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Parallel ComputingParallel Computing

� Parallel system

� Multiple independent processing units � Multiple independent processing units 

� Multiple independent storage places

� Shared dedicated communication media� Shared dedicated communication media

� Shared data

� Example

� Processors (CPUs) share operating memory (RAM) and 

use a shared internal bus for communicating with the disks
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Parallel Index StructuresParallel Index Structures

� Exploiting parallel computing paradigm

� Speeding up the object retrieval� Speeding up the object retrieval

� Parallel evaluations

using multiple processors at the same time� using multiple processors at the same time

� Parallel data access

several independent storage units� several independent storage units

� Improving responses

� CPU and I/O costs
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Parallel Search MeasuresParallel Search Measures

� The degree of the parallel improvement

� Speedup� Speedup
� Elapsed time of a fixed job run on

� a small system (ST)� a small system (ST)

� a big system (BT)

ST
speedup =

� Linear speedup

BT

ST
speedup =

� Linear speedup

� n-times bigger system yields a speedup of n
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Parallel Search MeasuresParallel Search Measures

� Scaleup
� Elapsed time of � Elapsed time of 

� a small problem run on a small system (STSP)

� a big problem run on a big system (BTBP)

BTBP

STSP
scaleup =

� Linear scaleup

� The n-times bigger problem on n-times bigger system is 

BTBP

� The n-times bigger problem on n-times bigger system is 
evaluated in the same time as needed by the original system 
to process the original problem size

Similarity Search: Part II, Chapter 5 7



Distributed ComputingDistributed Computing

� Parallel computing on several computers

� Independent processing and storage units� Independent processing and storage units

� CPUs and disks of all the participating computers

� Connected by a network� Connected by a network

� High speed

� Large scale� Large scale

� Internet, corporate LANs, etc.

� Practically unlimited resources� Practically unlimited resources
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Distributed Index StructuresDistributed Index Structures

� Data stored on multiple computers

� Navigation (routing) algorithms� Navigation (routing) algorithms

� Solving queries and data updates

Network communication� Network communication

� Efficiency and scalability

� Scalable and Distributed Data Structures

� Peer-to-peer networks� Peer-to-peer networks
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Scalable & Distributed Data StructuresScalable & Distributed Data Structures

� Client/server paradigm

� Clients pose queries and update data� Clients pose queries and update data

� Servers solve queries and store data

Navigation algorithms� Navigation algorithms

� Use local information

� Can be imprecise

� image adjustment technique to update local info
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Distributed Index ExampleDistributed Index Example

ServerServer

Data Search
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Data
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SDDS PropertiesSDDS Properties

� Scalability
� data migrate to new network nodes gracefully, and only � data migrate to new network nodes gracefully, and only 

when the network nodes already used are sufficiently 
loaded

� No hotspot
� there is no master site that must be accessed for resolving � there is no master site that must be accessed for resolving 

addresses of searched objects, e.g., centralized directory

Independence� Independence
� the file access and maintenance primitives (search, insert, 

node split, etc.) never requires atomic updates on multiple node split, etc.) never requires atomic updates on multiple 
nodes
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Peer-to-Peer Data NetworksPeer-to-Peer Data Networks

� Inherit basic principles of the SDDS

� Peers are equal in functionality� Peers are equal in functionality

� Computers participating in the P2P network have the 

functionality of both the client and the serverfunctionality of both the client and the server

� Additional high-availability restrictions

� Fault-tolerance

� Redundancy
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Peer-to-Peer Index ExamplePeer-to-Peer Index Example

PeerPeer

Data Peer
Peer

Data

Data Peer

Data

Network
Peer

Data

Network

Peer
Data

Peer
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Parallel and Distributed IndexesParallel and Distributed Indexes

1. preliminaries

2. processing M-trees with parallel resources2. processing M-trees with parallel resources

3. scalable and distributed similarity search

4. performance trials
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Processing M-trees with parallel resourcesProcessing M-trees with parallel resources

� Parallel extension to the basic M-Tree

� To decrease both the I/O and CPU costs� To decrease both the I/O and CPU costs

� Range queries

� k-NN queries� k-NN queries

� Restrictions

� Hierarchical dependencies between tree nodes

� Priority queue during the k-NN search
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M-tree: Internal Node (reminder)M-tree: Internal Node (reminder)

