Slightly higher than for range queries

Similarity Queries Global Costs

GHT* is comparable to centralized structures

- No pruning techniques in buckets
 - slightly increased number of distance computations
- Buckets accessed on peers
 - not fixed size of blocks, but fixed bucket capacity
- Trends are similar
 - Costs increase linearly

- Correspond to the actual response times
- More difficult to measure
 - Maximum of the serial costs from all accessed peers
 - □ Example: the parallel distance comp. of a range query
 - number of distance computations at each peer accessed
 at a peer, it is a sum of costs for accessed buckets
 - maximum of the values needed on active peers
- k-NN has the serial phase of locating the first bucket
 - we must sum the first part with the range query costs
 - additional serial iterations may be required if optimistic/pessimistic strategy is used

- Changing range query radius
- Parallel buckets accessed (I/O costs)
 - Maximal number of buckets accessed per peer
 - It is bounded by the capacity
 - a peer has at most five buckets
- Not affected by the query size

- Changing k for k-NN queries
 - logarithmic scale
- Iterations
 - one additional optimistic strategy iteration for k greater than 1,000

Parallel bucket access costs

- bounded by the capacity
 - practically all 5 buckets per peer are always accessed
- second iteration increases the costs

- Changing the range query radius
- Parallel distance computations (CPU costs)
 - Maximal number of distance computations per peer
 - the costs of the linear scans of the peer's accessed buckets
 - It is bounded by the capacity
 - a peer has maximally five buckets of maximally 1,000 objects
- Good response even for large radii

logarithmic scale

Parallel distance computations

- bounded by the capacity
 - maximally 5,000 distance computations per peer
 - all objects per peer are evaluated
- Second iteration (k > 1,000)
 Increases the cost
 Although k-NN query is expensive, if the CPU costs are bounded

- Measure for the messages sent (the communication costs)
 - during the query execution, the peer may send messages to several other peers
 - the cost is equal to sending only one, because the peer sends them all at once
 - the serial part is thus the forwarding
- The number of peers sequentially contacted
 - hop count

Changing range query radius

Hop count

(Communication costs)

- logarithmically proportional to the number of peers accessed
- in practice, this cost is very hard to notice
 - forwarding is executed before the local buckets scan

- Changing k for k-NN queries
 - logarithmic scale

Hop count

- Since only few messages are forwarded, the *k-NN* queries have practically the same costs as the range queries
- Small amount of additional hops during the second phase
 - approximately one additional hop is needed

Similarity Queries Comparison

- k-NN and range queries
 - logarithmic scale
 - range query has the radius set to the distance of the k-th nearest object
 - that is the perfect estimate

Total distance computations

the *k*-NN query is slightly more
 expensive than the range query

Parallel distance computations

 clearly visible differences of the first phase and additional iteration(s) VEC

- GHT* real costs summary
 - □ the real response of the indexing system
- GHT* exhibits
 - constant parallel CPU costs
 - distance computations bounded by bucket capacity
 - Constant parallel I/O costs
 - number of buckets accessed bounded by peer capacity
 - Logarithmic parallel communication costs
 - even with the logarithmic replication

- Dataset gradually expanded to 1,000,000 objects
 - measurements after every increment of 2,000 objects
- Intraquery parallelism
 - parallel response of a query measured in distance comp.
 - maximum of costs incurred at peers involved in the query
- Interquery parallelism
 - simplified by the ratio of the number of peers involved in a query to the total number of peers
 - the lower the ratio, the higher the chances for other queries to be executed in parallel

- Changing dataset size
 - two different query radii

Intraquery parallelism

- Practically constant responses
 - even for the growing dataset
 - some irregularities for small datasets observed
- Larger radii result in higher costs
 - though, not much

- Changing dataset size
 - two different k for k-NN
 - corresponding range queries

Intraquery parallelism

- by analogy to range queries the responses are nearly constant
- There is a small difference for different values of k

Changing dataset size
 Two different query radii

Interquery parallelism

- As the size of the dataset increases, the interquery parallelism gets better
- Better for the smaller radii
 - smaller percentage of peers involved in a query

- GHT* scalability for one query
 - Intraquery parallelism
 - both the AST navigation and the bucket search
 - Remains practically constant for growing datasets
- GHT* scalability for multiple queries
 - Interquery parallelism
 - a simplification by percentage of used peers
 - Allows more queries executed at the same time as the dataset grows