� Internal node consists of an entry for each subtree

� Each entry consists of:� Each entry consists of:
� Pivot: p

� Covering radius of the sub-tree: rc� Covering radius of the sub-tree: rc

� Distance from p to parent pivot pp: d(p,pp)

� Pointer to sub-tree: ptr� Pointer to sub-tree: ptr

〉〈 1111 ),,(,, ptrppdrp pc
L 〉〈 m

p
m

c
mm ptrppdrp ),,(,,〉〈 2222 ),,(,, ptrppdrp pc

� All objects in the sub-tree ptr are within the distance rc

〉〈 1111 ),,(,, ptrppdrp mmmm2222

� All objects in the sub-tree ptr are within the distance r

from p.
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M-tree: Leaf Node (reminder)M-tree: Leaf Node (reminder)

� Leaf node contains data entries

� Each entry consists of pairs:� Each entry consists of pairs:

� Object (its identifier): o

Distance between o and its parent pivot: d(o,op)� Distance between o and its parent pivot: d(o,op)

〉〈 ),(, poodo 〉〈 ),(, poodo 〉〈 ),(, poodo〉〈 ),(, 11
poodo 〉〈 ),(, 22

poodo 〉〈 ),(, p
mm oodoL
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Parallel M-Tree: Lowering CPU costs Parallel M-Tree: Lowering CPU costs 

� Inner node parallel acceleration
� Node on given level cannot be accessed� Node on given level cannot be accessed

� Until all its ancestors have been processed

� Up to m processors compute distances to pivots d(q,pi)� Up to m processors compute distances to pivots d(q,pi)

〉〈 1111 ),,(,, ptrppdrp pc
L 〉〈 m

p
m

c
mm ptrppdrp ),,(,,〉〈 2222 ),,(,, ptrppdrp pc

� Leaf node parallel acceleration
� Independent distance evaluation d(q,o ) for all leaf objects� Independent distance evaluation d(q,oi) for all leaf objects

k-NN query priority queue

〉〈 ),(, 11
poodo 〉〈 ),(, 22

poodo 〉〈 ),(, p
mm oodoL

� k-NN query priority queue
� One dedicated CPU
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Parallel M-Tree: Lowering I/O costsParallel M-Tree: Lowering I/O costs

� Node accessed in specific order

� Determined by a specific similarity query� Determined by a specific similarity query

� Fetching nodes into main memory (I/O)

Parallel I/O for multiple disks� Parallel I/O for multiple disks

� Distributing nodes among disks

� Declustering to maximize parallel fetch

� Choose disk where to place a new node (originating from a 

split)split)

� Disk with as few nodes with similar objects/regions as 

possible is a good candidate.possible is a good candidate.
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Parallel M-Tree: DeclusteringParallel M-Tree: Declustering

� Global allocation declustering

� Only number of nodes stored on a disk taken into account� Only number of nodes stored on a disk taken into account

� Round robin strategy to store a new node

� Random strategy� Random strategy

� No data skew

� Proximity-based allocation declustering� Proximity-based allocation declustering

� Proximity of nodes’ regions determine allocation

Choose the disk with the lowest sum of proximities� Choose the disk with the lowest sum of proximities

� between the new node region

and all the nodes already stored on the disk� and all the nodes already stored on the disk
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Parallel M-Tree: EfficiencyParallel M-Tree: Efficiency

� Experimental evaluation

� Good speedup and scaleup� Good speedup and scaleup

� Sequential components not very restrictive

Linear speedup on CPU costs� Linear speedup on CPU costs

� Adding processors linearly decreased costs

� Nearly constant scaleup

� Response time practically the same with� Response time practically the same with

� a five times bigger dataset

� a five times more processors

� Limited by the number of processors
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Parallel M-Tree: Object DeclusteringParallel M-Tree: Object Declustering

� Declusters objects instead of nodes

� Inner M-Tree nodes remain the same� Inner M-Tree nodes remain the same

� Leaf nodes contain pointers to objects

� Objects get spread among different disks� Objects get spread among different disks

� Similar objects are stored on different disks

Objects accessed by a similarity query are maximally � Objects accessed by a similarity query are maximally 

distributed among disks

Maximum I/O parallelization� Maximum I/O parallelization

� Range query R(oN,d(oN,p)) while inserting oN
Choose the disk for physical storage� Choose the disk for physical storage

� with the minimum number of retrieved objects
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Parallel and Distributed IndexesParallel and Distributed Indexes

1. preliminaries

2. processing M-trees with parallel resources2. processing M-trees with parallel resources

3. scalable and distributed similarity search

4. performance trials
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Distributed Similarity SearchDistributed Similarity Search

� Metric space indexing technique

� Generalized hyper-plane partitioning� Generalized hyper-plane partitioning

� Peer-to-Peer paradigm

Self organizing� Self organizing

� Fully scalable

� No centralized components

GHT* Structure
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GHT* ArchitectureGHT* Architecture

� Peers

� Computers connected by the network� Computers connected by the network

� message passing paradigm

� request and acknowledgment messages� request and acknowledgment messages

� Unique (network node) identifier NNID

� Issue queries� Issue queries

� Insert/update data

Process data and answer queries� Process data and answer queries
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GHT* Architecture (cont.)GHT* Architecture (cont.)

� Buckets

� Storage for data� Storage for data

� metric space objects

� no knowledge about internal structure� no knowledge about internal structure

� Limited space

� Splits/merges possible� Splits/merges possible

� Held by peers, multiple buckets per peer

� there can be no bucket in a peer� there can be no bucket in a peer

� identified by BID, unique within a peer
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GHT* Architecture SchemaGHT* Architecture Schema

Peer 1

No bucketsNo buckets

Network

Peer 2 Peer 3

Two buckets One bucket
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GHT* Architecture Schema (cont.)GHT* Architecture Schema (cont.)

NNID1

Request and acknowledgment Request and acknowledgment 

messages

Network

NNID2 NNID32

BID BID

3

BIDBID1 BID2 BID1
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GHT* Architecture (cont.)GHT* Architecture (cont.)

� Precise location of every object

� Impossible to maintain on every peer� Impossible to maintain on every peer

� Navigation needed in the network

Address search tree (AST)� Address search tree (AST)

� Present in every peer

� May be imprecise

� repeating navigation in several steps

� image adjustment

Similarity Search: Part II, Chapter 5 30



GHT* Address Search TreeGHT* Address Search Tree

� Based on Generalized Hyperplane Tree

� Binary tree� Binary tree

� Inner nodes p1 p2

2

� pairs of pivots

� serial numbers p5 p6p3 p4

2 3

� Leaf nodes

� BID pointers to buckets BID1 BID2 BID3 NNID2
� BID pointers to buckets

� NNID pointers to peers

Peer 2
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GHT* Address Search TreeGHT* Address Search Tree

Peer 1Peer 1

Peer 2 Peer 3
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GHT* Inserting ObjectsGHT* Inserting Objects

2

� Peer 1 starts inserting an object o

� Use local AST 2

p1 p2

2

2 3

� Use local AST

� Start from the root

� In every inner node:

p1 p2

2

3

p5 p6p3 p4

2 3� In every inner node:

� take right branch if

),(),( opdopd >

p5 p6

3

BID1 BID2 BID3 NNID2
� take left branch if

),(),( 21 opdopd >

),(),( 65 opdopd ≤
BID3

Peer 2

� Till a leaf node is reached

),(),( 65 opdopd ≤

Peer 2
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GHT* Inserting Objects (cont.)GHT* Inserting Objects (cont.)

� Peer 1 inserting the object o

� If a BID pointer is found 2

p1 p2
� If a BID pointer is found

� Store the object o into

2

2 3

p5 p6p3 p4

� Store the object o into

the pointed bucket

� The bucket is local

2 3

BID1 BID2 BID3 NNID2

� The bucket is local

(stored on peer 1) BID3

Peer 2Peer 2
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GHT* Inserting Objects (cont.)GHT* Inserting Objects (cont.)

� Peer 1 inserting the object o

� If an NNID pointer is found 2

p1 p2
� If an NNID pointer is found

� The inserted object o

2

2 3

p5 p6p3 p4

� The inserted object o

is sent to peer 2

� Where the insertion

2 3

BID3 NNID2BID1 BID2

� Where the insertion

resumes NNID2

Peer 2Peer 2Peer 2Peer 2
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GHT* Binary PathGHT* Binary Path

� Represents an AST traversal path

� String of ones and zeros 22
� String of ones and zeros

� ‘0’ means left branch

‘1’ means right branch

p1 p2

2

2 3

2

3
� ‘1’ means right branch

� Serial numbers
p5 p6p3 p4

2 33

� in inner nodes

� detect obsolete parts

BID3 NNID2BID1 BID2

� detect obsolete parts

� Traversal example:

Peer 2Peer 2

1 [2] 0 [3]
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GHT* Binary Path (cont.)GHT* Binary Path (cont.)

� Example of a different path
22

p1 p2

2

2 3

2

2

p5 p6p3 p4

2 32

BID3 NNID2BID1 BID2

Peer 2Peer 2

0 [2] 1 [2]
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GHT* Storage ManagementGHT* Storage Management

� Database grows as new data are inserted

� Buckets have limited capacity� Buckets have limited capacity

� Bucket splits

� Allocate a new bucket� Allocate a new bucket

� Extend routing information

� choose new pivots� choose new pivots

� Move objects
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ASTSplitting ...
ASTSplitting

p3 p4

2

� Bucket capacity is reached

� Allocate a new bucket
BID1

...

� Allocate a new bucket

� Either a new local bucket

or at another peer� or at another peer

Overfilled bucket
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ASTSplitting ...
ASTSplitting

p3 p4

2

� Bucket capacity is reached

� Allocate a new bucket
BID1

...

� Allocate a new bucket

� Either a new local bucket

or at another peer� or at another peer

� Choose new pivots Overfilled bucket New bucket

� Adjust AST
p8

p7
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ASTSplitting ...
ASTSplitting

p3 p4

2

� Bucket capacity is reached

� Allocate a new bucket
...

1

p7 p8
� Allocate a new bucket

� Either a new local bucket

or at another peer
BID1 BID/NNID

p7 p8

� or at another peer

� Choose new pivots Overfilled bucket New bucket

BID1 BID/NNID

� Adjust AST

� Inner node with pivots
p8

� Inner node with pivots

� Leaf node for the

new bucketnew bucket

� Move objects p7
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Pivot Choosing AlgorithmPivot Choosing Algorithm

� Pivots are pre-selected during insertion

� Two objects are marked at any time� Two objects are marked at any time

� The marked objects become pivots on split

Heuristic to maximize the distance between pivots� Heuristic to maximize the distance between pivots

� Mark the first two inserted objects

� Whenever a new object arrives

� Compute its distances from

the currently marked objectsthe currently marked objects

� If one of the distances is greater

than the distance between than the distance between 

marked objects

� change the marked objects
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GHT* Range SearchGHT* Range Search

2

� Peer 1 starts evaluating a query R(q,r)

� Use the local AST 2

p1 p2

2

2 3

� Use the local AST

� Start from the root

� In each inner node:

p1 p2

2

3

p5 p6p3 p4

2 3� In each inner node:

� take right branch if

rqpdrqpd ba −>+ ),(),(

p5 p6

3

BID1 BID2 BID3 NNID2
� take left branch if

rqpdrqpd ba −>+ ),(),(

rqpdrqpd ba +≤− ),(),(

BID3 NNID2

Peer 2

� both branches can qualify

� Till a leaf node is reached

rqpdrqpd ba +≤− ),(),(

Peer 2� Till a leaf node is reached

in each followed path
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GHT* Range Search (cont.)GHT* Range Search (cont.)

� Peer 1 evaluating the range query R(q,r)

� For every BID pointer found 2

p1 p2
� For every BID pointer found

� Search the corresponding

local bucket

2

2 3

p5 p6p3 p4

local bucket

� Retrieve all objects o in

the bucket that satisfy

2 3

BID1 BID2 BID3 NNID2

� Any centralized similarity

search method can be used

BID3
roqd ≤),(

Peer 2

search method can be used

Peer 2
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GHT* Range Search (cont.)GHT* Range Search (cont.)

� Peer 1 evaluating the range query R(q,r)

� For every NNID pointer found 2

p1 p2
� For every NNID pointer found

� Continue with the search

at corresponding peers

2

2 3

p5 p6p3 p4

at corresponding peers 2 3

BID3 NNID2BID1 BID2 NNID2

Peer 2Peer 2Peer 2Peer 2
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GHT* Range Search (cont.)GHT* Range Search (cont.)

� Peer 1 evaluating the range query R(q,r)

� For every NNID pointer found� For every NNID pointer found

� Continue with the search

at corresponding peers Peer 1at corresponding peers

� Build BPATH for the traversal

� Forward the message

Peer 1

� Destination peers consult their ASTs

� Avoid repeated computations

using the BPATH

BPATH: 1[2] 1[3]

using the BPATH

� Wait until the results are

gathered from all active peers Peer 2gathered from all active peers

� Merge them with results

from local buckets

Peer 2
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GHT* Nearest Neighbor SearchGHT* Nearest Neighbor Search

� Based on the range search

� Estimate the query radius� Estimate the query radius

� Evaluate k-nearest neighbors query k-NN(q)

Locate a bucket where q would be inserted� Locate a bucket where q would be inserted

� use the strategy for inserting an object

Start a range query with radius r equal to the distance � Start a range query with radius r equal to the distance 

between q and the k-th nearest neighbor of q in this bucket

If the bucket contains less than k objects, estimate r using:� If the bucket contains less than k objects, estimate r using:

� an optimistic strategy

� an pessimistic strategy� an pessimistic strategy

� The result of the range query contains the k-NN result
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GHT* k-NN Search ExampleGHT* k-NN Search Example

� Example 5-NN(q)

� Use the insert strategy in the local AST� Use the insert strategy in the local AST

p1 p2

2

p1 p2

2

),(),( 21 qpdqpd >

p5 p6p3 p4

2 3

p5 p6

3
),(),( 65 qpdqpd ≤

� Until a BID pointer is found

Continue searching at other
BID1 BID2 BID3 NNID2BID3

� Continue searching at other

peer whenever an NNID

pointer is foundpointer is found

� Search the destination bucket Peer 2
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GHT* k-NN Search Example (cont.)GHT* k-NN Search Example (cont.)

� Example 5-NN(q)

� Retrieve five nearest neighbors of q in the local bucket� Retrieve five nearest neighbors of q in the local bucket

� Set r to the distance of the fifth

nearest neighbor foundnearest neighbor found

� Evaluate a distributed range

search R(q,r)search R(q,r)

� results include at least five

nearest neighbors from the local bucket
q

r

nearest neighbors from the local bucket

� however, some additional objects

closer to q can be found

� Get the first five nearest objects of R(q,r)
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GHT* Updates and DeletionsGHT* Updates and Deletions

� Updating an object

� Delete the original object� Delete the original object

� Insert the updated version

Deleting an object� Deleting an object

� Locate the bucket where the object is stored

the insert navigation algorithm is used� the insert navigation algorithm is used

� Remove the object from the bucket

� The bucket occupation may become too low

� merge the bucket with another one

� update the corresponding nodes in the AST
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GHT* Merging BucketsGHT* Merging Buckets
4

� Remove a bucket

� Get its sibling

Np

N

1

2

...

� Get its sibling

� either a leaf node (bucket)

� or an inner node BID BID

BID3

Nb
2

� or an inner node

� Reinsert all remaining objects

� into the sibling

BID1 BID2

D
e
le
te

� into the sibling

� multiple buckets possibly

� Remove the inner node Np

D
e
le
te

4

� Remove the inner node Np

� Increase the node’s serial number 3

...

BID1 BID2BID3 BID3

...
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AST: Image AdjustmentAST: Image Adjustment

� The AST is modified on bucket splits and merges

� Only changed peers are aware of the change (4 and 5)� Only changed peers are aware of the change (4 and 5)

p1 p2

2

p5 p6p3 p4

31

1

4

Peer

1

Peer

2

Peer

3

Peer p7 p8

1

4

Peer

5

Peer
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AST: Image Adjustment (cont.)AST: Image Adjustment (cont.)

� The AST is modified on bucket splits and merges

� Only changed peers are aware of the change (4 and 5)� Only changed peers are aware of the change (4 and 5)

� When other peer searches

Forwards the query to a peer� Forwards the query to a peer

p1 p2

2

p1 p2

2

p5 p6p3 p4

31

p5 p6

3

1

Peer

2

Peer

3

Peer

4

Peer

4

Peer

Search

BPATH: 1[2] 1[3]
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AST: Image Adjustment (cont.)AST: Image Adjustment (cont.)

� The AST is modified on bucket splits and merges

� Only changed peers are aware of the change (4 and 5)� Only changed peers are aware of the change (4 and 5)

� When other peer searches

Forwards the query to a peer� Forwards the query to a peer

� which has a different AST view

The incomplete search is detected

p1 p2

2

� The incomplete search is detected

� by too short BPATH

The search evaluation resumes

p3 p4 p5 p6

31

1
� The search evaluation resumes

� possibly forwarding the query

to some other peers

1

Peer

2

Peer

3

Peer p7 p8

1

to some other peers
Search

BPATH: 1[2] 1[3]
4

Peer

5

Peer

1[1]
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AST: Image Adjustment (cont.)AST: Image Adjustment (cont.)

� The AST is modified on bucket splits and merges

� Only changed peers are aware of the change (4 and 5)� Only changed peers are aware of the change (4 and 5)

� When other peer searches

Forwards the query to a peer� Forwards the query to a peer

� which has a different AST view

The incomplete search is detected

p1 p2

2

� The incomplete search is detected

� by too short BPATH

The search evaluation resumes

p3 p4 p5 p6

31

1
� The search evaluation resumes

� possibly forwarding the query

to some other peers

1

Peer

2

Peer

3

Peer p7 p8

1

to some other peers

� Image adjustment is sent back
4

Peer

5

Peer

4 5

p p

1
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AST: Logarithmic ReplicationAST: Logarithmic Replication

� The full AST on every peer is space consuming

� many pivots must be replicated at each peer� many pivots must be replicated at each peer

� Only a limited AST stored

all paths to local buckets� all paths to local buckets

� nothing more p1 p2p1 p2

� Hidden parts

� replaced by the NNIDs

p5 p6p3 p4p3 p4

� replaced by the NNIDs

of the leftmost peers
p13 p14p11 p12p7 p8 p9 p10

NNID2 NNID3BID1 NNID4 NNID5 NNID6 NNID7 NNID8

p7 p8

BID1 NNID3 NNID5NNID2 NNID3BID1 NNID4 NNID5 NNID6 NNID7 NNID8BID1 NNID3 NNID5
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AST: Logarithmic Replication (cont.)AST: Logarithmic Replication (cont.)

� Result of logarithmic replication

� The partial AST� The partial AST

Hidden parts� Hidden parts

� replaced by the NNIDs
p1 p2p1 p2

of the leftmost peers
p3 p4 NNID5p3 p4

p7 p8

NNID2

NNID3

BID1

p7 p8

BID1 NNID2BID1BID1
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GHT* Joining P2P NetworkGHT* Joining P2P Network

� A new node joining the network sends “I’m here”

� Received by each active peer� Received by each active peer

� Peers add the node to their

lists of available peerslists of available peers

� If a node is needed by a split

Get one peer from the list� Get one peer from the list

� send an activation request

The peer sends “I’m being used”� The peer sends “I’m being used”

� the other peers remove it from their lists

The peer is “Ready to serve” � The peer is “Ready to serve” 
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GHT* Leaving P2P NetworkGHT* Leaving P2P Network

� Unexpected leaves not handled

� Requires replication or other fault-tolerant techniques� Requires replication or other fault-tolerant techniques

� Peers without storage

Can leave without restrictions� Can leave without restrictions

� Peers storing some data

� Delete all stored data

� all buckets are merged

� Reinsert data back to the structure

� without offering its own storage capacity

� Better leaving/fault-tolerant is a research challenge
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Parallel and Distributed IndexesParallel and Distributed Indexes

1. preliminaries

2. processing M-trees with parallel resources2. processing M-trees with parallel resources

3. scalable and distributed similarity search

4. performance trials
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Performance TrialsPerformance Trials

� Objectives: show the performance of the distributed 

similarity search index structuresimilarity search index structure

The same datasets as for the centralized ones� The same datasets as for the centralized ones

� Comparison possible

⇒Experiments show that the response times  are ⇒Experiments show that the response times  are 

nearly constant
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DatasetsDatasets

� Trials performed on two datasets:

� VEC: 45-dimensional vectors of image color features � VEC: 45-dimensional vectors of image color features 

compared by the quadratic distance measure 

� STR: sentences of a Czech language corpus compared by� STR: sentences of a Czech language corpus compared by

the edit distance
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Datasets: Distance DistributionDatasets: Distance Distribution

Distribution of the distances within the datasets� Distribution of the distances within the datasets

� VEC: practically normal distance distribution

� STR: skewed distribution
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Computing InfrastructureComputing Infrastructure

� 300 Intel Pentium workstations

� Linux operating system� Linux operating system

� available for use to university students

Connected by a 100Mbps network� Connected by a 100Mbps network

� access times approximately 5ms

� Memory based buckets

� limited capacity - up to 1,000 objects� limited capacity - up to 1,000 objects

� Basic datasets:

� 100,000 objects� 100,000 objects

� 25 peers
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Performance Trials: MeasuresPerformance Trials: Measures

� Distance computations

� Number of all evaluations of the metric function� Number of all evaluations of the metric function

� either in the AST or in buckets

� Represent the CPU costs� Represent the CPU costs

� depends on the metric function complexity

� the evaluation may vary from hundreds of nanoseconds to � the evaluation may vary from hundreds of nanoseconds to 

seconds

� Accessed buckets

� Number of buckets accessed during a query evaluation� Number of buckets accessed during a query evaluation

� Represents the I/O costs
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Performance Trials: Measures (cont.)Performance Trials: Measures (cont.)

� Messages sent

� Transmitted between peers using the computer network� Transmitted between peers using the computer network

� Represent the communication costs

� depends on the size of the sent objects� depends on the size of the sent objects
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Performance Trials: RemarksPerformance Trials: Remarks

� Response times are imprecise:

� not dedicated computers� not dedicated computers

� depend on the actual load of used computers and the 

underlying networkunderlying network

� other influences

� Query objects follow the dataset distribution

Average over 50 queries:� Average over 50 queries:

� different query objectsdifferent query objects

� the same selectivity (radius or number of nearest neighbors)
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Performance Trials: OutlinePerformance Trials: Outline

� Performance of similarity queries

� Global costs� Global costs

� CPU, I/O and communication

� similar to the centralized structures� similar to the centralized structures

� Parallel costs

� Comparison of range and k-nearest neighbors queries� Comparison of range and k-nearest neighbors queries

� Data volume scalability

Costs changes while increasing the size of the data� Costs changes while increasing the size of the data

� Intraquery parallelism

Interquery parallelism � Interquery parallelism 
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Similarity Queries Global CostsSimilarity Queries Global Costs

� Changing range query radius

� Result set size
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Similarity Queries Global CostsSimilarity Queries Global Costs

VEC

� Changing k for k-NN queries

� logarithmic scale 80
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Similarity Queries Global CostsSimilarity Queries Global Costs

� Changing range query radius

� Distance computations
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Similarity Queries Global CostsSimilarity Queries Global Costs

VEC

� Changing k for k-NN queries

� logarithmic scale
800

1000

1200

di
st

an
ce

 c
om

pu
ta

tio
ns

VEC

total/100
AST

� logarithmic scale

� Distance computations

only a small percentage of 
200

400

600

di
st

an
ce

 c
om

pu
ta

tio
ns

� only a small percentage of 

distance computations during the 

AST navigation is needed

0

200

10 100 1000 10000

di
st

an
ce

 c
om

pu
ta

tio
ns

k

AST navigation is needed

� k-NN very expensive

also with respect to the CPU 200

250

300

di
st

an
ce

 c
om

pu
ta

tio
ns

STR

total/100
AST

� also with respect to the CPU 

costs 100

150

200

di
st

an
ce

 c
om

pu
ta

tio
ns

0

50

10 100 1000 10000
di

st
an

ce
 c

om
pu

ta
tio

ns
k

Similarity Search: Part II, Chapter 5 72

k



Similarity Queries Global CostsSimilarity Queries Global Costs

� Changing range query radius

� Number of messages
forward
request/10
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Similarity Queries Global CostsSimilarity Queries Global Costs

VEC

� Changing k for k-NN queries

� logarithmic scale
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Similarity Queries Global CostsSimilarity Queries Global Costs

� GHT* is comparable to centralized structures

� No pruning techniques in buckets� No pruning techniques in buckets

� slightly increased number of distance computations

� Buckets accessed on peers� Buckets accessed on peers

� not fixed size of blocks, but fixed bucket capacity

� Trends are similar� Trends are similar

� Costs increase linearly
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

� Correspond to the actual response times

� More difficult to measure� More difficult to measure

� Maximum of the serial costs from all accessed peers

Example: the parallel distance comp. of a range query� Example: the parallel distance comp. of a range query

� number of distance computations at each peer accessed

at a peer, it is a sum of costs for accessed buckets� at a peer, it is a sum of costs for accessed buckets

� maximum of the values needed on active peers

k-NN has the serial phase of locating the first bucket� k-NN has the serial phase of locating the first bucket

� we must sum the first part with the range query costs

� additional serial iterations may be required if 

optimistic/pessimistic strategy is used
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

VEC

� Changing range query radius
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

iterations
 16

VEC

� Changing k for k-NN queries

� logarithmic scale
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

� Changing the range query radius

� Parallel distance computations
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

VEC

� Changing k for k-NN queries
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

� Measure for the messages sent

(the communication costs)(the communication costs)

� during the query execution, the peer may send messages 

to several other peersto several other peers

� the cost is equal to sending only one, because the peer sends 

them all at oncethem all at once

� the serial part is thus the forwarding

� The number of peers sequentially contacted� The number of peers sequentially contacted

� hop count
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

VEC

� Changing range query radius
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

VEC

� Changing k for k-NN queries
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Similarity Queries ComparisonSimilarity Queries Comparison
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Similarity Queries Parallel CostsSimilarity Queries Parallel Costs

� GHT* real costs summary

� the real response of the indexing system� the real response of the indexing system

� GHT* exhibits

constant parallel CPU costs� constant parallel CPU costs

� distance computations bounded by bucket capacity

Constant parallel I/O costs� Constant parallel I/O costs

� number of buckets accessed bounded by peer capacity

Logarithmic parallel communication costs� Logarithmic parallel communication costs

� even with the logarithmic replication
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Data volume scalabilityData volume scalability

� Dataset gradually expanded to 1,000,000 objects

� measurements after every increment of 2,000 objects� measurements after every increment of 2,000 objects

� Intraquery parallelism

parallel response of a query measured in distance comp.� parallel response of a query measured in distance comp.

� maximum of costs incurred at peers involved in the query

� Interquery parallelism

� simplified by the ratio of the number of peers involved in a � simplified by the ratio of the number of peers involved in a 

query to the total number of peers

� the lower the ratio, the higher the chances for other queries the lower the ratio, the higher the chances for other queries 

to be executed in parallel
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Data volume scalabilityData volume scalability
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Data volume scalabilityData volume scalability
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Data volume scalabilityData volume scalability

VEC

� Changing dataset size
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Data volume scalabilityData volume scalability

� GHT* scalability for one query

� Intraquery parallelism� Intraquery parallelism

� both the AST navigation and the bucket search

� Remains practically constant for growing datasets� Remains practically constant for growing datasets

� GHT* scalability for multiple queries

Interquery parallelism� Interquery parallelism

� a simplification by percentage of used peers

Allows more queries executed at the same time as the � Allows more queries executed at the same time as the 

dataset grows
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